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Separabilities
of a Gaussian Radon measure

Hiroshi SATO (*) and Yoshiaki OKAZAKI (**)

Ann. Inst. Henri Poincaré,

Vol. XI, n° 3, 1975, p. 287-298.

Section B :

Calcul des Probabilités et Statistique.

SUMMARY. - Let (X, Y) be a dual system of real linear spaces, C(X, Y) the
cylindrical u-algebra of X, and W(X, Y) the weak Borel field of X.
The main purposes of this paper are to prove the separability of 

for a Gaussian measure on (X, C(X, Y)) under some assumptions and to
prove for a Gaussian Radon measure on (X, W(X, Y)) the separability
of and the r(X, Y)-separability of the support, where r(X, Y) is the
Mackey topology.

1. INTRODUCTION AND NOTATIONS

Let (X, Y) be a pair of real linear spaces X and Y with a bilinear form
 x, ~ ~ on X x Y, and let C(X, Y) be the minimal u-algebra of subsets
of X that makes all functions ~ ~ ~ , ~ ~ ; ~ E Y } measurable. Furthermore,
if the bilinear form satisfies the separation axioms ;

 = 0 for all ~ E Y implies xo = 0 ,
 x, ~o ~ - 0 for all x E X implies jo = 0 ,

we call (X, Y) a dual system. In this case, we denote the weak topology
on X by Y) and the Mackey topology by r(X, Y).
We say that a dual system (X, Y) is topological if X is a topological linear

space such that all functions in Y are continuous, in other words, the
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288 H. SATO AND Y. OKAZAKI

topology of X is finer than r(X, Y), and we denote the Borel field of X by
B(X, Y). Any dual system is a topological dual system if X is equipped
with 6(X, Y) and we denote by W(X, Y) the Borel field of X for u(X, Y).
Evidently, W(X, Y), a fortiori, C(X, Y) is included in B(X, Y) for any
topological dual system.

Let U be a topological space and B(U) be the Borel field of U. Then
we say that a measure ~ on (U, B(U)) is Radon if J1 is a finite measure such
that 

A _ ) sup p ~ ~ ( K ~ K c A, A compact}
for every A in B(U). 

’

For a topological linear space X we denote the algebraic dual space
of X by xa and the topological dual space by X’.

Let (X, Y) be a pair of real linear spaces with a bilinear form ~.Y, ~ ).
Then a Gaussian measure on (X, C(X, Y)) is a probability measure such
that for every ~ E Y, ( ~, ~ ~ obeys a Gaussian law with mean and
variance v(~). We call the mean f unctional and the variance . .func-
tional of ~c. In particular, if m(~) - 0, we say the Gaussian measure is
centered.

Let (X, Y) be a topological dual system. Then a Gaussian Radon measure
on (X, B(X, Y)) is a Radon measure such that the restriction to C(X, Y)
is Gaussian.

In Section 2 of this paper we prove the separability for a Gaussian
measure ~ on (X, C(X, Y)) under the assumption of the existence of an
admissible metric on Y where (X, Y) is a pair of linear spaces. In particular,
we show that if X is a metrizable locally convex space and Y is a linear
subspace of X’, then L2(~) is separable.

Let (X, Y) be a topological dual system. In Section 3, we remark the
equivalent-singular dichotomy of two Gaussian Radon measures on

(X, B(X, Y)) ; in Section 4, we prove the separability of L2(,u) for a Gaussian
Radon measure on (X, B(X, Y)).

Let (X, Y) be a dual system. In Section 5, we prove the r(X, Y)-separa-
bility of the support of a centered Gaussian Radon measure on (X, W(X, Y)).
Furthermore, we prove the T(X, Y)-separability of the support of a non-
centered Gaussian Radon measure on (X, W(X, Y)) under the following
assumption :
(C. I) There exists an increasing sequence of

Y)-compact absolutely convex sub-_
sets { of X such that lim = 1.

