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ABSTRACT. - When the space of cadlag trajectories is endowed with
the topology of convergence in measure (much weaker that Skorohod’s
topology), very convenient criteria of compactness are obtained for bounded
sets of laws of quasimartingales and semi-martingales. Stability of various
classes of processes for that type of convergence is also studied.

RESUME. - On montre que si l’on munit l’espace des trajectoires cad-
_ làg de la topologie de la convergence en mesure (beaucoup plus faible
que la topologie de Skorohod) on obtient des critères très commodes
de compacité étroite pour des ensembles bornés de lois de quasimartin-
gales et de semimartingales. On étudie la stabilité de diverses classes de
processus pour ce mode de convergence. L’étude des diffusions sera abordée
dans un travail ultérieur.

INTRODUCTION

This paper was motivated by an attempt of the second author to construct
the diffusions with highly singular drifts that are needed for Nelson’s
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354 P. A. MEYER AND W. A. ZHENG

« stochastic mechanics », though no mention of stochastic mechanics
will be made here (the application to diffusions is the subject of another
paper by the second author alone). It soon appeared that the beautiful
methods of Aldous and his successors, using Skorohod’s topology, weren’t
very well adapted to this problem. Though some substantial results could
be proved in this way, the whole subject was changed by the idea of intro-
ducing a much weaker topology, of which the first author had a good
experience from the works of Baxter-Chacon [1 ], Maisonneuve [5],
Dellacherie [3 ], Dellacherie-Meyer [4 ]. Of course, weakening the topo-
logy makes it much easier to prove compactness criteria, and the whole
theory finally becomes so simple that it was decided to publish it separately.

Let D be the space of all càdlàg functions (this is the standard abbre-
viation, from the French, for right continuous with left hand limits (1))
from R + to R (the trivial extension to Rd, d > 1, will be left to the reader).
We denote by Xt the coordinate mapping w - w(t) on D, 
the 6-fields they generate on D. Roughly speaking, any criterion ensuring
that a deterministic function w(t) belongs to D should give rise, when
applied uniformly, to a compactness criterion in D for some suitable topo-
logy, and to a tightness criterion for probability measures on D in the
corresponding weak topology (= narrow topology in the terminology
of Bourbaki [2]). The results of Aldous can be interpreted in this way.
In martingale theory, it seems more natural to use Doob’s criterion on

numbers of upcrossings, and it turns out that one suitable topology on D
is that of convergence in measure (in Lebesgue’s sense). Contrary to Sko-
rohod’s topology, D will no longer be a Polish space, but this isn’t a serious
drawback, since the only result in weak convergence which requires the
space to be Polish in an essential way is the converse to Prohorov’s theo-

rem, which is seldom used.

We apply this compactness/tightness criterion to probability laws on D,
i. e. to laws of stochastic processes. Our main result is the following : any
set of laws of quasimartingales on D which is bounded in variation is tight,
and its closure consists of laws of quasimartingales. This is the probabilistic
analogue of the elementary tightness criterion for functions of bounded
variation on R+, but apparently the result wasn’t known even for mar-
tingales. On the other hand, for laws of decreasing processes it is just another
form of the Baxter-Chacon theorem on compactness of the set of rando-
mized stopping times.

(1) Including a limit at + oo.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



355TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

The last part of the paper is devoted to the problem of stability of given
classes of processes under weak convergence. We first give a general result,
implying that finite dimensional distributions converge at least within

a set of full Lebesgue measure (this is weaker than the corresponding
result for Skorohod’s topology, but still sufficient to give a lot of infor-
mation about the limiting measure). Then we give more detailed stability
results, concerning processes with finite variation paths, continuous local
martingales, etc. This section owes much to discussions with C. Stricker,
which led to great improvements in results and proofs.

PSEUDO-PATHS

Our account of pseudo-paths is reduced here to the strictly necessary
facts. For more details, see the book [4 ], chapter IV, n°S 40-46.

Let the measure e - tdt on R + . Let w(t ) be a real valued Borel func-
tion on R+ (Lebesgue measurable functions would do as well, but this
extension isn’t really useful). By definition, the pseudo-path of w is a pro-
bability law on [0, oo ] x R : the image measure of À under the mapping
t ~ (t, wet)). We denote by 03C8 the mapping which associates to a path w
its pseudo-path : it is clear that 03C8 identifies two paths if and only if they
are equal a. e. in Lebesgue’s sense. In particular, 03C8 is 1-1 on D, and provides
us with an imbedding (2) of D into the compact space ~ of all probability
laws on the compact space [0, oo ] x R. For a moment, we shall give to
the induced topology on D the name of pseudo-path topology.
The definition of pseudo-paths in [~] ] is slightly different: Lebesgue

measure is used there instead of the bounded measure A.

