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Ergodic theory for inner functions
of the upper half plane

Jon AARONSON

Ann. Inst. Henri Poincaré,

Vol. XIV, n° 3, 1978, p. 233 -253.

Section B :

Calcul des Probabilités et Statistique.

ABSTRACT. - The real restriction of an inner function of the upper
half plane leaves Lebesgue measure quasi-invariant. It may have a finite

or infinite invariant measure. We give conditions for the rational ergodicity
and exactness of such restrictions.

ABSTRAIT. 2014 La restriction a la droite réelle d’une fonction intérieure

du demi-plan supérieur laisse la mesure de Lebesgue quasi-invariante,
et peut avoir une mesure invariante finie ou infinie. Nous donnons les
conditions pour l’ergodicité rationnelle et l’exactitude de telles transfor-
mations..

§ 0. INTRODUCTION

In this paper, we consider the ergodic properties of the real restrictions
of inner functions on the open upper half plane :

Let f : f~2 + ~ l~2 + be an analytic function. We say that f is an inner
function on f~2 + if for ~,-a. e. x the limit li m f(x + iy) exists, and isy~o

real. (Here, and throughout the paper, /). denotes Lebesgue measure on R).
Consider the limit lim f(x + i y) = Tx. This is defined 03BB-a. e. on R. We call
this limit the (real) restriction of f, and will sometimes write this as T = T( f ).
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234 J. AARONSON

We will denote the class of inner functions on (~2 + by I((~2 + ) = I, and their
real restrictions by M(R). We note that f E iff ~-1 f ~(z) is an inner
function of the unit disc, according to the definition on p. 370 of [9]

(where ~(z) = L 1 -z
The following characterisation of I{1R2+) appears in [6] and [17].
.f E I(~2 + ) iff

where a > 0, ~3 E f~ and ,u is a bounded, positive Borel measure, singular
w. r. t. ~,. Since we shall be refering to (o .1) rather a lot, we shall denote
the class of bounded, positive, singular measures on f~ by 

G. Letac ([6]) has shown that a measurable transformation T of (~

preserves the class of Cauchy distributions iff either T E or

- T E In particular, if dPa + ib(x) = b 03C0 dx 03C0(x - a)2 + b2 
for a + ib E 

and T = T( ) E then: ( ) + b

This equation shows that M(R) is a class of non-singular transformations
of the measure space (R, B, 2), and is therefore an object of ergodic theory.

Let f E I((~2 +) have a fixed point c~o E f~2 +. By (0.2), T( f ) preserves
the Cauchy distribution It was shown in [16], that if f is 1 - 1, then

T( f ) is conjugate to a rotation of the circle, and shown in that other-

wise, T( f ) is mixing. We show in § 1 that if f is not 1 - 1 then T( f ) is exact.
In § 2 we recall some well known facts about inner functions of f~2 +-.

The Denjoy-Wolff theorem (see [13], [l4] and [18]) adapted to 1R2+ shows
that when studying the ergodic properties of T( f ), for f E I(f1~2 +) with
no fixed points in I~2 ±, we may assume that a( f ) >- 1. In case a( f ) > 1,
T( f ) is dissipative, and when a( f ) = 1, T( f ) preserves Lebesgue measure.

In § 3, we consider the case a( f ) = 1. Here, the conservativity of a res-
triction T( f ) is sufficient for its rational ergodicity ([l]) (ergodicity was
established in [15] ). We also give sufficient conditions for exactness, and
discuss the similarity classes ( [I] ) of restrictions.
The ergodic theory of certain restrictions has been considered in [2],

[5], [7], [IO], [11], and [l6].
The author would like to thank B. Weiss for helpful conversations,

and G. Letac, J. Neuwirth and F. Schweiger for making preprints of their
works available.
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235INNER FUNCTIONS OF THE UPPER HALF PLANE

§ 1. MIXING RESTRICTIONS
PRESERVING FINITE MEASURES

The purpose of this section is to prove

THEOREM 1.1. - Let f E +) and assume that f is not 1 - 1. If f
has a fixed point then (R, T( f )) is an exact measure

preserving transformation.