This is the case where X is t(X, Y)-quasi-complete, in particular, X is
a Fréchet space and Y = X’, or Y is a Fréchet space and X = Y’.
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289SEPARABILITIES OF A GAUSSIAN RADON MEASURE

For a Gaussian measure on (X, C(X, X’)), where X is a separable or
reflexive Banach space, the separability of the Hilbert space H~ generated
by the random variables  ~ , ~ ~, ~ E X’, is stated in H. Sato [7]. J. Kuelbs [4]
has also stated the separability of H~ for a centered Gaussian Radon
measure on (X, B(X, X’)) where X is a complete locally convex Hausdorff

space. But they have the same error since every pre-Hilbert space has not
a complete orthonormal system (A. Badrikian and S. Chevet [1]). In this

paper, we have corrected it and obtained more general results.

2. SEPARABILITY OF 

Let (X, Y) be a pair of real linear spaces and let  be a Gaussian measure
on (X, C(X, Y)) with the mean functional and the variance func-

tional u(~). We say a metric p on Y is admissible if it defines a locally convex
topology on Y such that

where (Y, p)’ is the topological dual space of Y with p-topology
(Y, p)’ n X = { x e X ; ( x, ~ ~ is continuous in (Y, p)} and ~c* is the

outer measure, that is, for every A c X,

In this case, for every sequence { ~" ~ convergent to ~ in (Y, p), the random
sequence ( ( x, ~n ~ ~ converges to ( x, ~ ~ almost surely on the probability
space (X, C(X, Y), ~c). In fact, the set

belongs to C(X, Y) and contains the set (Y, p)’ n X, hence we have ,u(A) = 1,
that is, ( x, ~" ~ -~ ~ x, ~ ~ almost surely as n - oo. If a metric p on Y

is admissible, there is a subset E c X of outer measure one such that the

topology p is finer than the pointwise convergence topology on E, that
is, p is finer than the topology r(Y, E). Conversely, if a metrizable locally
convex topology p on Y is finer than the one of pointwise convergence
on a suitable subset E of outer measure one, p is admissible. In particular
every metric on Y which defines a locally convex topology finer than the
weak topology 6(Y, X) is admissible.

LEMMA2-1. If p is an admissible metric on Y, then and v(ç) are

p-continuous.

Vol. XI, n° 3 - 1975.
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Proof: Since p is a metric, it is sufficient to show sequential continuity.
be a sequence p-convergent to 0. Then the Gaussian random

sequence ( ( . , ~n ~ ~ converges to 0 almost surely and it is well-known
that and u(~n) also converge to 0.

This proves the lemma.

Define a linear transformation Rtl of Y into = L 2(X, C(X, Y), u)
by 

_ _ _ . -

and H~ the closure of R~Y in L2(~). Since we have

it is easy to show the following lemma.

LEMMA 2-2. - If p is an admissible metric on Y, then Rp is a p-continuous
linear transformation of Y into H~.

Furthermore, by a slight modification of the proof of Proposition 3-4
of R. M. Dudley [2], we can prove the following key lemma.

LEMMA 2-3. If p is an admissible metric on Y, then R is a compact
linear transformation of (Y, p) into Hp and consequently the Hilbert
space H~ is separable.

Proof. If does not vanish, it is sufficient to show the compactness
of the new transformation

so that without loss of generality we may assume m(~) - 0.
Since p defines a locally convex metric topology on Y, we can choose

a countable increasing basis {pn }~n= 1 of continuous semi-norms in Y

For every n, put

By lemma 2-2 we may assume that rn is bounded in H~ for every n. In
order to prove the compactness of RJl’ it is sufficient to show the pre-
compactness of for some N. Assume rn is not precompact for every n.
Then by the boundness of there exist a positive number E and an infinite

1 in rn such that the distance of ~~ + 1 from the linear
Annales de l’lnstitut Henri Poincaré - Section B



291SEPARABILITIES OF A GAUSSIAN RADON MEASURE

span Fj ..., ~~ is at least e for all j. Let { ~~ ~~° 1 be a sequence in Sn
such that = Put

X)

It is easy to show~On = (Y, p/ n X and On = O’n for every n, hence
M= 1

Since each On belongs to C(X, Y) and

there exists a natural number N such

that > 0. Let

where gN L F7 and I) B. Put

Then we have ON c A7 for every j and hence

On the other hand we have

Now for some 6 > 0, we have for all j

so

by induction. Hence we have

This is a contradiction. Therefore rn is precompact for some n, and this
completes the proof.