Let us introduce some intermediate sets between D and fjJ: fjJ will be

the set of all measures  E fjJ which are carried by [0, oo [ x R ; A will be
the set of all measures J1 E fjJ whose projection on [0, oo ] is Finally,
~ will be the set of all pseudo-paths. We have obvious inclusions

For the reader’s information (we’ll not use these results) let us mention
that ~’ are Polish spaces : the only delicate point is to show that ~’
is a ~~ in A, which is done in [4 ~, IV. 43. On the other hand, it has been
shown by B. V. Rao (see appendix) that D isn’t a ~~ in ~I’, and hence can’t

(2) Note that the a-field induced on D by  is the usual one.

Vol. 20, n° 4-1984.



356 P. A. MEYER AND W. A. ZHENG

be Polish. Our characterization of D in theorem 2 will show that D is

Borel in hence a Lusin space.
The following lemma is adapted from Dellacherie [3 ].

LEMMA 1. - The pseudopath topology on W is just convergence in

measure.

Proof - Both topologies being metrizable, we may restrict ourselves
to sequences. If wn is a sequence of paths which converges in measure to w,
we have for any bounded continuous function f(s, x) on [0, oo ] x R

Otherwise stated, w~ tends to w in the pseudo-path topology. Conversely,
assume (1). Taking first f (s, x) = a(s) Arctg (x), with a(s) continuous bounded
on [0, oo ], we deduce from (1) that the paths un(s) = Arctg (wn(s)) converge
to u = Arctg (w) in the weak topology Then taking f(s, x) = (Arctg (x)f
we see that --~ ~ ~ u ~ ~2. Hence un converges strongly in L2(~,) to u,
and wn converges in measure to w.

Of course, lemma 1 is also valid on D c ’P.

CHARACTERIZATION OF D USING NUMBERS
OF UPCROSSINGS

We are going to extend to all of  some familiar functionals of stochastic
processes.

First of all, let p E We define S(J.l) = J.l* E [0, oo ] by

(2) = p* = inf ~ c : p is carried by [0, o~o ] x [ - c, c ] ~ .
For a pseudo-path ,u = t/r(w), S(,u) is simply w* = ess sup I w(t) ~, whence

t
the notation ~u*. It is clear that the  c } is closed in i. e.,

S is a 1. s. c. function on 

Let R be the set of all rational pairs (u, v) with u  v. Let r be a finite

subdivision on [0, oo ]

We define for a positive integer by the following condition :
> k if and only if there exist elements of T denoted as follows

Annaies de l’InstÍtut Henri Poincaré - Probabilités et Statistiques



357TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

such that f1 charges (i. e. gives strictly positive measure to) each one of
the open sets in [0, oo ] x R

The sets { ,u : > k ~ _ ~ ,u : > k -1 ~ are open in so that N~v
is a 1. s. c. function, and the same is true for the function

If  is the pseudo-path of a càdlàg function w, is the classical number
of upcrossings of [u, v] ] by the path w, as defined in martingale theory.

THEOREM 2. - A measure ,u belongs to D ifand only if it belongs to A
and satisfies the conditions

Proof These conditions are clearly necessary. Let us prove they are
sufficient. 

w

1) We disintegrate the measure J1 E A as Q PS and show

first that ps has (for a. e. s) a support reduced to one single point w(s). Indeed,
assume the contrary, we may then find a set A c ~ + of strictly positive
Lebesgue measure, a pair (u, v) E ~, such that for every s E A the measure p~
charges both [ - oo, u [ and ]v, + ~o ]. From this, it is easy to deduce that

for every integer k, a contradiction.
It isn’t difficult to choose a Borel version of the mapping w, and to verify

that  = y5(w).
2) Assume there is some point t E [0, oo [ such that

then we may insert between these numbers some rationals u  v, and it

is again very easy to see that for every k, a contradiction to
our assumptions. Otherwise stated, we have proved that our function w
has essential limits from the right (in R) at any point t E [0, oo [.

According to a result of Chung, Doob and Walsh (see [4 ], IV. 37), w is a. e.
equal to a right continuous function (in the ordinary sense). This is the only
delicate point of the proof, and it is fortunate that other people did the
hard work for us.

3) Then the generalized numbers of upcrossings we have been using
turn out to be ordinary numbers of upcrossings for this right continuous

Vol. 20, n° 4-1984.



