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A biased roulette

Miloslav JIRINA

The Flinders University of South Australia

Ann. Inst. Henri Poincaré,

Vol. XIV, n° 1, 1978, p. 1- 23.

Section B :

Calcul des Probabilités et Statistique.

SUMMARY. - A biased roulette, i. e. a weightless disc with one heavy
point or, equivalently, a mathematical pendulum rotates in a vertical

position. Assuming that the initial velocity is a random variable with a
density and that this random variable is dilated by a positive constant d,
theorems concerning the limit distribution (as d -~ oo) of the stopping
angles are derived for different kinds of stopping, namely an instantaneous
stopping or stopping by a constant braking force or stopping by friction.

0 . INTRODUCTION

Poincaré introduced the method of arbitrary functions as a tool for
proving equi-distribution of certain events rather than postulating it

with reference to symmetry. The following is the best known example.
A roulette is divided into 2n equal sections painted alternately white and
red. At time 0 the roulette is given a speed V, where V is a non-negative
random variable with a density f, and then stopped at a fixed time s. It

is possible to show that the probability that a white section stops opposite
a mark tends to 1/2 as n - oo, whatever the density f is. The method
of arbitrary functions was later studied extensively by Frechet, Hostinsky
and others. For more references see [1] and [2]. To the author’s best know-
ledge, all applications of the method of arbitrary functions concern « fair »
problems. The present paper is an attempt to apply a similar method to
a biased roulette. Under a biased roulette we understand a weightless
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2 M. JIRINA

roulette with one heavy point rotating in a vertical position, so that the
motion is not uniform. Intuitively it is clear that if the problem were for-
mulated as above, i. e. with the number of sections n - oo, the probabi-
lities for white and red would be again 1/2 in the limit. Therefore we shall
reformulate the problem. Mathematically it is irrelevant in the above

example if n - oo with the density f fixed or, alternatively, if n is kept
fixed and the initial speed V is dilated by a constant d (i. e. replaced by dV),
with d -~ oo. This can be interpreted as obtaining the probabilities 1/2 for
the two colours by assuming that the velocity V is large. We shall adopt
mainly this approach. It could be argued that this amounts to the same
as assuming that the initial velocity has a very flat distribution, in fact
uniform on [0, oo) in the limit. However, it is quite possible that an inex-
perienced person would have a very flat distribution of initial velocities.
Leaving the number of sections on the roulette fixed amounts to the same
as to measure the angle between a fixed point on the roulette and a fixed
point on an outer scale. Therefore we can replace the roulette by a weight-
less pointer with a heavy tip (a mathematical pendulum) rotating in a
vertical position. The zero position will be the upmost one (12 o’clock
on a wall clock). Then the motion of the pointer will be controlled by the
differential equation

if there is no friction or any other braking force. We will call this model
the classical dynamic model. The reason for the factor 2rc in the above
equation is that we shall consider more general models in which it is more
convenient to attach number 1 to one full circle (instead of 2~c or 360°).

- the total angular distance the pointer covered between the times 0
and t - will be called the accumulated angular displacement (a. a. d.)
at time t, while the same angular distance measured modulo 1 will be called
the angle at time t. Hence, a. a. d. is an arbitrary number while an angle
is restricted to (0, 1]. Similarly, if s is the stopping time, will be called
the stopping a. a. d. and mod 1 will be called the stopping angle.
Velocity will always mean the angular velocity, i. e. In models without
a braking force the stopping is artificial at a given time s. In models with
a braking force the stopping time will be the time of the first stopping,
i. e. min ~ s &#x3E; 0 : ~’(s) = 0 ~ . In the classical dynamic model, the pointer
becomes a swinging pendulum after the first stopping, but we will dis-
regard these subsequent motions. Instead of considering only the classical
dynamic model, we will assume that the pointer is kept in motion by a
mechanism with an adjustable initial velocity v and such that v determines
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3A BIASED ROULETTE

