Annales de l'I. H. P., section B

R. ÉMILION

Processus additifs positifs dans L_{∞}

Annales de l'I. H. P., section B, tome 17, n° 2 (1981), p. 185-189 http://www.numdam.org/item?id=AIHPB 1981 17 2 185 0>

© Gauthier-Villars, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Processus additifs positifs dans L_{∞}

par

R. ÉMILION

Laboratoire de Probabilités, Tour 56, 3° étage, Université Paris VI°, 4, Place Jussieu, 75230, Paris Cedex 05

Soit $\{F_t, t > 0\}$ un processus additif positif dans $L_{\infty}(X, \mathcal{F}, \mu)$ relativement à un semi-groupe d'opérateurs positifs $(T_t)_{t>0}$ dans L_{∞} . Nous étudions dans cet article l'existence de la limite presque sûre de $\frac{1}{t}F_t$ lorsque t tend vers 0^+ . Akcoglu et Krengel [I] ont étudié ce problème dans $L_p(X, \mathcal{F}, \mu)$ $1 \le p < \infty$. Les notations et les démonstrations étant proches de [I] nous omettons volontairement certains détails.

Définitions. — Soit $(T_t)_{t>0}$ un semi-groupe d'opérateurs positifs, dans L_{∞} , fortement continu. On ne suppose pas nécessairement le semi-groupe défini à l'origine t=0 mais on le suppose localement borné, c'est-à-dire,

$$\sup_{0 < t < 1} ||T_t||_{\infty} < + \infty. \text{ On pose } S_t f = \int_0^t T_s f ds \text{ pour } f \in L_{\infty}.$$

 $S_t f$ est égal à la limite en norme quand m tend vers l'infini des sommes de Riemann $R_t^m f = f + T_{\frac{t}{m}} f + \ldots + T_{\frac{t}{m}}^{m-1} f$.

Soit $F = \{ F_t, t > 0 \}$ un processus additif positif dans L_{∞} , c'est-à-dire, $F_t \in L_{\infty}^+$ et $F_{t+s} = F_t + T_t F_s$ pour tout t et s > 0.

Pour t>0 soit $\mathscr{P}_t(F)$ le sous-ensemble de L_∞ défini par $f\in\mathscr{P}_t(F)$ si et seulement si il existe $r>0,\ s>0,\ n\in\mathbb{N},\ f_0,\ \ldots,\ f_n\in L_\infty^+$ tels que

i)
$$r + ns < t$$
.

ii)
$$T_s^m \frac{1}{r} F_r > \sum_{i=0}^m T_s^{m-i} f_i$$
 pour $m = 0, ..., n$.

186 R. ÉMILION

iii) $f = \sum_{i=1}^{n} f_i$. Ces fonctions ont été définies dans [1], par contre nous

avons modifié la définition des fonctions $\Psi_{E}^{t}(F)$ de [1] de la façon suivante :

Pour tout t > 0 et $E \in \mathcal{F}$ et un processus F posons :

$$\Psi_{E}'(F) = \sup \left\{ \alpha \ge 0 / \forall \varepsilon > 0 \ \exists f \in \mathcal{P}_{t}(F), \ \exists E' \in \mathcal{F}, \ E' \subset E \right.$$

$$\text{avec} \quad ||\alpha 1_{E'} - f||_{\infty} < \varepsilon \quad \text{et} \quad \mu(E \setminus E') < \varepsilon \right\}.$$

Notons que l'ensemble des α n'est pas vide : $\alpha = 0$ convient pour f = 0et E' = E.

On a
$$t < t' \Rightarrow \Psi_{E}^{t}(F) < \Psi_{E}^{t'}(F)$$
 car $t < t' \Rightarrow \mathscr{P}_{t}(F) \subset \mathscr{P}_{t'}(F)$.
Posons $\Psi_{E}(F) = \lim_{t \to 0^{+}} \Psi_{E}^{t}(F)$.

Enfin, pour $h \in L_{\infty}$, h > 0, posons $H_t = S_t(S_1h)$; appelons H le processus $\{ H_t, t > 0 \}$ et notons $C_h = \{ S_1 h > 0, H_t > 0 \ \forall t > 0 \}$.