358 P. A. MEYER AND W. A. ZHENG

function, and our assumptions imply that it has also left limits in R. Finally,
the assumption on ~* implies that this càdlàg function is bounded in R,
and the theorem is proved.

is relatively compact in D for the pseudo-path topology.

Proof - According to the lower semi-continuity of the functions ,u*,
the closure of A in ~ (which is compact) is contained in D. It is

likely that the above properties characterize the relatively compact subsets
of D, but we didn’t try to prove this point.

QUASIMARTINGALES

In this section we recall classical results on quasimartingales and on
the space Hi, which will be used in the next section. Quasimartingales have
been studied by Fisk, Orey, but the definitive results concerning them are
due to Murali Rao.

Let Q be a probability space with a filtration (~ t )t > o . Let (Xt ) be a cadlag
adapted process such that Xt E L 1 for every t. Given a subdivision r :

0=to  ti ...  tn = 00, we define Xoo to be 0 and set

and V(X) = sup VlX). If this number (the conditional variation of X) is
i

finite, then X is said to be a quasimartingale. For a martingale X, V(X)
is sup positive supermartingale, V(X) = E [Xo ].
We may interpret (4) as

where the random variables ({Jti are assumed to be ti-measurable and
bounded by 1 in absolute value, the sup being attained for

The right hand side of (5~ can be interpreted as a stochastic integral

E [03C6sdXs] of a predictable elementary process cp, bounded by 1 in abso-
lute value.

Annales de lslnstitut Henri Poincare - Probabilites et Statistiques



359TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

Rao’s main result is the unique decomposition of X as a difference of
two positive supermartingales Y, Z such that V(X) = E [Yo + Zo ] (see [4 ],
chapter VI, 40; the uniqueness part is due to Stricker). It follows from this
that we don’t change V(X) by allowing random subdivisions (Ti) using
stopping times instead of deterministic subdivisions (ti ). We shall need
the following extension to quasimartingales of the classical Doob inequa-
lities. It is well known (3), but we reprove it for the reader’s convenience.

LEMMA 3. - Let X be a quasimartingale. T hen

Proof - Using a deterministic change of time, we may assume Xt=O
for t large. We then apply the fact that Vr(X), where r is the random
subdivision consisting of the stopping times 0, T, oo with

Then since |E[X~ - XT [T] | ~ c on { T  ~} we get the first inequa-
lity. For the second one, we follow the usual proof of Doob’s inequality,
defining

Then we have

(the u + term is there to compensate for a last uncompleted upcrossing,
which may contribute a negative value (Xoo - XTi) with Xoo =0, XTi E [0, u ]).
Integrating, we get V(X) + u+ >- (v - 
A useful result due to Yoeurp is the following (a simple proof due to

Stricker is given in [6 ]) : if f is a convex Lipschitz function, such that/(0) = 0,
and X is a quasimartingale, then Y = f (X) is a quasimartingale with
V(Y)  2KV(X) (K being the Lipschitz constant of f ). We shall apply this
to the truncation functional T n(x) _ (x V (- n)) A n. This function isn’t
convex, but is the difference of the two convex Lipschitz functions x V ( - n)
and (x - n) +, so V(Tn(X))  4V(X).

Finally, a few words about H~. The most convenient definition of the

(~) See for instance Métivier, Reelle und vektorwertige Quasimartingale, p. 148-153.

Lecture Notes in M. 607, Springer 1977.
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360 P. A. MEYER AND W. A. ZHENG

norm N(X) _ ~ ~ will be, in analogy with (5), to define N(X) = sup 1: N,lX)
where

(cf. [4 ], VIII. 104). On the other hand, to say that X belongs to H~ amounts
to saying that X has a canonical decomposition X = A + M (A being a
previsible process of finite variation with Ao=0, and M a local martin-

gale) such that E ~ dAs + M*  oo, and this expectation defines a

norm equivalent to N(X). So if X belongs to H 1, X is a quasimartingale
and X* belongs to L~. Conversely, assume that X is a quasimartingale
and X* belongs to L1. Decompose X as Y - Z, a difference of two positive
supermartingales, with V(X) = E [Yo + Zo ], and apply the Doob decom-
position theorem ( [4 ], VII. 13) to Y and Z ; it follows that X = A + M

with V(X) controlling E and hence E [A* ]. Then it is clear that

E [X* ] controls E [M* ], and we see that the norm

is also equivalent to the H~ norm N(X).
From Yoeurp’s result and the preceding remarks follows at once the

fact that, if X is a quasimartingale, the truncated process Tn o X belongs
to H1. On the other hand, H1 has better stability properties than quasi-
martingales : if Q is a probability law, absolutely continuous w. r. to P

with a density p which is bounded by some constant C, it is clear that

the norm of X in H1(Q) satisfies CNp(X), while we don’t know
whether such a relation holds for the conditional variations.