Before proving theorem 1.1, we shall need some auxiliary results. The
first of these is Lin’s criterion for exactness of Markov operators (theorem
4.4 in [8]) as applied to our case. To state this, we shall need some

extra notation :

Let T E then (IR, B, ~,, T) is a non-singular transformation, and
so ~, ~,) iff g o T E ~, ~,). We define the dual operator
of T, T : L 1 ( I~, B, À) --~ B, À) by

If we write, for cc~ = a + ib E 1R2 +

then equation (0.2) translates to :

Clearly, t is a positive linear operator, R hd03BB = R hd03BB for 
Lin’s Criterion (for restrictions). 2014 Let T = T(/)eM(tR).
T is exact iH’ 

(1.2) ~ 0 for every R ud03BB = 0. Here, and throughout,
~u~1 = R|u|d03BB.
We shall also need the following (elementary) lemma.

Vol. XIV, n~ 3-1978.



236 J. AARONSON

LEMMA 1. 2. - If cv" E f~2 + and cvn -~ cv E (1~2 + then :

Proof of theorem 1.1. 2014 We first show that f "(cv) ~ a~o 
where = f(w) and = 

Let § : U = [ ~ Z ~  1] - R2 + be a conformal map. Then g = ~ - lf ~ :
U --> U is analytic, and g(~(cc~o)) _ ~(a~o). By the Schwartz lemma ([9]):
I g’(~(a~o)) ~  1 as g is not 1 - 1. It is now not hard to see that

and hence that -~ mo 

Hence, by lemma 1.2

We will now establish that

with = 0 which, by Lin’s criterion, will ensure the exactness of T.

Let u E L 1 with = 0 and let E > 0. By Wiener’s Tauberian theo-

. 
rem (see [l2], p. 357), there exist al ... aN, al ... such that

N

Clearly, this implies that a~  E/2 and so :
i= 1

Since 8 > 0 was arbitrary : [ 1 -~ 0. D
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237INNER FUNCTIONS OF THE UPPER HALF PLANE

§ 2. BASIC CLASSIFICATION

PROPOSITION 2.1. [l7]. - Let f E I(1R2+). Then

Moreover

Proof - From the representation 0.1, we immediately calculate that :

It follows from elementary integration theory that

To check the limit as b - 0, we « flip » f to get :

Since f E I((1~2 + ), we have that

but this decodes to :

Now, if y( f )  oo then, by 2.1 :

Hence y( f ) > a( f ) with equality iff  --_ 0. D

_ PROPOSITION 2.2. - Let f E I((1~2 +) and T = T( f ).
If a( f ) > 1 then T is dissipative.

Proof 2014 Write + 

Vol. XIV, n° 3 - 1978.



238 J. AARONSON

From the representation (0.1), we have :

Hence v"(i ) >_ oc" for n > 1, and

Clearly

and so

PROPOSITION 2.3 (Letac [6]). - Let f E I(~82+), T = T(f).
If a( f ) = 1 = ~,.

Proof. - Let f (ib) = u(b) + iv(b) we have :

Hence, for A E B :

and

Since P ib(T-1 A) = we have that

The next result is the Denjoy- Wolff theorem stated on 1R2 +, which
shows that if f E +) has no fixed point in R2 +, then ~ E I(R2 +) with

1, and such that (R, ~, ~,, T( f )) and (R, B, ~,, T(/)) are conjugate,
(and therefore have the same ergodic properties).

THEOREM 2 . 4. - Let f E +) have no fixed points in 1~2 +, and assume
that a{ f )  1; then

Annales de l’Institut Henri Poincaré - Section B



239INNER FUNCTIONS OF THE UPPER HALF PLANE

where

(Note that 1/y( f )~ .

Proof - Let 03C6(z) = f 1 _ Z . 
Then g = 03C6-1f03C6: U - U is analytic,

and has no fixed points in U. The Denjoy-Wolff theorem on U (see [13]
or [14]) shows that 3 ! peT such that

Now let t = ~( p), ~ = i-and f = E I(0~2 + ). It follows
p-Z

that ~~ -1 = ~1 1 and hence that f = ~t f ~t 1. Also, (*) means that

Im 03C8g(Z) > Im 03C8(Z) for Z E U, and hence Im f(w) >- Im co for 03C9~ R2+,
which implies a( f ) >- 1. D

If 1 ) > 1 for some t, then by proposition 2 . 2, T ( f ) is dissipa-
tive. If 1 ) = 1, then, by proposition 2. 3, 1 ) = ~tT ( f )~r 1
preserves Lebesgue measure. Hence T( f ) preserves the measure vt, where

dvt(x) = dx/(x - t)2. The rest of this section is devoted to odd restrictions.