This proves the lemma.

The above lemma can be extended.

Vol. XI, n° 3 - 1975.
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LEMMA 2-4. If Y is expressed as a union of at most countable numbers
of linear subspaces { and in each Y" an admissible metric is defined,
then H~ is separable. 

’

Proof : - For every n, by Lemma 2-3, is a separable subspace
of H~ so that

is separable, where the closure is taken in L2(~c).
This proves the lemma.

On the other hand, we can prove the following result.

LEMMA 2-5. - If H~ is separable, L2{,u) is also separable.

Proof : - Since H~ is separable, we can choose a countable subset
it = { ~n ~" i in Y for which ( ( ., ~" ~ ~" i is dense in H~. In order to
prove the lemma, it is sufficient to show that the closed linear subspace
of L2(,u) generated from

is identical with 

Let ~(x) be a square summable function on (X, C(X, Y), tt) such that
for every n, "

so that

Then we have only to show = 0, a. e. 
Denote the collection of all finite subsets of Y by f. Then r is a directed

set with respect to the inclusion. For every y = ~ ~ 1, ~2, ... , ~k ~ in r and
every real numbers ... , tk, there exists a subsequence {03B6nj} of it
such that

in H~ and we have

Annales de l’Institut Henri Poincaré - Section B
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in other words, the conditional expectation

for every y in r. By the convergence theorem of the filtered martingale
of J. Neveu [5, Proposition V-1-2], converges to 03C6 in L2( ) so that we
have = 0, a. e. (~c).

This proves the lemma.

Summing up the above lemmas, we have the following theorem.

THEOREM 2-6. - Let (X, Y) be a pair of linear spaces X and Y with a
bilinear form (, ), ,u be a Gaussian measure on (X, C(X, Y)) and assume
that Y is expressed as a union of at most countable numbers of linear

subspaces { Y n } and in each Yn an admissible metric is defined. Then 
is a separable Hilbert space.
As corollaries of the above theorem, we have the following theorems.

THEOREM 2-7. - Let (X, Y) be a pair of linear spaces X and Y with a
bilinear form (, ), ,u be a Gaussian measure on (X, C(X, Y)) and assume
that there exists a locally convex metrizable topology on Y finer than the
weak topology X). Then L2(~c) is a separable Hilbert space.

THEOREM 2-8. - Let X be a metrizable locally convex topological linear
space, Y be a linear subspace of X’ and ,u be a Gaussian measure on

(X, C(X, Y)). Then L2(,u) is a separable Hilbert space.

Proof: Since X is a metrizable locally convex space, we may regard X
as a dense subspace of the reduced projective limit lim Xn of Banach

spaces {Xn} and we have as a set. For every n, Xn is equiped
n

with a norm topology finer than the weak topology 6(X’, X). Therefore

we have Y = where Y n Xn has an admissible metric so
n= 1

that Theorem 2-6 is applicable.
This proves the theorem.

3. EQUIVALENCE OF GAUSSIAN RADON MEASURES

In this section we prove the equivalent-singular dichotomy for Gaussian
Radon measures for later use.

To begin with, we prepare two lemmas. Let K be a compact Hausdorff
space, C(K) be the space of all continuous functions on K and Bo(K) be

Vol. XI; n° 3 - 1975.
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the Baire field, that is, the minimal u-algebra of subsets of K that makes
all functions in C(K) measurable. We have the following lemma.