uniquely the whole subsequent motion. The initial position of the pointer
will always be 0. We will use the following symbols for several different
approaches : (dV, d -~ oo), (dV, d -~ oo, s), (V, s -~ oo), (v, oo)
and (v --~ oo, S). They are self-explanatory if we adopt the following
conventions : v, or V, or dV respectively means : the initial velocity is deter-
ministic, or a fixed random variable, or a dilated random variable respec-
tively ; s, or S, or dS respectively means : the stopping time is artificial and
is deterministic, or a fixed random variable, or a dilated random variable
respectively. In all cases the stopping angle is a random variable Z and all
theorems of this paper concern the limit distribution of Z. Perhaps only
the cases (dV, d - oo, s), (v -~ oo, S) and (dV, d - oo) under a braking
force would qualify as a method of arbitrary functions, as only in these
cases are the limit distributions independent of initial data.

In the classical dynamic model, the limit distribution is uniform in

the (~V, ~ -~ oo, s) case inspite of the bias, while in the (dV, d - oo)
case under two different braking forces considered in this paper, the limit
distribution is not uniform, although it would be if there were no bias.

1. A GENERAL THEOREM

All basic theorems of this paper will be deduced from the following
Th. 1. We assume that to any positive parameter p, two sequences xk,p,
of real numbers are given such that

For any finite interval J on the real line, I J ( will denote its length. We
shall write Ik,p = xk + 1,p). (A 1.1 ) and (A 1. 2) guarantee that to each
ze[0, oo ) and p, there exists exactly one Ik,p such that We will
call it Ip(z) and we will assume that

Finally, Rp will denote a function on [0, oo) defined by

THEOREM 1. - Let (A 1.1)-(A 1. 3) hold and let there exist a function R
on [0, oo ) such that

Vol. XIV, n° 1 - 1978.



4 M. JIRINA

Then, for an arbitrary probability density function f on [0, oo)

Proof - To an E &#x3E; 0, there exists zo &#x3E; 0 and a non-negative continuousfunction f * on [0, oo), vanishing outside [0, zo) and such that

and

Then by (A 1. 3) and the continuity of f*, fp*(z) ~ f *(z) for all z and

This together with (1.1) proves the theorem. The last limit passage is
guaranteed by the Lebesgue boundedness theorem, as 0  1,
f *(z)  C for all z and f*(z) = 0 for all z &#x3E; zo, so that f *(z)  C for all z
and = 0 for all z &#x3E; zo + 1 if p is sufficiently large.

Remark. - The probability distribution represented by the density
function f in the above theorem cannot be replaced generally by an arbi-
trary probability measure.

2. THE GENERAL (d V, d --~ oo) CASE

In this section, V is a random variable on [0, oo) representing the initial
velocity with a density function f, d &#x3E; 0. The nature of the stopping time
is irrelevant in this section. Zd will denote the stopping angle under the
initial velocity dV. Our starting point is a function A defined on (0, oo)
with the interpretation : A(v) = the stopping a. a. d. under the initial
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5A BIASED ROULETTE

velocity v. Hence Zd = A(dV) mod 1. A is supposed to satisfy the following
conditions :

Anticipating that not all values of A are possible as stopping a. a. d.’s in
certain models, we do not assume A continuous everywhere - its values
may jump over certain intervals. Similarly, anticipating that in certain
models a whole interval of initial velocities may lead to the same stopping
a. a. d., we allow A to be constant over some intervals. A function B, defined
on [0, oo) will have the following interpretation : is the initial velocity
under which the stopping a. a. d. is J3. If A is continuous and strictly increas-
ing B is imply an inverse to A. Generally, we will define B by

Under (A 2.1), B has the following properties :

Notice that the values of B filling the jumps of A do not have the above
mentioned interpretation and if A is constant over a certain interval of

velocities, the definition (2.1) chooses the maximal velocity as the corres-
ponding value of B. However the relation ( v : A(u)  _ ~ v : u  
holds always so that for d = 1 and 0  a  1 we have

Replacing V by dV or, equivalently, replacing we obtain

If

then we may write for all k = 0, 1, ... and all 0 ~ a  1

For each k, Gk is a distribution function on [0, 1].
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6 M. JIRINA

