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Section B :

Calcul des Probabilités et Statistique.

INTRODUCTION

This paper is divided into two parts : the first part deals with the compa-
rison or the sets of convergence of two sequences (Vn) and (hn) of random
variables adapted to an increasing family of (7-fields (ffn) and satisfying
the inequality Vn + hn. One of the corollaries of our main
theorem of this part is a generalisation of a result of Robbins and Sieg-
mund [8 ]. The second part deals with C-sequences, i. e. sequences of
random variables whose previsible predictor do not oscillate. We give
a number of conditions for the convergence of such sequences, conditions
which include the classical supermartingale convergence theorems. We
end by giving simple examples of amarts which are not C-sequences and
of C-sequences which are not amarts.

It is known that the convergence theorem for Li-bounded asymptotic
martingales cannot be generalized to the cases of infinite dimensional
Banach space valued variables (see [2] ] (a) and (b)). We hope that our
theorem 4 can be generalized in such directions.

NOTATIONS AND CONVENTIONS. - In this paper, (Q, iF, P) is a fixed pro-
bability space, 1 is a fixed family of increasing 6-algebras contained
in iF. A sequence (Xn) of random variables will be said to be adapted if
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64 DAO QUANG TUYEN

for each n, Xn is ffn-measurable. Unless otherwise stated, convergence
means almost sure (a. s.) convergence to finite valued random variables.
If ~ is a property, { ~’ ~ will denote the set

i (resp. i) indicates « increasing » (resp. decreasing) to. For A e ~ , 1 A will
denote the characteristic function of A. Finally R will denote the extended
real line.

I. SOME RESULTS ON THE CONVERGENCE
OF SEQUENCES OF RANDOM VARIABLES

THEOREM 1. - Let (hn)n  1 and 1 be two adapted sequences of real
random variables such that

1) for every n, Vn and hn are integrable and Vn + hn

Then the set on which convergences is almost surely equal to the
set on which convergences.

Proof - Setting

is a supermartingale. The condition 2) then implies that (Wn)
convergences a. s. [6]. The statement of the theorem then follows imme-
diately.

THEOREM 2. - Let 1 and (Vn)n~ 1 be two adapted sequences of real
random variables such that

1) For every n, hn and Vn are integrable and 0 a. s.

2) Vn + hn.

Set

Then on B, the set on which (Vn) converges is a. s. equal to the set on
which convergences.
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65ASYMPTOTIC BEHAVIOUR OF SEQUENCES OF RANDOM VARIABLES

Proof - Setting again we obtain since is

decreasing for all a :

where

Therefore, since V" >_ 0,

and theorem 1, applied to the sequences and allows us to
state that :

{(Vn1an) convergences} = {03A3hn1an converges }, and therefore using the
definition of 1an

{bn  a) ~ {Vn1an converges } = n { bn  a} n { converges }
1 1

and the theorem follows by letting a go to + 00.
We now give a few corollaries to theorems 1 and 2.

COROLLARY 1.1. - Let (hn), be as in theorem 1. Let (gn) be an adapted
sequences of strictly positive random variables such that :

1) gnVn + hn for all n

Then

Vol. XVII, n° 1-1981.



66 DAO QUANG TUYEN

Moreover on the set 1 --~ 0 , the se quence
an 

Proof - Apply theorem 1 to the sequences (V~ = (hn = anhn).
COROLLARY 1.2. - Let (Xn) be an adapted sequence of real integrable

random variables. If

1)  ~c
n

then LXn converges a. s. if and only if converges a. s.

n

Proof - Apply theorem 1 by setting Vn = ~ Xj, hn = E(Xn+ 
1

COROLLARY 1.3. - Let (Xn) be as in corollary 1.2. Let (an) be a sequence
of real numbers tending to 00 . Then :

In particular, secting an = n, (Xn) verifies the law of large numbers if and
only if the sequence (E(Xn+ does.

corollary I. 1.

The following generalises slightly a result of Robbins and Siegmund.

COROLLARY 1.4. - Let be adapted sequences. We sup-
pose 0, ~ ~ 0, ~ ~ 0~, > 0 and that
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67ASYMPTOTIC BEHAVIOUR OF SEQUENCES OF RANDOM VARIABLES

n

Then the sequences (VJ and converge almost surely on the set
i

Proof - Setting

we see that

n n

Moreover, on B, the sequences (Vn) and resp. ~k and ~k,
resp. and have the same set of convergence. 

1

Theorem 2 applied to the sequences and (~n) implies that (Vn) conver-
ges almost surely on B. Set

On A, (V~) and E(~k - have the same set of convergence, by theorem 2.
Since on B, the series E(~k - converges if and only if does, the corol-

lary follows.

II. C-SEQUENCES

Before defining C-sequences, we prove a « Doob decomposition theorem ».

THEOREM 3. - Let (V") be an adapted sequence of integrable random
variables. Then there exists sequences (Mn), of random variables such

that

1) 
2) Vi = 0 and Vn is Fn- 1-measurable for every n ~ 2
3) Mn is an ffn-martingale.

Vol. XVII, n° 1-1981.



68 DAO QUANG TUYEN

This decomposition is unique.

Proof - Setting Mi 1 = Vi,

we get the desired decomposition. To prove uniqueness, we note that if
Vn = M~ + Bn is another decomposition verifying 1), 2) and 3), we have

Thus B = V and the uniqueness is proved. 
-

The following terminology and notation is standard.