(We say that a restriction T is odd if T( - x) = - T(x)) .

LEMMA 2 . 5. - Let f E I(1R2 +) and let T = T( f ). The following are equi-
valent :

i ) T is odd ii) Re f (ib) = 0 for b > 0

where is symmetric

Proof - The implications iv) ===> iii) ==~ i) and iii) => ii) are elemen-
tary. That ii) ==> iii) is because of the Schwartz reflection principle (see [9] ).
The fact that for t > 0 :

gives the implication i) ~ iii).

Vol. XIV, n° 3 - 1978.



240 J. AARONSON

We show that iii) ==> iv). Assume iii). It is evident that ~ = 0 in the
representation 0.1, so we have

We must show that p is symetric. To see this, we first rewrite the equa-
tion v( - a + ib) = v(a + ib) (implied by iii )) as :

Next, we take g(t) a continuous function of compact support and let
= g for b > 0. It follows from (2.2) that

The symmetry is established by the (elementary) facts that

We denote the collection of those inner functions on satisfying the
conditions of the above lemma by and remark that 

an essentially real innerfunction ( Here ~(z) = ~201420142014 )) ~ °
THEOREM 2.6. - Let and T = T( f). 
If oc(/)  1  y( f) then T preserves a Cauchy distribution. Moreover,

if is not constant, then T is exact.

Proof. - If then it follows from the lemma

Now since a( f )  1  y( f), we have that

Annales de l’Institut Henri Poincaré - Section B



241INNER FUNCTIONS OF THE UPPER HALF PLANE

But 1 2 + t2 2 0 as b -> oo so there is a bo > 0 such that

~~ 1 + t2 t2 + b20 d (t) = 1 - a, i. e. f (ibo) = ibo, hence o T-1 = 

The result now follows from theorem 1.1. D
To illustrate the results of this section, we consider Tx = ax + fi tan x

where a, ~3 > 0. Here, îJ.(T) = a, and y(T) = a + /3.
If either a > 1, or a  1, T is dissipative.
If a  1  a + ~3, then T preserves a Cauchy distribution and is exact.

(This was established in [5] for a = 0, fi > 1).
The remaining cases (a = 1 and a + /~ = 1) are contained in the dis-

cussion of :

§ 3 . RESTRICTIONS PRESERVING INFINITE MEASURES

In this section, we consider those restrictions preserving infinite measures
with a = 1, or a(~r f ~~ 1 ) = 1 for some t.
We will see that for these transformations, conservativity is sufficient

for ergodicity and rational ergodicity ([7]), a stronger property (exam-
ple 1. 2 in [7]). We then give sufficient conditions for exactness.

Firstly, we recall the definition of rational ergodicity. Let (X, B, m, i)
be a conservative, ergodic, measure preserving transformation of a non-
atomic, (7-finite measure space. We say that i is rationally ergodic if there
is a set A, of positive finite measure and K  oo such that

For a rationally ergodic transformation i, we let B(i) denote the collec-
tion of sets with the property (B). It was shown in [I] that there is a sequence
{ a"(i) ~ such that

The sequence { ~n is known as a return sequence for i and the col-
lection of all sequences asymptotically proportional to 

Vol. XIV, n° 3 - 1978.



242 J. AARONSON

is known as the asymptotic type of i and denoted by It was shown
in [~] (theorem 2.4) that if il and z2 are rationally ergodic transformations
which are both factors of the same measure preserving transformation,
then

We commence with the case a( f ) = 1.

LEMMA 3 .1. - Let f E +) be non-linear and let T = T( f ),

If a = 1 then T is conservative

Prof. 2014 It wilt be more comfortable to work on the unit disc U. Accord-

ingly, we let M(z) = 0’V0(z) where 0(z) = f( 201420142014 ). Then M is an inner~"~ /~+zB
function on U. Let M(re~) -~ as r -~ 1 a. e. Denoting B~ +z/
by ~z(~) and ~(~) ~ by ~z(~). we see that 7~ o J)’ ~ = and this com-

bined with the fact that Ø-1TØ == r gives us that:

So T is a non-singular transformation of (T, ~,), . and is conservative iff
T is conservative.