It is sometimes convenient to extend the definition of quasimartingales
and H~ from probability laws to general positive bounded measures:

if ~ is such a measure, we decide that Vn(X) = N fleX) = 0 if ~ = 0, and if ~ ~ 0,
Vq(X) = where P is the probability law 
This extension is quite easy, and most results will be left to the reader.

TIGHTNESS FOR LAWS OF QUASIMARTINGALES

We give now the main result of this paper.

THEOREM 4. - Let Pn be a sequence of probability laws on D, such that
under Pn the coordinate process (Xt) is a quasimartingale with conditional

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



361TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

variation uni.f’ormly bounded in n. Then there exists a subsequence (Pnk)
which converges weakly on D to a law P, and is a quasimartingale under P.

Proof - There exists a subsequence (Pnk) which converges weakly on 
to some law P, and we are going to prove that P is carried by D. This
will imply ( [4 ~, III. 58) that P nk converges to P weakly on D. For the sake
of simplicity of notation, we assume that indexes have been renamed so
that the whole sequence Pn converges to P. We denote by En, E expecta-
tions relative to Pn, P.

By lower semicontinuity, we have

and according to lemma 3 the right hand sides are uniformly bounded in n.
So the random variables S, Nu" are P-a. s. finite, and theorem 2 implies
that P is carried by D. A slightly different version of this reasoning would
prove that the measures Pn are carried uniformly by compact subsets of D,
i. e. tightness of the set { Pn, n >_ 0 }, but here it was easier to work directly,
without using Prohorov’s theorem. It remains to show that P is a quasi-
martingale law.

Let 03C4 = (i)j~n be a finite subdivision (tn = + oo, Xoo = 0 by convention).
Let ({Jti for i  n be continuous ~ °-measurable functions on D, bounded
by 1 in absolute value. Let Xc be the process X truncated at c. According
to Yoeurp’s result we have for s > 0

We integrate over s E [o, ~ [ and apply Fubini’s theorem _

The functional in the brackets is bounded and continuous. Let us define
v = lim inf Vn(X); we deduce from this

and letting £ --~ 0, by right continuity

Vol. 20, n° 4-1984.
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On the other hand, we have for fixed ]  Vn(X). Using the same

kind of argument we deduce that E[1 ~~0 | Xt+s|ds] ~ 03BD, and by Fatou’s

lemma E [ ] - 0. Letting then c ~ oo in (9), we get the same
relation without truncation. Finally, we let tend in to the random

variable sgn (E 1- Xti and get that under P  4v. Since T

is arbitrary, P is a quasimartingale law. Note that we have used the filtra-
tion ift without any enlargement : this is permitted, see [4 ], Appendix 2,
n° 2, or Stricker in Sém. Prob. XV, Lect. Notes in M. 850, p. 495.

Remarks. - 1) Usually, Pn will be the law on the canonical space D
of some càdlàg quasimartingale Xn defined on some other filtered proba-
bility space possibly dependent on n. Then is smaller than

the original conditional variation this amounts to restricting the
filtration to be the natural filtration of Xn on on.

2) We are going to sketch another proof, which will show that the
constant 4 may be reduced to 1. We keep the notation suggested in the
remark 1) above.

First, assume that xn is a positive supermartingale (X then is a positive
supermartingale under Pn, and Vn(X) = En [Xo ] pio j). Then we show
that X is a positive supermartingale under the limit law P, and that
E [Xo ] _ lim inf En [Xo ]. To prove the first point : a.s. positivity under P is
obvious (the set of positive paths in D is closed, and carries each law Pn,
hence their limit P). Then, to prove that X is a supermartingale under P
it suffices to prove that for any pair s  t, any positive bounded continuous
Fos-measurable function cp, any c > 0, we have

We leave it to the reader to pass from to (~ t + ~. In turn, this can be
reduced to

which is now stable under weak convergence. Finally, for a positive super-

martingale we have v(X) = sup E - n from which the relation
C,E E ~0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



363TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

follows at once. But we may also extract a subsequent so that Vpnk(X)
converges to lim inf Vpn(X) and apply the relation to this subsequence,

n

thus replacing lim sup by lim inf.
Now we use the notation of remark 1), to deal with the general case.