Nous obtenons alors la proposition suivante :

PROPOSITION. — Soit $F = \{F_t, t > 0\}$ un processus additif positif dans L_{∞} , tel que $\lim_{t\to 0^+} ||F_t||_{\infty} = 0$, relativement à un semi-groupe d'opérateurs positifs localement borné. Supposons qu'il existe h > 0, $h \in L_{\infty}$ tel que $\Psi_{E}(F)$ et $\Psi_{E}(H)$ soient finis pour tout $E \subset C_{h}$, $E \in \mathscr{F}$ alors $\lim_{\epsilon \to 0^{+}} \frac{1}{\epsilon} F_{\epsilon}$ existe p. p. sur C_h .

Remarque. — Si on ajoute des conditions à E, par exemple : $\exists a > 0$, $\exists \delta > 0 : E' \subset E \text{ et } \mu(E \setminus E') < \delta \Rightarrow ||S_t 1_E||_{\infty} > a \text{ pour un } t > 0.$

Nous voyons d'après [1] que ΨE est fini.

La démonstration se fait grâce à plusieurs lemmes :

Lemme 1. — Soit $h \in L_{\infty}$, h > 0, supposons $S_1 h > \alpha > 0$ sur $E \in \mathscr{F}$ alors $\forall E' \subset E \ \Psi_{E'}(H) \geq \alpha$.

Démonstration. $-\frac{1}{t}H_t \rightarrow S_1h$ fortement quand $t \rightarrow 0^+$. Donc $\forall \varepsilon > 0$ $\exists t_0 > 0 : t < t_0 \Rightarrow \left\| \frac{1}{t} H_t - S_1 h \right\|_{\infty} < \varepsilon \text{ donc pour } t < t_0 \text{ on a } \frac{1}{t} H_t > S_1 h - \varepsilon \text{ p. p.}$ En particulier pour tout E', E' \(\sigma \), E' = E, $E' = \frac{1}{t} H_t > (S_1 h - \varepsilon) 1_{E'}$. $1_{E'} + \frac{1}{\epsilon} H_t > (\alpha - \epsilon) 1_{E'}$. Cette inégalité prouve que $(\alpha - \epsilon) 1_{E'} \in \mathscr{P}_t(H)$ (voir

la définition de $\mathcal{P}_t(H)$ avec r = t, n = 0, $f_0 = (\alpha - \varepsilon)1_{E'}$.

On a ainsi $\alpha - \varepsilon < \psi_{E'}^t$ pour $0 < t < t_0$.

Donc $\alpha - \varepsilon < \psi_{E'}(H)$ et enfin $\psi_{E'}(H) > \alpha$.

LEMME 2. — Si $f \in \mathcal{P}_t(F)$ alors $\forall u > 0$ $S_u f < F_{t+u}$ voir [1].

LEMME 3. — Soit F_t un processus additif positif, $g \in L_{\infty}^{\pm}$, $t_0 > 0$. Supposons que $\sup_{q \in Q(t_0)} (F_q - S_q g) > 0$ sur $E \in \mathscr{F}$ alors $\forall \varepsilon > 0 \ \exists E' \in \mathscr{F} : E' \subset E$, $g1_{E'} \in \mathscr{P}_{to}(F)$ et $\mu(E \setminus E') < \varepsilon$.

 $(Q(t_0))$ désigne l'ensemble des rationnels strictement positifs et inférieurs à t_0).

Démonstration. — Soit $\varepsilon > 0$ et $(q_i)_{i \in \mathbb{N}}$ la suite des rationnels de $Q(t_0)$.

Soit
$$\varepsilon_i > 0$$
 tels que $\sum_{i=1}^{\infty} \varepsilon_i < \frac{\varepsilon}{2}$.

Par hypothèse, pour presque tout $x \in E$, $\exists q_i(x) \in Q(t_0) : (F_{q_i} - S_{q_i}g)(x) > 0$. Posons $E_i = \{ x \in E/(F_{q_i} - S_{q_i}g)(x) > 0 \}.$

Soit $\alpha_i > 0$ suffisamment petit pour que si l'on pose

$$E_i' = \{ x \in E_i/(F_{q_i} - S_{q_i}g)(x) > \alpha_i \}$$
 alors $\mu(E_i \backslash E_i') < \varepsilon_i$.

