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SUMMARY. - The purpose of this paper is to give a « local version » of
~ Edgar’s inequalities [10 ], holding in any Banach space with the Radon-
Nikodym Property (RNP). The inequalities are simultaneously extended
in several directions ; in fact, we obtain our inequalities in pointwise form.
The extension is such that it permits to derive or generalize most of the
convergence results for stochastic processes in amart theory (amart,
weak sequential amart, uniform amart, mil).

RESUME. - Le but de cet article est de donner une « version locale »
des inégalités de Edgar [10 ], valable dans tout espace de Banach ayant
la propriété de Radon-Nikodym. Les inégalités sont generalisees simulta-
nément dans plusieurs directions ; en fait nos inégalités sont présentées
sous forme ponctuelle. L’extension que nous obtenons est telle qu’elle
permet de déduire ou de généraliser la plupart des résultats de convergence
pour les processus stochastiques dans la théorie des amarts (amart, amart
séquentiel faible, amart uniforme, mil).
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1. INTRODUCTION

Throughout this paper (Q, ~ , P) will be a fixed probability space and
- E a (real) separable Banach space. We denote by L~ = ~ , P) the

space of all Bochner integrable functions X : SZ -~ E. (Xn, ffn)nEN will

always denote an adapted sequence (stochastic process), that is, (ffn)nEN
is an increasing sequence of sub-a-algebras of ~ (called stochastic basis),
and each Xn : SZ --~ E is ffn-measurable and Bochner integrable.
The set of all simple stopping times (with respect to the stochastic basis

that is, the set of all mappings T : SZ -~ ~J such that { r = n ~ E ~n
for each n E ~l and i assumes only finitely many values, is denoted by T.
If (Xm fFn)nEN is an adapted sequence and r E T, we recall that the random
variable XL is defined by (Xt)(cv) = for cv E Q, and the sub-a-algebra
.~~ is defined by

If Y is a sub-a-algebra of F and X : 03A9 ~ E is Bochner integrable, we
denote by E~X the conditional expectation of X with respect to ~.

If a E T and J c T, we write J(Q) _ ~ ~ ~ J ~ i &#x3E; a ~.
The starting point of this paper is the following inequality of Edgar :

THEOREM 1.1 [10]. - Let E be a separable dual Banach space. Let
be an adapted sequence of E-valued integrable r. v.’s. Assume

that is L1E-bounded. Then :

It is also remarked in [10 ] that the above result is in general false in
Banach spaces with the Radon-Nikodym Property (RNP). The counter
example is based on the work of [18 and [19 (the latter paper shows the
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337GENERALIZED FATOU INEQUALITIES

existence of a Banach space having (RNP) which is not isomorphic with
a separable dual space).

However, as noted in [14 ], Theorem 1.1 remains true in Banach spaces
with (RNP) if we require ffn)nEN to be an amart. In this setting, Edgar’s
inequality was extended in [14 ] to the case of a general directed index set.
By imposing certain natural conditions on the adapted sequence

we are able to obtain a « local version » of Edgar’s inequalities,
valid in any Banach space with (RNP). The inequalities are simultaneously
extended in several directions ; in fact, we obtain our inequalities in point-
wise form. The main results of the paper are contained in Section 2: Theo-

rems 2.1, 2.2 and 2.3 (see also Corollary 2.4 for the « Distributional
form » and « Integral form » of our inequalities).

Section 3 is devoted to applications of the main inequalities obtained
in Section 2. We show that our inequalities are sharp enough to yield at
once most of the important strong and weak a. s. convergence theorems

for stochastic processes in amart theory. We thus derive or generalize:
a) The « mil » convergence theorem of Peligrad [23 ] and of Bellow-

Dvoretzky [S ].
b) The weak sequential amart (WS-amart) convergence theorem of

Brunel-Sucheston [6].
c) The uniform amart convergence of Bellow [3 ]. (This was already

remarked in [10 ] and [14 ] to follow immediately from the integral form
of the inequalities).

d ) The Riesz decomposition theorem for amarts of Edgar-Sucheston [12 ]
can also be obtained, via inequalities. This in turn easily implies the Pettis
convergence theorem of Uhl [24].

e) Also the following result can be proved: Let E be a subspace of a
separable dual and let ffn)nEN be an L~-bounded mil, consisting of
step functions, with ... , Xn) for each Then (Xn)nEN
converges strongly a. s.