THEOREM 2. - Let us assume that (A 2.2) and (A 2. 3) hold and that

Further let us assume that for some 0  a  1 the limit

Then

Proof. - We shall apply Th. I with the parameter p called d and with
I I

= - d B(k), = - d B(k + a). Then Rd(z) = if z e The condi-

tions (A I , I)-(A 1 . 3) are satisfied trivially, in fact sup 1,d 
- xk, d) d~~ 0.k 

’ ’ - 

Further, because of this last relation, for any z &#x3E; 0 and any ko, z e Ik,d
implies k &#x3E; ko if d is sufficiently large. Hence Rd(z) d~~ G(a) for any z &#x3E; 0.

Then by Th, I 
-

3. MODELS WITHOUT A BRAKING FORCE

In the whole paper, v) will denote the a. a. d. of the pointer at time t
under the initial velocity v. In this paragraph, we shall assume that § is
defined on [0, oo ) x (0, oo ) and that it satisfies the following three condi-
tions :

(A 3 .1 ) for each v &#x3E; 0, is strictly increasing and iontinuous
on [0, oo), ~(0, v) = 0, ~( o~o, v) = 00

(A 3.2) for each t &#x3E; 0, is strictly increasing and continuous
on (0, oo ), ~(t, ~ + ) _ 0, (0) = 00

(A 3 . 3) if, for a given v &#x3E; 0, t 1 is defined by v) = 1, then

The last condition expresses the fact that each subsequent cycle is a replica
of the previous one, i. e. the pointer rotates by inertia without any systema-
tic braking or accelerating force. The condition (~(oo, v) = oo is super-
fluous ; it follows from (A 3 . 3). To give v its proper interpretation, we
should have also assumed that v) = v, however we shall not need this
explicitly in the proofs. (In the whole paper, several functions of two varia-
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7A BIASED ROULETTE

bles will occur with v as the second variable ; if the function is F, e. g., then
F’ and F" will always denote the first and second derivative with respect
to the first variable.) In formulating and proving the theorems of this sec-
tion it is more convenient to replace § by its inverse with respect to t,
i. e. by a function H of two variables 13 and v defined on [0, oo ) x (0, oo )
by v), v) = 13. Clearly H(f3, v) denotes the time the pointer needs
to reach /3 under v. H satisfies the following three conditions :

(A 3.4) for each v &#x3E; 0, H(., v) is strictly increasing and continuous
on [0, oo ), H(0, v) = 0, H( oo, v) = 00

(A 3.5) for each /3 &#x3E; 0, H(f3, .) is strictly decreasing and continuous
on (0, 00), H(f3, 0 + ) = oo, H(f3, °o ) = 0

(A 3 . 6) for each integer k &#x3E; 0, each 0  oc  1 and each v &#x3E; 0

3.1 The (dV, d - oo, s) case

In this section, V, f and Zd have the same meaning as in paragraph 2 ;
s is the (artificial) deterministic stopping time (s &#x3E; 0). The function A of

paragraph 2 is defined by A(v) = v). It is strictly increasing and. conti-
nuous on (0, oo) with A(o + ) = 0. Hence B is strictly increasing and conti-
nuous on [0, oo) and it satisfies

In addition to (A 3. 3)-(A 3 .6), we will need another condition on H,
namely

THEOREM 3. l. Under (A 3. 3)-(A 3.6) and (A 3.1.1),

Proof - By (A 3.1.1) and the I’Hospital rule
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8 M. JIRINA

Put H*(fl, w) = H*(fl, 0) = 0. Then H*@, . ) is continuous on

[0, uJ) and, by (A 3 , I , 1)

(3 , 1 . 3) w) = ~ H*(fl, w) exists and H*(fl, 0 + ) = L(fl) .
lw

Weare going to apply Th. 2. We must show that (2 . 2) and (2 . 3) hold with

G(a) = for each 0  a  I. Both (2 . 2) and (2 . 3) will be proved, if

we show that

where 0  w  1 . B k --~ oo and H* 1 0 - 0. Hence by 3.1.3
B(k) 