Puisque $E = \bigcup E_i$, soit *n* suffisamment grand pour que

$$\mu\left(E\left|\bigcup_{i=1}^{n}E_{i}\right|<\frac{\varepsilon}{2};\right)$$

on a alors $\mu\left(E \setminus \bigcup_{i}^{n} E_{i}'\right) < \varepsilon$. (1)

Posons $E' = \bigcup E'_i \ \alpha = \inf (\alpha_1, \ldots, \alpha_n) > 0$. Par définition de l'inté-

grale $\exists M \in \mathbb{N} : m > M \Rightarrow || \mathbf{R}_{q_i}^m g - \mathbf{S}_{q_i} g ||_{\infty} < \alpha \text{ pour } i = 1, \ldots, n.$

Posons
$$r = \inf_{i=1,...,n} \frac{q_i}{M}$$
 et $m_i = \frac{q_i}{r}$; alors $m_i > M$.

Sur E_i' on a $F_{q_i} - S_{q_i}g > \alpha$ et $\left| R_{q_i}^{m_i} - S_{q_i}g \right| < \alpha$ donc $F_{q_i} - R_{q_i}^{m_i}g > 0$

sur E'_i. Or
$$F_{q_i} - R_{q_i}^m g = r \sum_{j=0}^{m_i-1} T_r^j \left(\frac{1}{r} F_r - g \right)$$
; on a donc $\sum_{j=0}^{m_i-1} T_r^j \left(\frac{1}{r} F_r - g \right) > 0$

Posons $K = \max(m_1, \ldots, m_n)$; on a $Kr < t_0$, car $m_i r = q_i < t_0$ sur

$$E' = \bigcup_{i=1}^{n} E'_{i} \text{ on a } \sup_{0 \le k \le K} \sum_{i=0}^{k-1} T_{r}^{j} \left(\frac{1}{r} F_{r} - g\right) > 0.$$

Vol. XVII, nº 2-1981.

188 R. ÉMILION

Appliquons alors le lemme de remplissage de Chacon-Ornstein [2] $\exists d_0, \ldots, d_{\mathsf{K}-1} \in \mathsf{L}^+_\infty$ tel que $d = d_0 + \ldots d_{\mathsf{K}-1} = g$ sur E' et

$$\sum_{j=0}^{k} T_r^{K-j} d_j < T_r^k \frac{1}{r} F_r \quad \text{pour} \quad k = 0, \dots, K-1 :$$

ceci prouve que $d \in \mathcal{P}_{t_0}(F)$ (car $Kr < t_0$); comme $g1_{E'} < d$ on a

$$g1_{E'} \in \mathscr{P}_{t_0}(F)$$
 et $\mu(E \setminus E') < \varepsilon$ (1).

Lemme 4. — Soit F_t et G_t deux processus additifs positifs tels que $\lim_{t\to 0^+} ||F_t||_{\infty} = \lim_{t\to 0^+} ||G_t||_{\infty} = 0$. Si $\sup_{t\in Q(t_0)} (F_t - G_t) > 0$ sur $E\in \mathscr{F}$ alors $\forall \varepsilon > 0 \ \exists E' \subset E$ et $\delta > 0$ tels que $\mu(E\setminus E') < \varepsilon$ et $r < \delta \Rightarrow \sup_{t\in Q(t_0)} (F_t - S_t g) > 0$ sur E' pour tout $g \in \mathscr{P}_r(G)$ (voir [I] pour la démontration).

Lemme 5. — Si $\sup_{t \in Q(t_0)} (F_t - G_t) > 0$ pour tout $t_0 > 0$ sur $E \in \mathscr{F}$ avec $\mu(E) < +\infty$, alors $\forall \varepsilon > 0$ $\exists E' \subset E : \mu(E \setminus E') < \varepsilon$ et $\psi_{E''}(F) > \psi_{E''}(G)$ $\forall E'' \subset E'$ vérifiant $\psi_{E''}(F) < +\infty$ et $\psi_{E''}(G) < +\infty$.