Let xn = Yn - zn be the Rao decomposition of X’~, and let Qn be the
law of the pair (Yn, Zn) on D x D we denote by (Y, Z) the canonical
process on this space. Our tightness criteria apply as well to vector valued
processes so that we may assume, by extracting a subsequence if necessary,
that Qn converges weakly on D x D to some law Q, and it is clear that P
is the law of the càdlàg process Y - Z under Q. On the other hand, the
same reasoning as above will show that Y, Z are positive supermartingales
under Q, relative to their joint natural filtration, so that

and on the other hand Vp(X)  EQ [Yo + Zo ].
This proof is interesting also as an illustration of the power of simple

arguments using vector valued processes : in some cases, one isn’t interested
only in the weak convergence of the law of a semimartingale X, but in the
weak convergence of the joint law of (X, A, M), its canonical decompo-
sition, for instance, or of the joint law of (X, A, ( X, X ~ ). We’ll leave that
for -the second part of the paper.
Note also that the norm N’(X) = V(X) + E[X*] ] defining H 1 also

behaves like a 1. s. c. function under weak convergence.

3) We have defined above the quasimartingale and H~ norms of X rela-
tive to a measure on D which isn’t a probability measure, but is just bounded
and positive. It is clear that theorem 4 remains valid in this setup, provided
the total mass of Pn is uniformly bounded in n.

4) The deterministic analogue of theorem 4 is the following theorem,
which is well known, but is rarely stated in this way : the set He of all càdlàg

functions h(t) on R+, such that C, is compact under the

topology of convergence in measure. More precisely, every sequence (hn)
on elements of He contains a subsequence which converges to some h E He
outside some countable set (however, since we are dealing with signed
measures d hn, this exceptional set may be larger than the set of disconti-
nuities of h). Our aim in the next section will be to find a weaker analogue
of this last result for quasimartingales.

Vol. 20, n° 4-1984.



364 P. A. MEYER AND W. A. ZHENG

CONVERGENCE

OF FINITE DIMENSIONAL DISTRIBUTIONS

Let Pn be a sequence of measures of uniformly bounded mass on D,
such that Vn(X) = VpjX) is uniformly bounded by some constant K.
According to theorem 4, we may assume that Pn converges weakly on D
to some measure P. Let I be any countable set in R + , and let P~, Pi be the
law of the process on the Polish space R~, under Pn, P. The property
cPn ~ X* > c ~ __ K implies that the sequence is tight in RI. Our

problem will be in this section : can we find a dense countable I such that,
at least after extracting a subsequence, P~ converges weakly on RI to P~
in the usual weak topology? Since knowing the finite distributions of
a càdlàg process on a countable dense set completely determines the law,
this result will be sufficient to determine the limit law in the case of semi-

martingales.
It turns out that we have a better result : I can be taken to be a set of

full Lebesgue measure (then R1 will not be a Polish space, but this is uni-
important). The proof (which replaces a more complicated one in former
versions) is a simple application of the celebrated Skorohod theorem
on weak convergence, and doesn’t require any regularity assumption on
the processes.
We consider real valued processes for simplicity, but everything extends

to Rd valued (hence to manifold valued) processes.
Let Xn, X be measurable processes, with pseudo-laws J.1n, ~u, such that ,un

tends weakly to J.1 on T. Since T is a Polish space, Skorohod’s theorem
implies that one may find on some probability space (Q, ~ , P) random
variables Yn, Y with laws such that for a. e. aj. Using
a mapping from ] - oo, + oo [ to ] 2014 1, 1 [, we may assume that Xn, X, Y’~, Y
are bounded.

We may consider Yn, Y as processes this amounts to the remark

that a path can be canonically associated with a given pseudo-path w:
t+h _

assuming w to be bounded, one just defines w(t)=lim inf- t 
+ 

w(s)ds.

Then for a. e. co the bounded functions Y"(cD) converge to in measure.

So tends boundedly to 0. Integrating in we

get L~ convergence. We extract a subsequence so that we have a. e. conver-
gence w. r. to the measure d P x dt (we do not change notation to denote

Annales de l’Institut Henri Poincaré. - Probabilités et Statistiques



365TIGHTNESS CRITERIA FOR LAWS OF SEMIMARTINGALES

this subsequence). Applying Fubini’s theorem, we find that for every t

in some set A of full Lebesgue measure, Yt -~ Yt a. s. Hence the finite

distributions of the processes converge in the usual sense to those

of (Yt )teA.
Coming back to the original processes, there is a set B of full Lebesgue

measure such that, for every t E B and every n, we have

and the fact that Xn and Yn have the same pseudo-law implies that the
processes and (Y)tEB have the same law on RB. So finally, the finite
dimensional distributions of converge weakly to those of 

Let us give a formal statement :

THEOREM 5. - Let (X t ), (Xt) be a measurable processes, such that the
pseudo-law of Xn converges to that of X. Then there exists a subsequence (Xnkt)
and a set I of full Lebesgue measure, such that the finite dimensional distri-
butions of converge to those of (Xt)tEI.
The proof also yields the following corollary :

THEOREM 6. - Let (X t ), (Xt) be as above. Let f be a continuous bounded
,function on Rk . T hen the functions

converge in measure to the corresponding function relative to (xt), as n -~ oo.