In Section 4 we consider the general directed index set case. We recall
the basic notation and definitions.

Let I be a directed index set and correspondingly let (ffi)iEI be a stochastic
basis, that is, (ffi)iEI is an increasing net of sub-a-algebras of ~ indexed by
I(i S j implies ~i oe ffj for all i, je I). will always denote an
adapted net (stochastic process), that is, each Xi : SZ -~ E is ~1-measurable
and Bochner integrable.
Again we denote by T the set of all simple stopping times (with respect

to the stochastic basis that is, the set of all stopping times r for
which r(Q) is finite.
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338 A. BELLOW AND L. EGGHE

In the discrete case I = N, our inequalities imply convergence of sto-
chastic processes. On the other hand, in the general directed index set
case, it is well known that without an additional condition on the stochastic
basis we cannot expect to obtain essential convergence theorems
for (Xi, Thus if we want to extend our inequalities to the general
directed index set case, we are led to require the Vitali Condition V, the
natural (and necessary) condition in this context (see [77] ] [20] ] [21 ]) :

Vitali Condition V. We say that satisfies the Vitali condition V,
if for every adapted family of sets (Ai)iEI (i. e., Ai E for every i E I), for

every A E ~ ~ - the a-algebra generated by , suchB tel / B tel /
that A c e lim sup Ai and for every G &#x3E; 0, there exist finitely many indices

iEI

... , in in I and pairwise disjoint sets B~ c B j E ffij U = 1, ..., n)
such that

The extension of our inequalities to the general directed index set case is
carried out in Section 4.

The paper ends with an Appendix in which we give a simple and transpa-
rent proof - via inequalities of a theorem of Millet-Sucheston dealing
with stochastic and essential convergence.

2. POINTWISE INEQUALITIES AND COROLLARIES

In what follows we assume that

I) E is a separable Banach space, with norm ~ ~ )).
locally convex Hausdorff topology on E, weaker than the norm

topology on E and such that the unit ball

is ~-closed. Let us denote F = (E, Then F’ c E’ and to say that E 1
is ~-closed is equivalent to saying that for all x E E,

(use the separation theorem for closed convex sets).

Examples. 1) ~ = the norm topology on E ; 2) ~ _ a(E, E’), the weak

Annales de l’Institut Henri Poincaré-Section B



339GENERALIZED FATOU INEQUALITIES

topology of E ; 3) If E is a dual Banach space, E = G’, we may take
~ = a(G’, G), i. e., the weak*-topology.
We recall several elementary facts about ~ (see [15 and [16 ]) :

LEMMA 2.1. - 1) There is a countable set

with the property :

for all x E E.
2) The formula

defines a metric on E. The topology G0 on E, induced by d is weaker than
the topology ~..

3) G0 generates the same Borel sets as hence G does also.

4) If K c E is ~-compact, then K is metrizable and hence ~-sequentially
compact (i. e., every sequence in K contains a subsequence which is G-conver-
gent to an element of K).

DEFINITION 2. 1. We denote by Q~ the set of all mappings q : E - R +
satisfying the following two properties :

i) q is a continuous seminorm on 
ii) The set ~ x q(x)  1 ~ is ~-closed.

Equivalently we may define Q~ as the set of all mappings q : E --~ f~ +
satisfying condition i) above and ii’) there is a countable set Dq c F’ = (E, ~)’
such that

Examples. The most important examples of seminorms q belonging
to Q~ are : 1 ) q(x) = ( x (, and 2) q(x) _ ~ ~ x’, x ~ ~ I with x’ E F’ = (E, ~)’.

Before stating and proving our main inequalities, we collect some preli-
minary results.

LEMMA 2 . 2. Let be an adapted real valued sequence. There
is then a sequence of stopping times with 6n E T(n) and 
for each n E such that

For a proof, see for instance [2 ] or [ll ].

Vol. XVIII, n° 4-1982.



