TRUMAN BEWLEY

Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions

Annales de l'I. H. P., section B, tome 7, nº 4 (1971), p. 283-291 http://www.numdam.org/item?id=AIHPB_1971_7_4_283_0

© Gauthier-Villars, 1971, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions (*)

by

Truman BEWLEY

In 1967, A. A. Tempelman announced generalizations of the Birkhoff and von Neumann ergodic theorems [6]. This paper supplies proofs of results similar to Tempelman's. The main arguments are drawn from Calderon's paper [I]. The author has also had the benefit of reading Mrs. J. Chatard's work on the same problem [2].

PRELIMINARIES

Let (M, \mathscr{M}, μ) and (G, \mathscr{J}, γ) be complete measure spaces, where μ is σ -finite. Assume that G is a semigroup with product indicated by juxtaposition and that there is a map $(x, m) \mapsto x(m)$ from $G \times M$ to M, measurable with respect to $G \times \mathscr{M}$ and such that x(y(m)) = xy(m) for all $x, y \in G$ and $m \in M$. Assume that $\mu(x^{-1}F) \leq \mu(F)$ for all $x \in G$ and $F \in \mathscr{M}$, where $x^{-1}F = \{m : x(m) \in F\}$. Finally, assume that for all $x \in G$ and $E \in \mathscr{J}$, xE and Ex are measurable, $\gamma(xE) = \gamma(E) = \gamma(Ex)$, and that $x^{-1}E$ and Ex^{-1} are measurable, where $x^{-1}E = \{y \in G : xy \in E\}$ and $Ex^{-1} = \{y \in G : yx \in E\}$.

If $x \in G$ and E and D are in \mathcal{J} , then

$$\gamma(E \cap x^{-1}D) = \gamma(x(E \cap x^{-1}D)) = \gamma((xE) \cap D),$$

^(*) This work was written for a seminar in ergodic theory organized by Professor A. Avez. The seminar was supported by contract number AEC AT(11-1)-34.

The author would like to express his gratitude to Professor AVEZ for encouragement and hepful comments.

so that

$$\int_{\mathbf{E}} \chi_{\mathbf{D}}(xy) d\gamma(y) = \int_{x\mathbf{E}} \chi_{\mathbf{D}}(y) d\gamma(y),$$

where χ_D is the characteristic function of D. Therefore, if f is any integrable function on G,

$$\int_{\mathbf{E}} f(xy)d\gamma(y) = \int_{x\mathbf{E}} f(y)d\gamma(y),$$

and similarly,

$$\int_{\mathbf{E}} f(yx)d\gamma(y) = \int_{\mathbf{E}x} f(y)d\gamma(y)$$

If f is any function on M and $x \in G$, define f_x by $f_x(m) = f(xm)$. If f is any nonnegative integrable function on M,

$$\int f_{\mathbf{x}} d\mu \leq \int f d\mu.$$

Let A_n be a sequence of measurable subsets of G such that $0 < \gamma(A_n) < \infty$ for all *n*. We shall use the following conditions on the A_n .

- I. n < m implies $A_n \subset A_m$;
- II. $\lim_{n} \frac{\gamma(A_n \bigtriangleup xA_n)}{\gamma(A_n)} = \lim_{n} \frac{\gamma(A_n \bigtriangleup A_n x)}{\gamma(A_n)} = 0, \text{ for all } x \in G, \text{ where } \bigtriangleup \text{ denotes symmetric difference;}$

III. for each k and n, $A_k A_n$ is measurable and $\lim_n \frac{\gamma(A_k A_n \triangle A_n)}{\gamma(A_n)} = 0$; and IV. there exists K > 1 such that $\gamma(A_n^{-1}A_n) \le K(A_n)$ for all n, where

$$\mathbf{A}_n^{-1}\mathbf{A}_n = \{ x \in \mathbf{G} \colon yx \in \mathbf{A}_n \text{ for some } y \in \mathbf{A}_n \}.$$

Let B be a real or complex Banach space with norm $|| \cdot ||$ and dual B*. If $\lambda \in B^*$ and $b \in B$, $\lambda(b)$ will be denoted by $\lambda \cdot b$. If (N, v) is a measure space and if $1 \le p < \infty$, $L_p^B(N, v)$ will denote the set of equivalence classes of functions $f \colon M \to B$ such that f is the limit in measure of simple functions and

$$||f||_{p}^{\mathbf{B}} = \left(\int ||f||^{\mathbf{P}} dv\right)^{1/p} < \infty.$$

 L_p^B is a Banach space, and if (N, v) is σ -finite, its dual is $L_q^{B^*}$, where $q = \infty$ if p = 1, and $\frac{1}{q} + \frac{1}{p} = 1$ otherwise.

284

If
$$g \in L_q^{B^*}$$
 and $f \in L_p^B$,
(1) $\int_{A_n} \int_M |g(m) \cdot f_x(m)| d\mu(m) d\gamma(x) \le \int_{A_n} \int_M ||g(m)|| || f_x(m)|| d\mu d\gamma$
 $\le ||g||_q^{B^*} || f ||_p^B \gamma(A_n).$

If we choose g so that ||g(m)|| > 0 a. e., then (1) and Fubini's theorem imply that for almost every m,

$$\int_{\mathbf{A}_n} || f_x(m) || d\gamma(x)$$

exists. It follows that for almost every m, $f_{(.)}(m) \in L_1^B(A_n, \gamma|_{A_n})$ and hence that

(2)
$$g(m) \cdot \int_{A_n} f_x(m) d\gamma(x) = \int_{A_n} g(m) \cdot f_x(m) d\gamma(x)$$
 [3, III.6.10, III.2.22].