LEMMA 3-1. - Let K be a compact Hausdorff space and let 1 and 2
be Radon measures on (K, B(K)). Then for every A in B(K) there exists Ao
in Bo(K) such that

Proof: Let A be in B(K). Then, since ,u~ (i = 1 , 2) is Radon, there exists
a decreasing sequence of open sets { O;, ; n = 1, 2, 3, ... } such that

Put On = On = 1, 2, 3, .... Then we have simultaneously

Since the indicator function xon is lower semi-continuous and p; i = 1,2)
is Radon, there exists a sequence { = 1, 2, 3, ... }, i = 1, 2, of conti-
nuous functions on K such that

For every n, let An = ~ x E K ; > E K ; 
+ TO

and let Ao = UAk. Ao has the desired property.
n k=n

LEMMA 3-2. - Let (X, Y) be a topological dual system and let and 2
are Radon measures on (X, B(X, Y)). Then, for every A in B(X, Y), there
exists Ao in C(X, Y) such that

Proof: Since ~cl and ~c2 are Radon measures, there exists an increasing
sequence of compact subsets { of X such that

Annales de l’lnstitut Henri Poincaré - Section B
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Let A be a set in B(X, Y). Then, by Lemma 3-1, for every n there exists A~
in such that

On the other hand, using the Stone-Weierstrass theorem, we can easily
prove that

n= 1,2,3, ....

Therefore, for every n, there exists A" in C(X, Y) such that An n K" = A~
+ TO

and put Ao = It is easy to see that Ao has the desired pro-
perty. n k=n ’

Utilising the above lemma and the well-known results concerning the
equivalent-singular dichotomy of Gaussian measures on (X, C(X, Y)),
we have the following theorem without difficulty (Ju. A. Rozanov [6]).

THEOREM 3-3. - Let (X, Y) be a topological dual system of real linear
spaces X and Y, B(X, Y) be the Borel field of X, and let p and be Gaussian

Radon measures on (X, B(X, Y)). Then ~ and are either equivalent
(mutually absolutely continuous) or singular and they are equivalent if

and only if their restrictions to C(X, Y) are equivalent.
The above theorem derives the same results as shown in [6] in our termino-

logy. Let (X, Y) be a topological dual system and ~c be a Gaussian Radon
measure on (X, B(X, Y)). Furthermore let R~ be a linear transformation
of Y into L2(,u) = L2(X, B(X, Y), defined by

let H~ be the closure of the range of Ru in L2(~), and let R: be the algebraic
adjoint transformation of H~ into Ya. As usual, we identify the topological
dual space of H~ with H~.

THEOREM 3-4. - Let (X, Y) be a topological dual system, ~ a centered
Gaussian Radon measure on (X, B(X, Y)), and B(X, Y) the p-completion
of B(X, Y). Moreover, assume that R*H~ oe X and that H~ is separable.
Then we have:

(1) For x E X let ~cx be a Gaussian Radon measure on (X, B(X, Y)) defined
by

Then J1. and J1.x are equivalent if and only if x E R*H~.
(2) Let Xo be a B(X, Y)-measurable linear subspace of X such that

= 1. Then we have R* H~ c Xo.
Vol. XI, n° 3 - 1975.
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The proof of the above theorem is the same as those shown in Out
of completeness, we give the proof of (2).

Let Xo be a B(X, Y)-measurable linear subspace of X such that Jl(Xo) = 1,
and assume that R*H~ is not included in Xo. Then there exists an element .~co
in such that Xo. Since Xo is a linear subspace of X, Xo and
Xo + xo are disjoint and, by (1) we have + xo) = 1. Conse-
quently we have

This is a contradiction.

4. SEPARABILITY OF 

In this section we prove the separability of the Hilbert space L2(,u) for
a Gaussian Radon measure ~.

Let (X, Y) be a topological dual system and ,u be a Gaussian Radon
measure on (X, B(X, Y)). Then, since the topology o-(X, Y) is coarser than
the topology of X, ,u is also a Gaussian Radon measure on (X, W(X, Y)).
Consequently, there exists the minimal Y)-closed linear subspace X
of X such that = 1. We call X~ the topological linear support of ,u.

Let X~ be the polar set of X~ in Y. Then we have the following lemma.

LEMMA 4-1. - For ~ in Y, ~ is in X~ if and only if ~ ~ , ~ ~ = 0, a. e. (,u).
Proof: Since = I , the necessity is obvious.
Assume that ~ ~, ~ ~ = 0, a. e. (,u). Since X~ == { x e X ; ( x, ~ ~ = 0 }

is a u(X, Y)-closed linear subspace of X and = 1, we have X c X~
by the minimality of X~, in other words, ~ E X~.