340 A. BELLOW AND L. EGGHE

LEMMA 2. 3. Let be an adapted sequence of E-valued inte-
grable r. v. ’s. Let a E T and a sequence of stopping times such that

E T(a) for each j Then, if q denotes an arbitrary continuous semi-
norm on (E, ( ~ 

(1) There is a sequence of stopping times with ~3~ E T(a) for each
j E f~ and such that

(2) There is a sequence (03B4j)j~N oj’ stopping times with 03B4j E T(a) jor each
j E (~ and such that

Proof - We prove only (2) since the proof of (1) is entirely similar.
For each n E N, we can find a partition { A1, ..., of Q with Ai ~ F03C3,

for 1  i  n and such that on Ai

Using the « localization property » in T, we define ~n by setting ~n = yi i
on Ai. Clearly, and

- - J - _

finishing the proof. 0

COROLLARY 2.1. Under the assumptions of Lemma 2.3, suppose that
Z is a finite positive r. v. such that

Then, for each n e (~, stopping time in E T(6) such that

Proof By (2) of Lemma 2.3, there is a sequence of stopping
times with for each j ~ N and

Hence
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341GENERALIZED FATOU INEQUALITIES

So, given n E i~ there is a jn large enough such that

The proof is completed by putting zn = D
The next two lemmas and the proposition following them are not needed

in the proof of the main theorem, Theorem 2 .1 below ; they are only used
in the proofs of Theorems 2.2 and 2.3 below.

LEMMA 2 . 4. Let (Xm be an adapted sequence of E-valued inte-
grable r. v.’s and assume that it is of class (B). Let M = sup ~ X03C4 ~1. Let

LET

q be any continuous seminorm on and let c E ~ + such that 
for all x E E. Fix a E T. Then we have

In particular, taking q(.) _ ~ ~ ’ ~ ~, it follows that the set

is uniformly integrable.

Proof - We sketch the proof of (1) (the proof of inequality (2) is entirely
similar). By [22], Proposition VI-I-I, p. 121 there is a sequence of
stopping times such that for each j E ~l and such that

We now only have to apply Lemma 2.3 and the monotone convergence
theorem. J

Remark 2.1. - Lemma 2.4 above extends the analogous Lemma 2
in [10].

LEMMA 2.5. - Let (SZ, ~, P) be a probability measure space. Suppose
~ c LE(SZ, ~ , P) is uni, f ’orml y integrable. Then the set

is also uniformly integrable.
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Proof - For each a &#x3E; 0, X E ~ and % sub-a-algebra of ~ , we have

Let M = sup !! then M  00. It follows that
X~J~

whence

and thus lim &#x3E; a) = 0, uniformly for and G a sub-(7-

algebra of F. Since Jf is uniformly integrable, we have

The result follows from this and (1). D
The following proposition (as noted earlier) is not needed in the proof

of Theorem 2.1 below, but indicates an important case in which Theo-
rem 2.1 is valid ; see Theorems 2.2 and 2.3.

PROPOSITION 2.1. - Let be a sequence of integrablq E-valued r. v.
on the probability space (Q, ~ P). For each h e ~, P), define

We assume that

a) For each h E P), the set o(h) is ~-relatively compact.
b) The sequence is uniformly integrable.

Then there is a subsequence such that the G-limit of hUnkdP
exists for all h E P). ~~~ 

Proof - Let ~o = 6(U 1, U2, ..., Un, ... ), the smallest a-algebra
that makes every Un measurable. Using (a), (4) of Lemma 2 .1 and a diagonal
argument, we can find a sub-sequence such that

G converges for each Ai, where { A1, A2, ..., Am ... } is a countable set,
dense in ~o (~o is indeed separable).
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343GENERALIZED FATOU INEQUALITIES

Let now A in ~o be arbitrary. Let B &#x3E; 0. Using the density of (Ai)iE
and (b), there exists Ai, with

for each n whence

for all k E N. By (a) again, the sequence UnkdP)k~N has a G-convergent
subsequence. Hence to show that the sequence (UnkdP)k~N is G-conver-
gent it is enough to show that it is G-Cauchy. This is proved in a straight-

forward way using inequality ( 1 ). Thus (03A9gUnkdP)k~N is G-convergent for
each g E G0, P), g a step function. Using (a) again we deduce that

(03A9hUnkdP)k~N is G-convergent for every h E G0, P), (since such an

h is approximable uniformly by G0-simple functions). Let now h E G, P).
Then = ho E ~o, P) and thus

So also hUnkdP)
k~N 

is G-convergent. D

COROLLARY 2 . 2 [10]. Let E be a separable dual Banach space and let
be a sequence of E- Valued r. v.’s on the probability space (Q, ~, P)

which is uni. formly integrable. Then there is a subsequence such
that the weak*-limit of

exists, for each h E ~, P).
We recall that a set reE’ is called norm determining if

Note that if r is norm determining then )) x’ ~ ~  1 for all x’ e r.