Démonstration. — Donnons nous $\varepsilon > 0$ et $\varepsilon_i > 0$ tel que $\sum_{i=1}^{\infty} \varepsilon_i < \varepsilon$. Soit

aussi $t_i > 0$ $t_i \downarrow 0$. D'après le lemme 4, pour chaque $i : \exists E_i$, δ_i tel que $\mu(E \setminus E_i) < \varepsilon_i$ et $\sup_{t \in Q(t_i)} (F_t - S_t g) > 0$ sur E_i pour tout $g \in \mathscr{P}_{\delta_i}(G)$. Posons $E' = \bigcap_{i=1}^{\infty} E_i$ alors $\mu(E \setminus E') < \varepsilon$. Soit $E'' \subset E'$ tel que $\alpha = \psi_{E''}(G) < +\infty$.

Soit a > 0 quelconque, d'après les définitions :

$$\exists \rho_i < \delta_i: \qquad \big| \, \alpha - \psi_{\mathsf{E}'}^{\rho_i}(\mathsf{G}) \, \big| < \frac{a}{3}, \quad \exists \beta > 0: \qquad \big| \, \psi_{\mathsf{E}'}^{\rho_i}(\mathsf{G}) - \beta \, \big| < \frac{a}{3},$$

$$\exists g \in \mathcal{P}_{\rho_i}\!(G) \,, \quad \exists \mathsf{E}_i'' \subset \mathsf{E}'' \,: \qquad ||\, \beta 1_{\mathsf{E}_i''} - g \,||_\infty < \frac{a}{3} \,, \quad \mu(\mathsf{E}'' \backslash \mathsf{E}_i'') < \frac{a}{2} \,.$$

On a alors $||\alpha 1_{\mathbf{E}_i''} - g||_{\infty} < a$ et $\mu(\mathbf{E}'' \setminus \mathbf{E}_i'') < \frac{a}{2}$.

Comme $g \in \mathcal{P}_{\delta_i}(G)$ (car $g \in \mathcal{P}_{\rho_i}(G)$ et $\rho_i < \delta_i$) on a d'après le lemme 3 $\exists E_i''' \subset E_i'', \ g1_{E_i''} \in \mathcal{P}_{t_i}(F)$ et $\mu(E_i'' \setminus E_i''') < \frac{a}{2} \text{ car } \sup_{t \in Q(t_i)} (F_t - S_t g) > \text{sur } E_i''.$

On a ainsi $||\alpha 1_{E_i''} - g 1_{E_i''}||_{\infty} < ||\alpha 1_{E_i''} - g||_{\infty} < a$ (car $E_i''' \subset E_i''$) et $\mu(E'' \setminus E_i''') < \mu(E'' \setminus E_i'') + \mu(E_i'' \setminus E_i''') < \frac{a}{2} + \frac{a}{2} = a$. Comme a est arbitraire positif, d'après la définition on obtient

$$\alpha \leqslant \psi_{E''}^{t_i}(F)$$
, donc $\alpha \leqslant \psi_{E''}(F)$

$$\psi_{E''}(G) \leqslant \psi_{E''}(F)$$
.

Démonstration de la proposition voir [1]. — On considère h > 0 et on suppose $\psi_E(H) < +\infty$ pour tout $E \subset C_h$. Supposons que $\lim_{t\to 0^+} \frac{1}{t} F_t$ n'existe pas sur un sous-ensemble de C_h .

On peut trouver alors $E \subset C_h$ tel que : $\exists \alpha > 0$, $\beta_1 > 0$, $\beta_2 > 0$, $\beta_1 < \beta_2$ avec $\lim_{t \to 0^+} \inf \frac{F_t}{H_t} < \beta_1 < \beta_2 < \lim_{t \to 0^+} \sup \frac{F_t}{H_t}$, $S_1 h > \alpha$ sur $E(0 < \mu(E) < +\infty)$.

On aboutit à une contradiction exactement comme dans [1] en trouvant $E'' \subset E$ tel que $\beta_1 \psi_{E''}(H) > \beta_2 \psi_{E''}(H)$ ceci est impossible puisque $0 < \psi_{E''}(H)$ et $\psi_{E''}(H) < + \infty$ par hypothèse.

BIBLIOGRAPHIE

[1] AKCOGLU-KRENGEL, A differentiation theorem in L_p. Math. Z, t. 169, 1979, p. 31-40.

[2] CHACON-ORNSTEIN, A general ergodic theorem, Illinois, J. Math., t. 4, 1960, p. 153-160.

(Manuscrit reçu le 18 décembre 1980)