Proof - Just apply the following remark : to check that a sequence (hn)
of measurable functions on R~ (or any measure space) converges in measure
to h, it is sufficient to check that any subsequence itself contains a sub-
sequence which converges a. s. to h. This is the case according to theorem 5.

LOCALIZATION

Up to now, we have been working with quasimartingales. Let us extend
the results to semimartingales. We are going to work on semimartingales
up to 00 (otherwise, their sample functions might not belong to D as we
have defined it). The extension to ordinary semimartingales is left to the
reader.

Vol. 20, n° 4-1984.
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THEOREM 7. - For each n, let Pn be the law on D of a semimartingale Xn
defined on some filtered probability space Pn, /2). Assume that for
every E > 0 there is a quasimartingale Yn on such that

(10) (!/In { (X~~- Yn)* > 0 ~  E and Var is bounded uni, f ’orml y in n.

Then the sequence (Pn) contains a subsequence which converges weakly on D
to a law P, and under P X is a semimartingale up to oo.

Usually Yn is Xn stopped at T or at T- for some stopping time T on on.

Proof - One first checks the tightness of the laws Pn, using theorem 2
and its corollary. For instance, with the same notations as in (10)

is uniformly small in n for c large. So extracting a subsequence if necessary
we may assume that Pn converges to P, and it remains to prove that X is
a semimartingale under P.

Call Pn the law of the pair (Xn, Yn) on D x D, and call (Xt, Yt ) the coor-
dinate process on D x D. Since Yn has uniformly bounded variation,
we may find a subsequence such that Pnk converges to a law P on D x D
such that :

- The law of X under P is P,
- Y is a quasimartingale under P in the joint natural filtration of (X, Y)

(th. 4),
2014 P {(X 2014 Y)* > o ~  s (lower-semicontinuity !).

This implies X is a semimartingale up to 00 . The simplest (if not the
most elementary) way to prove it is to use the Dellacherie-Mokobodzki
(theorem [4 ], VIII. 80) : if Jn) is a sequence of previsible elementary pro-
cesses in the natural filtration of X, which converges uniformly to 0, we
must prove that ( jn . X) (these stochastic integrals are really finite sums)
converges to 0 in probability. Now can also be interpreted by pro-
jection as a previsible process on D x D w. r. to the filtration of (X, Y),
and since Y is a quasimartingale tends to 0 in probability. On
the other hand, jn . X and jn . Y differ only on a set of probability smaller
than s, and the conclusion follows.

Remark. C. Stricker has proved the following version of theorem 7,
which doesn’t use at all approximation by quasimartingales. We assume
that for every finite t, for every sequence of previsible elementary pro-
cesses jk on D which converges uniformly to 0 the stochastic inte-
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grals t0jksdXs w. r. to the coordinate process on D converge to 0 in pro-

bability under Pn, uniformly in n. Then the sequence ( Pn) is tight, and its
limit laws are laws of semimartingales.

CLOSURE PROPERTIES:

FINITE VARIATION PROCESSES

We are going now to investigate some stability properties, which are
necessary to apply weak convergence in concrete cases.
The first trivial case is that of processes of finite variation. For simplicity,

we deal only with processes of integrable variation, though the localization
procedure in theorem 7 will extend this to processes whose total variation
remains bounded in probability. The case of processes with integrable
variation can be reduced in a pedantic way to that of quasimartingales
if one makes the remark (Meyer-Yan, Sem. Prob. IX, p. 466, Lecture Notes
in M. 465) that one may find an increasing, even continuous and bounded,
process A such that knowing the r. v. At for any t > 0 gives all the informa-
tion in and therefore X is a process of integrable variation if and
only if and only if the pair (X, A) is a quasimartingale. Here is a less sophis-
ticated proof: what is really involved is the following easy result (essen-
tially the same as remark 4 after theorem 4). We denote by c a finite number.

. ’ 

, 

~oo ...
LEMMA 8. - The function w ~ ~0| dXs(w) = J(w) (including the

mass X0(w)| at 0) is lower semi-continuous on D, and the sets {J _ c}
are compact.