LEMMA 2.6. - Let (Q, ~) be a measurable space. Let I-’ c E’ be a norm

Vol. XVIII, n° 4-1982.



344 A. BELLOW AND L. EGGHE

determining set. Let v : ~ -~ E be a finitely additive set function and assume
that v is r-countably additive, i. e. if is a disjoint sequence of sets in ~,
then

for each x’ E r. Then v is strongly countably additive.

Proof - We reason by contradiction following the argument of Pettis
(see [9], p. 318-319):

If v is not strongly countably additive, then there is a decreasing sequence

with ~An = 03C6 and there is e &#x3E; 0 such that

For each n E N, there is xn E r such that

Let H = ~ xl, x2, ... , xk, ... ~ be a countable dense set in E. By the
Cantor diagonal procedure, there is a subsequence of

such that lim ( exists for all k &#x3E; 1. Since  1 for all

it follows that

and hence that

By Nikodym’s theorem (see [9], Corollary 111.7.4, p. 160), the set of

scalar-valued = ( y~, is uniformly countably
additive; this contradicts (1), since

and hence the lemma is proved. [

LEMMA 2.7. Let be a sequence of E-valued integrable r. v.’s

which is L1E-bounded. Let G ~ F be a sub-a-algebra and assume that
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345GENERALIZED FATOU INEQUALITIES

exists in E for each A E eg. Then we have

In (Q)  Thus v is of bounded total variation.
kEN

Also v is strongly countably additive and absolutely continuous w. r. t. P ~ 

Proof - We first prove (1). Fix A in ~. Let Ai E eg be disjoint sets, with
Ai c A, for each i = 1, ..., p. Let 8 &#x3E; 0. Choose x ~ E D with

Then if k is large enough we have for each i = 1, ..., p,

and hence

Since E &#x3E; 0 was arbitrary, it follows that

where we denoted by M the L~-bound of In particular, v ~ (SZ)  oo.

Now the set D of Lemma 2.1 is a norm determining set. For each x’ E F’,
; x’, v(~) ~ is countably additive on ~, by the real Vitali-Hahn-Saks theorem.
Using Lemma 2. 6, we see that v is strongly countably additive : v is also
obviously absolutely continuous w. r. t. P ~ ~ (by inequality (1)). D
From Lemma 2 . 7 we easily obtain :

COROLLARY 2. 3. - Assume that E has (RNP). Let be a sequence
of E-valued integrable r. v.’s which is L1E-bounded. Let be an increasing
sequence of sub-a-algebras of ~ and assume that for each 

Vol. XVIII, n° 4-1982.



346 A. BELLOW AND L. EGGHE

exists in E, for all A E Let

Then (Ym, is an L1E-bounded martingale and hence there is Y E LE
such that Ym  Y a. s. Furthermore, if is uni~ formly integrable,
then is also, and hence we have Ym  Y in LE also.

Proof - By Lemma 2. 7, vm is of bounded total variation, strongly
countably additive and absolutely continuous w. r. t. P ~ thus Ym is
well-defined. The L1E-boundedness of (resp. the uniform integrability
of follow immediately from the inequalities of Lemma 2.7. Q
We are now in a position to state and prove our main result :

THEOREM 2.1. Assume that the Banach space E has (RNP) and that
(Xn, is an adapted sequence of E-valued integrable r. v.’s.

(I) Suppose that
T here is a subsequence (Xnk)k~N such that lS and

such that for each A 
mem 

exists in E.

Then we have almost surely

(II) Suppose that
There is a sequence of stopping times such that n  yn  yn + ~,

yn E T for each n E N, (X03B3n)n~N is L1E-bounded and such that for each A 

exists in E. 
~"

Then there exists a martingale which is L1E-bounded, with
almost sure limit Y, such that : For every seminorm q belonging to there

are increasing sequences of stopping times and (depending on q),
with n  6n _ in, 6n, in E T for each n E ~l, and such that almost surely
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Hence also :

almost surely.

for each A E ffm and each From Lemma 2 . 7 it follows that Pm is

of bounded total variation on ffm, is strongly countably additive and
absolutely continuous w. r. t. P ~ I ffm. Define

a..

or more correctly for each By Corollary 2.3

(Ym, ffm)mEN is an L1E-bounded martingale converging a. s. to an integrable
function.