DEFINITION. - If (Vn) is a sequence verifying the hypotheses of theorem 3,
(V) will denote the sequence defined by Vi == 0,

is called the previsible compensator of (Vn).

DEFINITION. - An adapted sequence of random variables (Xn) is called
a C-sequence if the Vn’s are integrable and if the sequence converges
in R. It is called a strict C-sequence if (Vn) converges in R.

Martingales, submartingales, supermartingales, quasi-martingales are

C-sequences. Adapted sequences (Vn) satisfying

are C-sequences but the converse is not true as is seen by the following
example.

Let (Xn) be a sequence of independent identically distributed random
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69ASYMPTOTIC BEHAVIOUR OF SEQUENCES OF RANDOM VARIABLES

v
variables with = 0, 0  E(X~)  oo. Then putting V~ = -" it is easy
to see that (VJ a C-sequence but that 

n

THEOREM 4. - Let be an adapted sequence of integrable random
variables such that

1) sup E(Vn-)  00
n

2) sup  o0
n

Then (Vn) converges almost surely if and only if it is a C-sequence.

Proof Write Vn = M~ + Vn where (Mn) is a martingale (cf. theorem 3).
If (Vn) converges a. s., sup E(Vn+) + sup E(Vn ) which

n n n

implies that (Mn) converges a. s. The same is then true for (Vn). Conversely,
suppose (Vn) converges a. s. in f~. The equalities

imply that

and this last term is finite by hypothesis. Using Fatou’s lemma, we conclude
that lim and lim V~ are finite, i. e. converges a. s. (in R). The hypo-
thesis of our theorem allows us now to apply theorem 1 and to conclude
that the sequence converge a. s.

COROLLARY 4.1. - Let (VJ be an adapted sequence ofintegrable random
variables. If

1) ~)
n

2) there exists a constant k such that

3) Vn converges to 0 a. s.

Then converges to 0 a. s.

Vol. XVII, n° 1-1981.



70 DAO QUANG TUYEN

Proof - We have

where

condition 2) implies that 0 for all m. Furthermore

This last term converges to 0 a. s. by condition 3). Thus is a C-sequence.
Since

(using the above inequality and condition 1), condition 2) of theorem 4 is
satisfied and therefore (Vn) converges a. s.

COROLLARY 4 . 2. - Let be an adapted sequence of integrable random
variables. If

1) sup E(Vn )  oo 
-

n

2) Vn if n is odd

Vn if n is even

3) E(Vn+ 1/~n) - Vn I .~ 0 a. s.

then (Vn) converges a. s.

Proof - By the convergence theorem for alternating series, (VJ is a

C-sequence. Also we notice that for all n

and therefore theorem 4 applies.
Annales de l’Institut Henri Poincaré-Section B



71ASYMPTOTIC BEHAVIOUR OF SEQUENCES OF RANDOM VARIABLES

We now try to weaken L 1 bounded conditions such that

THEOREM 5. - Let (Vn) be an adapted sequence of positive random
variables. If (Vn) is a strict C-sequence, then (Vn) converges a. s. Conversely
if (Vn) converges a. s., then (Vn) converges a. s. on the set ~ sup Vn  

n

COROLLARY 5.1. - Let (Vn) be an adapted sequence of non negative
random variables. Then (Vn) converges a. s. if any one of the following
conditions is satisfied

3) For almost all cv, there exist an integer k(OJ) such that
a) Vn is alternating when n >__ 
b) Vn I ~. 0 when n >_ k(cv).

As an example where this corollary can be used (see [1 ]) take the unit
interval with its Borel field and Lebesgue measure and set Vi = i2i on

0, 2i , 0 elsewhere if i is odd, = 0 if i is even.
We now rid ourselves of the hypothesis that the Vn’s are positive.

THEOREM 6. - Let (V") be an adapted sequence of integrable random
variables. Then on the set

(Vn) converges a. s. if and only and converge a. s.
If any two of the four sequences (Vn), (V" ), (Vn ), ( ~ are strict C-

sequences, then (Vn) converges a. s.

The proof goes very much along the lines of that of Theorem 5.

COROLLARY 6.1. - Let be a submartingale. If (Vn) and (V" ) converge
a. s., then so does (Vn).

Remark. The conditions in this corollary are weaker than the usual

Vol. XVII, n° 1-1981.
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condition sup  oo as can be seen by considering the sequence (Vn)
n

defined on the unit interval by the formula

COROLLARY 6.2. Any of the following conditions is sufficient for the
almost sure convergence of the martingale (Vn) :

We now show that asymptotic martingales ( « amarts », see [2] ] (h) and [7])
are not necessarily C-sequences nor are C-sequences necessarily asymptotic
martingales. As a matter of fact, the C-sequence defined in the remark
following corollary 6.1 is not an asymptotic martingale.

Let (Xn) be a sequence of independent identically distributed random
variables such that XJ  1. Let (an) be a sequence of real numbers diver-

n

ging to 00 so slowly that Xi ai does not converge in R (this is possible by

the law of iterated logarithm ( see [9])). Then is an asymptotic

martingale since Vn converges uniformly to 0. Writing

and using the uniqueness of the compensator it is seen that is not

a C-sequence.
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