Proof - Lower semi-continuity means that ~ J _ c ~ is closed, so it

suffices to prove the last statement. Now if (wn) is a sequence such that
J(wn)  c, it contains a subsequence which converges to a path W E D
with J(w)  c outside a countable set, and hence in measure.
Now it is clear that the condition E [J]  K is preserved under weak

convergence, so we have from lemma 8 and Prohorov’s theorem:

COROLLARY 9. - Any sequence (Xt ) of processes (on variable spaces on)

of integrable variation, with integral dX~ ~ I  K, contains a sub-

sequence which converges in law on D, and the limit law satisfies
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A much more interesting problem is to study the stability of absolute
continuity under convergence in law. We give only one result in this direc-
tion, which is useful in many applications. It is clear that the exponent 2
plays no particular role.

/*f

THEOREM 10. 2014 In the preceding result, assume that Xnt = | Hnsds, with
’ 

/’oo 
’ ~0

E" ]~0 | Hns |2ds] ~ K (independent of n). Then under the limit law P the
canonical process (Xt) is a. s. absolutely continuous, and its density process (Ht)

" 

~00
satisfies E [~0 ) Hs |2ds] ~ K.

It is more natural for such a statement to work on [0, t ] for t finite rather
than on [0, oo ], since on [0, ~ ] the condition of corollary 10 follows from
Schwarz’s inequality. But we’ll prove th. 11 as stated.

Proof. 2014 We already know that X has integrable variation. To check
it is absolutely continuous with density H in P x we must check that

for any measurable process f (s, w) on D. Now it is sufficient to check it when

(ti) being a finite subdivision of [0, 00 [, with its points taken in some fixed
countable dense I, and the functions fi being continuous on D (no filtra-
tion appears here) bounded by 1 in absolute value. We may take for I

some countable set given by theorem 5. Then we have an inequality like (11)
on on for Xn, which carries over to the image law Pn on D, and finally passes
to the limit.

CLOSURE PROPERTIES:
MARTINGALES AND CONTINUOUS LOCAL MARTINGALES

The following result is almost obvious:

THEOREM 11. - Let (X~ ) a sequence of martingales, uniformly bounded
in L~ (on variable probability spaces Q"), whose laws Pn converge weakly
to P in the space D. Assume that for every t the r. v. X~ are uniformly inte-
grable w. r. to the (variable) laws Pn. Then X is a L 1-bounded martingale
under P.

Proof - First of all, for martingales the quasimartingale variation is
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just the L 1 norm. So theorem 5 applies, and extracting a subsequence if

necessary we may find a countable dense set I such that (X?)tei converges
in law to The martingale property for X"

for si,..., s2 ... _ s; _ s __ ... , f; bounded continuous
on R, will pass to the limit as n - oo, because of the uniform integrabi-
lity we have assumed:

Therefore (Xt)tEj is a martingale, and it is well known that the property
can be then extended to R + .
Of course, the uniform integrability mentioned in the preceding statement

will usually follow from some boundedness property in LP, p > 1. In

contrast to such an essentially trivial result, the theory of weak conver-
gence for local martingales seems to be very delicate. So we restrict ourselves
to the case of continuous local martingales.
The idea which underlies the following theorem is the main idea of

Rebolledo, Métivier, Joffe...: to get continuity results on a martingale
defined as a weak limit, one tries to get continuity results on its associated
increasing process (and these in turn will follow from absolute continuity
estimates as in theorem 10).
We denote by (Xi) a sequence of continuous local martingales (1) with

XQ = 0, and by (Ai) the corresponding increasing processes. As usual,
each pair (Xn, An) is defined on its own space and filtration. We assume that
the r. v. ’s An~ are uniformly bounded in probability. Then setting

we have pn { Tn  ~}  e for K large, uniformly in n. On the other hand,
the processes xn stopped at Tn are quasimartingales with uniformly bounded
variation (since they are martingales uniformly bounded in L2 ... ) and
theorem 7 applies to Xn, theorem 9 (localized) to An, implying together
the existence of a subsequence of (Xn, An) which converges weakly on D x D.
For the coherence of notation, we denote by (Xf, At) the coordinate
mappings in this case. Here is a reasonably satisfactory result.

THEOREM 12. - Let (Xn, An) converge weakly to (X, A) as described
above. Assume that Ao = 0 and A is continuous. Then X is a continuous local
martingale (4), and A = ~ X, X ~ a. s.

(4) On the interval [0, oo ].
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To prove this we need a lemma due to Yor (see Sém. Prob. X, Lecture
Notes in M. 511, p. 497). The version we give is due to Stricker, and is
more convenient for our purposes. The simplified proof (no longer using
Levy measures) is due to him too.