Fix and We have for each x’ e D:

Consider the function Gm = sup !! EmXn - and let
n&#x3E;_m

Vol. XVIII, n° 4-1982.
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Then We shall show that a. s. on Q, we have :

Clearly (6) is satisfied on Cm. For /). &#x3E; 0, let

Since inequality (5) holds for each A E A c and Q; E we have

a. s. on for each x’ E D. So

a. s. on Q;. Now S2 j = { cc~ E 0  + x~ ~ - C~; so we have’ 

proved (6). From (6), the desired conclusion follows, if we remark that

lim sup ~Xn(03C9) - Xm(03C9)~

since (Yn)nEN converges strongly a. s. This finishes the proof of part (I).
(II) Define 

".

As in part (I), using Lemma 2. 7 and Corollary 2. 3 we may define

for each n E this yields and L~-bounded martingale. ,
Let now q be a seminorm belonging to Q~ and let Dq be the corresponding

countable set in statement ff) of Definition 2.1. Let a E T. For each A E ~~
and x’ E Dq we have, by an argument similar to that used in the proof of (5),
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As in part (I) we see here also that

Now apply Lemma 2.2 to Zn = q(Yn - Xn). Hence there is a sequence
of stopping times E T, for each n E ~l, such that

By (8) and Corollary 2 .1 of Lemma 2 . 3, we find, for each n a stopping
time in E such that

Let

and

Then P(B~) = 0. If B~, then, for all n large enough (depending on a~)
we have

and by eventually going to a subsequence, we may insure that both (an)nEN
and (Ln)nEN are increasing. This, together with (9) yields

almost surely. Hence (2) is proved. Since E has (RNP), Yn converges strongly
a. s. to an integrable r. v. Y. We deduce that q(Yn - Y) converges to 0 a. s.
(q is continuous on (E, ~ ~ ~ ~)), and thus the inequalities (3) and (4) follow.
This finishes the proof of part (II). D
We now state some variants of Theorem 2.1, giving situations in which

condition (A~) or (B~) is satisfied.

THEOREM 2.2. - Assume that the Banach space E has (RNP). Let
be an adapted sequence of E-valued integrable r. v.’s. Let 

be a subsequence of We suppose that :

a) For each m ~ N and h E ffm, P), the set

Vol. XVIII, n° 4-1982.
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is ~-relatively compact. We also suppose that either b), b’) or b") below
is satisfied :

b) The sequence (Xnk)kE is uniformly integrable.
b’) (X n, Fn)n~N tS Of class (B).
b") For each m E is uni, f’ormly integrable.
Then condition (A~) of Theorem 2.1 is satisfied and hence we have almost

surely :

Proof Note first that b) ~ b") by Lemma 2. 5, and b’) ~ b") by
Lemma 2 . 4. Hence it suffices to consider the case when b") is satisfied.

Fix m ~ N and let Up = for p &#x3E; m. Applying Proposition 2 .1
(on the probability space (Q, P)) for each yields after a diagona-
lization procedure the final subsequence appearing in condition (AG). , 0

THEOREM 2. 3. Assume that E has (RNP). Let be an adapted
sequence of E-valued integrable r. v.’s. Let be a sequence of stopping
times such that n  a~  1, ocn E T, for each n E ~I. We suppose that :

a) For each m ~ N and h E P), the set

is ~-relatively compact.
We also suppose that either b), b’) or b") below is satisfied :
b) The sequence (Xan)nE is uniformly integrable.
) is of class (B).
b") For each is uniformly integrable.
Then condition of Theorem 2.1 is satisfied. Hence there is an r. v.

Y E LE such that : For every seminorm q belonging to there are increasing
sequences of stopping times and (depending on q), with
n _ 6n  in, 6n, in E T for each n E Pl, and such that almost surely

Hence also :

_ Proof - Again it suffices to consider the case when b") is satisfied

(as before b ) ~ b") by Lemma 2 . 5, and b’) ~ b") by Lemma 2 . 4). Fix

Annales de l’Institut Henri Poincaré-Section B