Let f be the operator dual to r, acting on L 1. Then iqz(t) = qM(z)(t) and
T is conservative iff

We next show that M"(z) -~ 1 as n - oo Vz E U. This will follow from

the fact that -~ oo as n - oo Vcv E R2 + which we now demonstrate.
From 0 .1:

Annales de /’ Institut Henri Poincaré - Section B



243INNER FUNCTIONS OF THE UPPER HALF PLANE

Hence Vn i VOO. It is not hard to see that if v~  oo, we must have |Un| ~ oo .
Hence M"(z) -~ 1.

Now choose z~U and let Mn(z) = We have rn ~ 1 and 03B8n - 0.
Also : _ " _

For t ~ 0. Thus : ~

(3.2) T is conservative iff 1 - ~ Mn(z) =00 VzeU.

n=l

The second condition is the same as

Now if cv = a + ib E 1R2+, then

From the definition of M, we have

THEOREM 3 . 2. - Let f E I(1R2 +) be non-linear, T = T( f ) and a( f ) = 1.
If T is conservative then T is rationally ergodic, and

Proof - We first prove ergodicity, and here again, it is more comfor-
table to work on U. We prove the ergodicity of i (as defined in Lemma 3.1).
If T is conservative then by (3 . 2) : -

n= l

Since M"(z) -~ 1, we must have that the points { ~" ~ 1 are distinct.
Now, let h E N(U) (defined on p. 303 of [9]). If h(M(z)) = h(z) for all z E U
then by theorem 15-23 of [9], h must be constant. The ergodicity of i
is deduced from this as follows :

Let A ~ T be a i-invariant measurable set and let

Vol. XIV, n° 3 - 1978.



244 J. AARONSON

Then v(M(z)) = v(z), I I v ° M" I I ~ _ 1 1, and -~ a. e. as

r -~ 1. Now v can be regarded as the imaginary part of an analytic func-
tion FeH(U). By theorem 17-26 of [9] and

_ A dn >_ 1.

Moreover : F(M(z)) = F(z) + c where c e R .

Let F*(e‘8) = lim F(re~e), then = F*(e‘8) + c. The conservati-

vity of T yields that c = 0 (since the set [~ I F* I _ M] has positive measure
for some M, and so every point of this set returns infinitely often to it

under iterations of i - an impossibility if c 7~ 0). Thus, F is constant

and hence also 

We now turn to rational ergodicity. Let

Since - oo, it is clear that :

uniformly on compact subsets of R. Let

From (3.3) we have that

uniformly on compact subset of R.

Now, since T is a conservative ergodic transformation, it follows that t
is a conservative ergodic Markov operator, and we have from (3.4), by
the Chacon-Ornstein theorem (see [3]) that :

Hence

We will prove rational ergodicity of T by showing that bounded inter-
vals are in B(T).

Let A = [a, b] 

Annales de l’Institut Henri Poincaré - Section B



245INNER FUNCTIONS OF THE UPPER HALF PLANE

Then c~i
Hence, by (3.4), there is a C 1  oo s. t.

This, combined with (3.5), gives (by dominated convergence)

To complete the proof that T is rationally ergodic, we show that :

We now turn to exactness. The following elementary lemma plays
a similar role to that of lemma 1.2.

LEMMA 3.3. - If bn - oo, and

then

THEOREM 3 . 4. - Let f E +), T = T( f ) and assume

then: T is exact, rationally ergodic and = { ~/~}.
Proof - Let L = max { v(~), v()R)~ } and assume that K ~ -. We

Vol. XIV, n° 3-1978.



246 J. AARONSON

write = + The assumption of the theorem means that

The first part of the proof of this result consists of deducing the asymp-
totic behaviour of un and vn. For this, we assume that a~ = a + iL where
a E (F8. The recurrence relations (3 . 9) show us that

And this enables us to deduce the boundless of [ as follows :

Not-ing that :

we see that :

Hence + iL) [ _ [ a for n >_ 1.

The recurrence relations (3 .9) now imply that vn - oo as n - oo and

hence

Hence + iL) - as n - oo.

Lemma 3 . 3 now shows us that for every 

We now obtain exactness by Lin’s criterion by an argument similar

Annales de l’Institut Henri Poincaré - Section B



247INNER FUNCTIONS OF THE UPPER HALF PLANE

to that of theorem 1.1 (the rational ergodicity of T has already been esta-
blished, and its asymptotic type characterised, by theorem 3.2).