) ~ ~ ) Y~ )

For any two sequences 03BDk, zk such that B(k)  vk  B(k + I),
z~ B( k + I)

I  -  . Hence by (3 . 1 4)
v~ B(k)

By (3.1.1) and (A 3 . 6),

Hence

by (A 3.1.1), (3.1.2), (3.1.5) and (3.1.6). This proves (3.1.4).
As a particular case we will now consider the general dynamic model,

i. e. a model in which the motion of the pointer is controlled by the diffe-
rential equation
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We shall assume that

(A 3.1.2) q is continuous 1-periodic and satisfies the ordinary Lipschitz
condition

The function v) is defined as the (only) solution of the differential
equation with v) = 0, u) = v. It is easy to see that the function H
introduced in this paragraph and relating t and 4J(t, v) through t= v), v)
has the form

In the classical dynamic model, H is related to the incomplete elliptic
integral of the first kind

by

where k = 2c 03C003BD2+2c, , however we will not need this result. It is easy

to see from (3 .1. 8) that H satisfies (A 3 .4)-(A 3 . 6). In particular, (A 3 .1. 3)
implies that Q is 1-periodic, hence (A 3 .6) holds. From (A 3.1.2) and

(A 3.1.4) it also follows that Q( y) _ Ky2 so that 03B20Q(y)-1/2dy = oo ;
hence H(f3, 0 + ) = 00. The assumption (A 3 .1.1 ) of Th. 3 .1 ) also holds
with L(f3) = /3. Hence

COROLLARY TO THEOREM 3.1. In the general dynamic model with q
satisfying (A 3.1.2)-(A 3.1.4), Zd has in the limit (as d - oo) the uniform
distribution on [0, 1].

3.2 The (V, s - oo) case

In this section, V is a random variable on [0, oo) representing the initial
velocity with a given density function f ; s is the (artificial) deterministic
stopping time. B is defined as in 3.1, i. e. by (3.1.1), however to express

Vol. XIV, n° 1 - 1978.



10 M. JIRINA

its dependence on s, we shall write BS instead of B. Similarly, we shall
denote the random variable representing the stopping angle under the
stopping time s by Hence ZS = mod 1. In addition to (A 3 . 4)-
(A 3 . 6), we shall assume that

a
(A 3.2.1) for each ~3 &#x3E;_ 0, the derivative v) = - v) exists and

is continuous on (0, oo). 

THEOREM 3 . 2. - Under (A 3. 4)-(A 3 . 6) and (A 3 . 2 .1 ),

Proof - Take a fixed 0  1. We shall apply Th. 1 with p replaced
by s and with The assumptions (A 1.1) and (A 1. 2)
are clearly satisfied. To show that (A 1.3) also holds, take an arbitrary
z &#x3E;_ 0 and define integers ks by z  Bs(ks + 1). We must show
that S ~ z, + 1) S ~ z. Assume that z. Hence there

exist 0  z’  z oo such that for all =  z’.

By (3.1.1), (A 3.5) and (A 3.6), s~ = &#x3E; z’) and

sj  + I)H(I, z). The second inequality implies k(j) ~ oo and then

H(I, z’)  sj K(j)  H(I, z) k(j)+1 k(j) 
leads to a contradictory inequality

H(I, z’)  H(I, z). Hence ~ z. The proof of + 1) ~ z would
be similar.

The function RS of Th. 1 is defined by

We must show that for any z

By (3 .1. 7)

where Blk)  vs’~  BS(k + 1), j = 1, 2. Hence (3 . 2.1) follows from (A 1. 3)
and from the continuity of H and H2.

3 . 3 The (v -~ oo , S) case

In this section, the initial velocity v is deterministic, the stopping time S
is a random variable on [0, oo ) with a density function f The stopping
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11A BIASED ROULETTE

angle under v will be denoted by Z", i. e. Z~ == ~(S, v) mod 1. By (A 3.1)
~ s : ql(s, v)  _ ~ s : s _ H(f3, v) ~ . Hence for 0  a  1,

In addition to (A3.1)-(A 3.3) we will need the following assumption :

(A 3.3.1) for each 0 a finite limit !;)  G(03B2) exists.