LEMMA. - Let X be cadlag adapted with Xo = 0, A be a continuous
increasing process such that Ao = 0. Assume that for ~, E R the process

is a local martingale (resp. a supermartingale). Then X is a continuous local
martingale, and A = ~ X, X ~ (resp. A - ~ X, X ~ is increasing).

Proof of the lemma. - Set Vt = At + t, which is continuous strictly
increasing, and tends to infinity with t, and introduce the change of time
it = inf { s : Vs > t ~. Then we have for s  t

The supermartingale property of Zt implies  1. Writing this

explicitly and using (12) we deduce that

Since the result is also valid for - h, we have

from which a Kolmogorov lemma type argument deduces that XTt is

continuous in t. Inverting the change of time we get the continuity of X
itself.

To prove that X is a local martingale and that A = ~ X, X ~, we may
now reduce by stopping to the case where X and A are bounded. The Ito
formula tells us that

This is a supermartingale, and remains so after dividing by A if ~, > 0.

Letting /L -~ 0 (which is easy to justify since X and A are bounded) we
find that X is a supermartingale. Similarly, taking À  0 and dividing
by - À we find that - X is a supermartingale, hence X is a martingale.
Then if Z~ is a local martingale (supermartingale) the integral on the right
must be 0 (decreasing), whence the conclusion on A 2014 ~ X, X )~.
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/ ~ B
Proof of theorem 12. 2014 For every n, the processes k A exp 03BBXnt 2014 Ant)B ~ /

are bounded positive supermartingales. A passage to the limit like in theo-

rcm 12 will show that k A exp (03BBXt - 03BB2 At) is a supermartingale under P,B ~ /
of expectation 1. Letting ~ 2014~ oo and applying the lemma to X 2014 Xo and A,
we see that X is a continuous local martingale, and A 2014 ( X 2014 Xo , X 2014 Xo ) is
increasing. From Ao == 0 we deduce that Xo = 0 a. s. We know that

for every real ~ we have E 1. It first follows that the law
of Xo has exponential moments of all orders, which allows us to expand

and to deduce that E [Xo == 0, = 0, hence Xo = 0 a. s, e

It remains to show that A = ( X, X )>. We return to the constant K and
stopping time Tn before the statement of th. 12 and denote by Bn, Y" the
processes An, Xn stopped at Tn. Extracting a subsequence if necessary,
we may assume that (Xn, An, Yn, Bn) converge weakly to processes (X, A, Y, Bx
and P {(X - Y)* ~ 0 ~, P ~ (A - B)* ~ 0 ~ is small as in the proof of
theorem 7, if K has been chosen large enough. So it is sufficient to prove
that B = ( Y, Y ) a. s. On the other hand, the processes Bn are uniformly
bounded by K, the processes Yn are bounded in every Lp, and therefore
the relation = will pass to the limit for t in a set of full measure,
implying that E [B~ ] = E [ ~ Y, Y ~t ]. Since B >-- ~ Y, Y ~, the equality
follows.

An example. The following trivial example will show that the conti-
nuity of A and the condition Ao = 0 are essential, and at which place.
Take for Xn a gaussian centered martingale with increasing process A?=0
for t _- a, At =1 for t >_ and linear in between. Then 

Xt = ,where g is a r. v. with distribution N(0, 1). So neither A nor X
is continuous (if a = 0, the property that Xo = 0 a. s. gets lost). On the

other hand it is true that exp (03BBXt - 03BB2 2 At is a martingale for every l,
so the failure comes from Yor’s lemma itself.
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APPENDIX

We give here the nice proof, by B. V . Rao, that D isn’t a Polish space. Since it is known
that W is a Polish space, and that a subspace of a Polish space is Polish if and only if it is
a ~a (Bourbaki, Top. Gen. IX, § 6, n° 1, th. 1) it is sufficient to show that D isn’t a Now D

is dense in ~P and, according to Baire’s theorem, the intersection of two dense ~a sets is
dense, and hence non empty. So to prove that D isn’t a ~s it is sufficient to find 
which is disjoint from D.

Let u, v be two rationals such that u  v, and let A be the set { + ~} in ’1’, which
is disjoint from D, and is a ~b (NUV(.) is 1. s. c.). To see that we may approximate any path w
by elements wn of A, we simply define Wn to be equal to w on [1/n, oo [, and to have an infinite
number of upcrossings of [u, v on the interval [0, 1/n [. It is clear that wn then tends to w
in measure.
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