Let u ~ L1,

By Wiener’s Tauberian theorem, there are ai ... ... aN E R such

that _ _

Whence:

We note that the « generalized Boole transformation » (proven ergodic
in [7]) falls within the scope of this last theorem.

If we added 03B2 ~ 0 to f in theorem 3.4, we would obtain that for Im 03C9

large enough ( >_ c1n and c2 log n (where = + 

The methods of lemma 3 .1 would yield that T( f ) is dissipative.
The following corollary follows immediately from lemma 3.1 and

theorem 3.2.

COROLLARY 3 . 5. - Let f E +) and let T = T( f ), = If

a( fl = 1 then : _

and in this case, T is rationally ergodic with

Vol. XIV, n° 3 - 1978.
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Moreover, in case f E Io and a( f ) = 1 : we have that vn -~ oo and so :

Hence :

which means

These last two properties are held in common with the restrictions of
theorem 3.4, and with the Markov shifts of random walks on Z.

The following example does not fall within the scope of theorem 3.4,
(though theorem 3.2 does apply).

EXAMPLE 3.6. - Tx = x + a tan x is exact, rationally ergodic with

a T Log n for a>0.
a

Proof. - Let = a~ + a tan (D and = un(co) + Then :

and

Whence :

so

On the other hand :

Hence un ~ uoo, and the argument that T is exact now proceeds identi-
cally to the last argument of theorem 3.4. D
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249INNER FUNCTIONS OF THE UPPER HALF PLANE

The following lemma will give examples of f E with îJ.(f) = 1
and T = T( f ) dissipative, and also uncountably many dissimilar r. e.

(see [1]) restrictions T( f ) with f E Io(f1~2+), îJ.(f) = 1.

LEMMA 3 . 7. 2014 Let  E S(R) be symetric with

Let

where c depends only on a.

Proof - We have .

where

It is not difficult to see that

We first show that F(b) ~ ~1 as a -~ o0
b«

Let E > 0, and M be such that

Writing

we have that :

Now

where

Vol. XIV, n° 3 - 1978.
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Since G > 0 was arbitrary and a  2, we have that

Clearly, r., -~ oo, hence :

Thus as n - oo D
We now let T IX = T(D.
By corollary 3.5 :

If 0  a  1 then T03B1 is dissipative.
If 1  a  2 then T03B1 is rationally ergodic and

If follows from theorem 2.4 of [l] that if 1  ai  a2  2 then T (11
and Ta2 are not factors of the same measure preserving transformation.

THEOREM 3 . 8. - Let f E +) and T = T( f ).
Suppose Xo E IR and f is analytic in a neighbourhood around xo.
If Txo = xo, T’(xo) = 1 and T"(xo) = 0 then T preserves the measure vxo

where dvxo x) = dx and is exact, rationally ergodic with asymp-xo( ) 
(x - xo) 2 

> > Y g Y p-

totic type { ~/M }
Remarks. The conditions Txo = xo and T’(xo) = 1 correspond to :

= 1. If, in this situation, T"(xo) ~ 0; then T is dissipative.
By possibly considering = f(w + xo) - xo we may (and do) assume
xo = 0.

Proo f. Let __

Then
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251INNER FUNCTIONS OF THE UPPER HALF PLANE

Hence

Then :

say > K and, since le a( f ) = 1 :

In order to prove the theorem by applying theorem 3.4, we will show
that

Firstly, let = f (cv) - w. By (3.11):

But by (3.12) :

Hence, we obtain, from the convergence of the real part, that

and from the convergence of the imaginary part that :

which convergence, when combined with the previous one, gives

Vol. XIV, n° 3 - 1978.
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Now, let dv(t) = (1 + then v E and it follows easily that

Now, let hb(a) = Im g(a + ib) = b ~-~ -20142014" 
.,. By (3.11) g is uni-

formly continuous on compact subsets of [ ~ > K], and so ~~(~) ~ 0 as
b -~ 0 uniformly on compact subsets of [~ > K].

Let = then Q~ = P~ ~ ~ and so Q~(A) ~ v(A) for A
a compact set. If A is a compact subset of [ ~ > K], then

Thus v is concentrated on [- K, K] and (3.13) is established. D
The transformations Tax = ax + (1 - a) tan x for 0  a  1 fall within

the scope of theorem 3.9 (it was shown in [11] that To is ergodic). It follows
from asymptotic type considerations that the above transformations are
dissimilar to Tx = x + a tan x.
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