THEOREM 3.3. - Under (A3.3)-(A3.6) and (A 3.3.1),

Proof - Take a fixed 0  a  1. We shall apply Th. 1 with p = v and
= H(k, v), = H(k + a, v). (A 1.1) and (A 1.2) hold by (A 3.4). By

(A 3 . 5) and (A 3 . 6) , H(k + a, v) - H(k, v) = H(a, v) v ~ 0. Hence

sup 
- 0 and (A 1. 3) is satisfied. The function R" occurr-

ing in Th. 1 is defined by R"(z) = H k However,

by (A 3 . 6), R"(z) = H(03B1, 03BD) H(1, 03BD) G(03B1).

Remark. It is easy to see that (A 3.1.1) or its weaker form (3.1.2)

imply (A 3.3.1) with G(a) = L(a) . Hence, under the assumptions of Th. 3.1,
Zd of Th. 3.1 and Z" of Th. 3 . 3 have in the limit the same distribution. In
particular :

COROLLARY TO THEOREM 3 . 3. In the general dynamic model (defined
in Section 3.1) with q satisfying (A 3.1.2)-(A 3.1.4), Z" has (as v --~ oo)
the uniform distribution on [0, 1]. 

’

3.4 The (v, dS, d - oo) case

In this section, the initial velocity v is deterministic (and fixed) and the
stopping time is dS where S is a random variable on [0, oo) with a density
function f The stopping angle under the stopping time dS will be denoted
by Zd, so that Zd = v) mod 1. This time

Vol. XIV, n° 1 - 1978.
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THEOREM 3.4. - Under (A 3 .4)-(A 3.6)

Pr o o . f - The theorem follows again fromTh. 1 with p = d, H k v),

~ = - ~ H(k + (X, v). The details would be similar to those of the proof

of Th. 3. 3.

4. THE (dV, d -&#x3E; oo) CASE WITH A BRAKING FORCE

As in paragraph 2, V is a random variable on [0, oo) representing the
initial velocity with a density function f, d &#x3E; 0 the dilating parameter.
We shall assume that the motion of the pointer is controlled by the diffe-
rential equation

where ql represents the braking force. We shall consider only two cases,
namely &#x3E; 0), i. e. a constant braking force and q 1 (x) _ - ax
(a &#x3E; 0), i. e. a braking force by friction. The a. a. d. v) at time t under
v is defined as the solution of (4.1) with the initial conditions (~(0, v) = 0,

v) = v. If q satisfies (A 3 .1. 2), then § is well defined in both particular
cases mentioned above. The stopping time C(v) under v is defined by
C(v) = sup ~ s &#x3E; 0 : v) &#x3E; 0 for all 0  t  s ~. C(v) may be infinite.
If C(v) is finite, v) = 0 by continuity. The stopping a. a. d. A(v)
under v is defined by A(v) = v) if C(v)  oo and by A(v) = lim v)

if C(v) is infinite. We will see that in the two cases mentioned above A(v)  00

even ifC(r) = cc. As ~( . , v) is strictly increasing in [0, A(v)), H(f3, v) is again
well defined by 13 = v), v) for any f3 E [0, A(v)).

4.1 The (dV, d - oo) case with a constant braking force

In this section we shall assume that the motion is controlled by the diffe-
rential equation

with b &#x3E; 0. We shall require q to satisfy (A 3 .1.2) and (A 3 .1. 3). Put

Q o( y) = 2b y - 2Q( y), where again Q( y) = It is easy to see that
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13A BIASED ROULETTE

and that

As Qo(y) y ~ 00, we see from (4.1.2) that A(v)  oo even if C(v) = oo,
and that

From (4.1. 3) we can see easily that A satisfies (A 2.1) and is in fact strictly
increasing.