This proves the lemma.
Define the linear transformation Ru of Y into L2(,u) = L(X, B(X, Y), ,u)

and H~ as in the previous section. Then, using the above lemma, we can
easily prove that X~ is the kernel of R~.

Put Y~ - Y/X°. Then we have X~ n W(X, Y) = W(X~, Y Jl) and

X~ n C(X, Y) = C(X~, Y~). Furthermore, since the induced topology of
7(X, Y) on X~ is identical with Y~), a subset of X~ is o-(X, Y)-closed if
and only if Y,)-closed and the induced topology of r(X, Y) on X~ is
coarser than Y Jl) (H. H. Schaefer [8], Chap. IV, § 4).
On the other hand, by Lemma 3-2 we have

Annales de l’lnstitut Henri Poincaré - Section B
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Therefore, in order to prove either the separability of

or the T(X, Y)-separability of X~, we have only to prove it in the case of

In this case we have Y = Y~ and by Lemma 4-1 we can easily show that
for ~ in Y

and that R, is an injection of Y into H~.

THEOREM 4-2. - Let (X, Y) be a topological dual system and J1 be a
Gaussian Radon measure on (X, B(X, Y)). Then L2(~) = L2(X, B(X, Y), ~c)
is a separable Hilbert space.

Proof: We may assume (C.II) without loss of generality.
Since ,u is also a Gaussian Radon measure on (X, W(X, Y)), there exists

an increasing sequence of (7(X, Y)-compact subsets { K" ~ of X such that

Let Z be the linear hull of Kn and denote by p the topology on Y
n

of uniform convergence on all Kn. Then, using (C. II’), we can easily show
that p is locally convex metrizable and finer than 6(Y, Z). On the other
hand, we have Z c (Y, p)’ n X and ~c*(Z) = 1. Therefore p is an admissible

metric on Y and consequently, by Theorem 2-6 and Lemma 3-2,
L 2(X, B(X, Y), ~c) = L2(X, C(X, Y), ~u) is separable.

This proves the theorem.

5. SEPARABILITY OF THE SUPPORT

OF A GAUSSIAN RADON MEASURE

Using the preceding results, we prove the following theorem.

THEOREM 5-1. - Let (X, Y) be a dual system and p be a centered Gaussian
Radon measure on (X, W(X, Y)). Then the topological linear support X~
of  is T(X, Y)-separable.

Proof: As stated in § 4, we may assume the condition (C. II), that
is, X = Xu. The measure p can be extended to a centered Gaussian Radon

Vol. XI, n° 3 - 1975.
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measure on (Ya, W(ya, Y)). Then X is W(Ya, Y)-measurable, hence by
theorem 3-4 (2), we have c X. It is known ,u(R*H~ X~y~) = 1, where
~(X, Y) means the closure for T(X, Y) in X, remark that = 

(the bipolar) = { x E X ; ~ x, ~ ~ = 0 for all ~ E and for every
~ E R* H° ~c( ~ X E X ( x, ~ ~ = 0 ~ ) = 1. The minimality ofX=X~ implies
that is r(X, Y)-dense in X. By theorem 4-2, H~ is separable and
X = X~ is r(X, Y)-separable.

This proves the theorem.
For non-centered Gaussian Radon measures we have the following

result.

THEOREM 5-2. - Let (X, Y) be a dual system and  be a Gaussian Radon
measure on (X, W(X, Y)) satisfying the condition (C. I). Then the topolo-
gical linear support X~ of X is r(X, Y)-separable.

Proof. As stated in Section 4, we have only to prove in the case X = X .
be the increasing sequence of 6(X, Y)-compact absolutely

convex subsets of X given in (C. I). Then the topology p on Y of the uniform
convergence on all Fn is finer than 6(Y, X) and coarser than i(Y, X) and
therefore an admissible metric on Y. By Lemma 2-3, R~ is a compact
linear transformation of (Y, p), a Jortiori, of (Y, r(Y, X)) into H~ and H~ is
separable. Consequently R: is also a compact linear transformation of H~
into (X, r(X, Y)) with dense range and this proves the theorem.
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