THEOREM 4.1. - Let the function q occurring in (4.1.1) satisfy (A 3 .1. 2)
and (A 3 .1. 3). Then

Proof - We will apply Th. 2. The function B occurring in this theorem
was defined in paragraph 2 by = max { v : }. It is easy to see
that in our case

In the last step we used the fact that Q is 1-periodic by (A 3.1. 2) and (A 3.1. 3)
Substituting a = 1 we have B2(k + 1) = 2bk + B2(1) ~ and,
using this relation, we can prove by induction that

Substituting (4.1.5) into (4.1.4) we finally get

By (4 .1. 6)

and

Vol. XIV, n° 1 - 1978.
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by (4.1.5) and (4.1.7). Hence the condition (2.2) of Th. 2 is satisfied.

Finally,

by (4 .1. 5), (4.1.6) and (4 .1. 7). Hence, (2 . 3) of Th. 2 is also satisfied with

Remark 1. - If b &#x3E;_ max q(x), then Qo(y) is non-decreasing on [0, l~,
i

so that R(a) = ba - Q(a) and the limit distribution function of Za is

Remark 2. - In the classical dynamic case with a constant braking

force b &#x3E; 0 Q°( y) - b - c 
1 - cos 203C0y). If b &#x3E;- c the limit dis-

tribution function G is strictly increasing and (4.1.8) holds. If b  c,

there exists 0  a 0  4 1  a i  1 (depending on b c) such that G is cons-
tant on (i. e. the pointer cannot stop between ao and ai) and G is

strictly increasing and equals outside (ao, ai). The point 03B10 is thestrictly increasin g and e q uals Q°(a) 2b outside 03B11). The point a o is the

solution of b = c sin 2xa in 1 ai is the solution of Qo(a) = Q0(03B10) insolution of b 
= c sin 203C003B1 in ( 0, - ), al is the solution of QoM = 

-, 1 .
4.2 The (dV, d - oo) case with a friction

In this section we shall assume that the motion is controlled by the
differential equation

with a &#x3E; 0 and q and Q satisfying (A 3.1.2) and (A 3.1.3). To be able to
apply Th. 2, we will have to establish the existence of the limit (2.3). By
(4.2.15) below, B(k + a) = where W(k) is the k-th iterate of a
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15A BIASED ROULETTE

function W. Limits of ratios W(k)(z) - W(k)(z0) were studied by Levy,W (zo) - W (zo)
Szekers and others. A systematic treatment may be found in [3]. The most
relevant part of [3] is Chap. VII, § 4 and it is likely that Th. 7 . 7 of [3] would
apply to our situation. However it seems easier to establish the existence
of the limit directly, rather than to try to show that the assumptions of
Th. 7.7 are satisfied in our case.
The functions ~, C, A, H are defined as at the beginning of paragraph 4.

For any v &#x3E; 0 and 13 E [0, A(v)), v) will denote the velocity of the pointer
at the a. a. d. 13 under v, i. e.

or

D is strictly positive and differentiable with respect to 13 on [0, A(v)). If

C(v)  oo (in which case A(v)  oo trivially), D(., v) is continuous on [0, A(v)]
and D(A(v), v) = 0. Later we shall see that this is true even if C(v) = oo.
We will now prove a series of lemmas we will need in the main theorem.

LEMMA 4 . 2 .1. - For any v &#x3E; 0, D(., v) satisfies in [0, A(v)) the diffe-
rential equation

Proof 2014 (4.2.4) follows immediately from (4.2.1)-(4.2.3).
Sometimes it is more convenient to use Do = D2 instead of D. The next

assertion follows immediately from L 4.2 .1.

LEMMA 4 . 2 . 2. - For any v &#x3E; 0, Do(., v) satisfies in [0, A(v)) the diffe-
rential equation

Under a solution D of (4 . 2 . 4) in an open interval we will always
understand a strictly positive function satisfying (4.2.4) on 
function D will be called a solution of (4 . 2 . 4) on a closed interval 
it is a solution on P2) and continuous on P2]. Let, for any y and
any z &#x3E; 0, D(., z y) denote the solution of (4 . 2 . 4) under the initial con-

dition D(y, z I y) = z. The function - a + satisfies the Lipschitz condi-
z
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