Applying Fubini's theorem again and using (2), we obtain

$$\int_{A_n} \int_{M} g(m) \cdot f_x(m) d\mu d\gamma = \int_{M} g(m) \cdot \left(\int_{A_n} f_x(m) d\gamma \right) d\mu.$$

Hence, the map $x \mapsto f_x$ from A_n to L_p^B is integrable in the sense of Pettis [5], and the integral is equal to $\int_{A_n} f_x(m)d\gamma(x)$ almost everywhere. Define

$$\pi_n: L_p^{\mathbf{B}} \to L_p^{\mathbf{B}}$$
 by $\pi_n(f) \equiv \frac{1}{\gamma(\mathbf{A}_n)} \int_{\mathbf{A}_n} f_x d\gamma(x).$

Clearly, π_n is a continuous linear operator of norm less than or equal to one.

THE ERGODIC THEOREMS

THEOREM 1 (von Neumann's Mean Ergodic Theorem). — If the A_n satisfy II and if 1 or if <math>p = 1 and $\mu(M) < \infty$, then there is $\pi(f) \in L_p^B$ such that $\lim_n || \pi_n(f) - \pi(f) ||_p^B = 0$ and such that $\pi(f_x) = \pi(f) = \pi(f)_x$ for all $x \in G$. If p = 1, $\int \pi(f) d\mu = \int f d\mu$. π is the projection of L_p^B onto I_p^B along M_p^B , where I_p^B is the subspace of invariant functions and M_p^B is the closed subspace generated by $\{f_x - f : f \in L_p^B, x \in G\}$.

ANN. INST. POINCARÉ, B-VII-4

THEOREM 2 (Wiener-Calderon Dominated Convergence Theorem). — Suppose that the A_n satisfy I, III, and IV. If f is a nonnegative integrable function and if for $\alpha > 0$,

$$\mathbf{E}_{\alpha} = \{ m: \sup_{n=1,\ldots,\infty} \pi_n(f)(m) \ge \alpha \},\$$

then

$$\mu(\mathbf{E}_{\alpha}) \leq \frac{\mathbf{K}}{\alpha} \int f d\mu.$$

THEOREM 3 (Birkhoff's Individual Ergodic Theorem). — If the A_n satisfy I-IV and if $f \in L_p^B$, where $1 \le p < \infty$, then $\pi_n(f)$ converges almost everywhere. If 1 or if <math>p = 1 and $\mu(M) < \infty$, then $\pi_n(f)$ converges almost everywhere to the $\pi(f)$ of Theorem 1.

PROOF OF THEOREM 1

LEMMA 1. — If $f \in L_p^B$ and $1 , then <math>C(f) = \langle \overline{\{f_x : x \in G\}} \rangle$ is weakly compact.

Proof. — If p > 1, let $\frac{1}{q} + \frac{1}{p} = 1$. If p = 1, let $q = \infty$. C(f) is weakly compact if for each sequence $x_m \in G$ and each sequence $\lambda_n \in L_q^{B^*}$ such that $||\lambda_n||_q^{B^*} \le 1$ for all n, $\lim_m \lim_n \lambda_n \cdot f_{x_m} = \lim_n \lim_m \lambda_n \cdot f_{x_m}$ whenever each limit exists [4, p. 159].

Let $\varepsilon > 0$ and choose a simple function $g \in L_p^B$ such that $|| f - g ||_p^B < \varepsilon$. $|\lambda_n \cdot g_{x_m}| \le || g ||_p^B$ for all *n* and *m*, so that we may, by a diagonal process, choose a subsequence $g_{x_{m_k}}$ such that for each *n*, $\lim_k \lambda_n \cdot g_{x_{m_k}} \to a_n$. We may assume that $a_n \to a$. Similarly, we may choose a subsequence $\lambda_{n_l} \cdot g_{x_{m_k}}$ such that $\lim_l \lambda_{n_l} \cdot g_{x_{m_k}} = c_k$ for each *k*. Again, we may assume that $c_k \to c$. Since $|| \lambda_n \cdot f_{x_m} - \lambda_n \cdot g_{x_m} ||_p^B \le || \lambda_n ||_q^{B^*} || f_{x_m} - g_{x_m} ||_p^B < \varepsilon$ for all *m*, *n*, it suffices to show that a = c.

Since the λ_n are uniformly bounded, the sequence λ_{n_i} has a weak star limit point, λ_0 . $g = \sum_{i=1}^{s} h_i b_i$, where $h_i \in L_p$ and $b_i \in B$. Since $||(h_i)_x||_p \le ||h_i||_p$ for all $x \in G$, { $(h_i)_x$: $x \in G$ } is weakly relatively compact for each *i*. Hence, x_{m_k} has a subnet $x_{m_{k(\alpha)}}$ such that $(h_i)_{x_{m_{k(\alpha)}}}$ converges weakly to some h_{i0}

for each *i*. Then, $a = \lambda_0 \cdot \Sigma b_i h_{i0} = c$. Q. E. D.

286

PROOF OF THEOREM 1. — Suppose that p > 1. $\pi_n(f) \in C(f)$, $\forall n$. Since C(f) is weakly compact, $\pi_n(f)$ has a weak cluster point $\pi(f)$. Given $\varepsilon > 0$, there are $v \in L_p^B$ with $||v||_p^B < \varepsilon$ and α_i , f_{x_i} , $i = 1, \ldots, m$, with

$$0\leq \alpha_i\leq 1, \sum_{i=1}^m \alpha_i=1,$$

such that

$$\pi(f) = \sum_{n=1}^{\infty} \alpha_i f_{x_i} + v.$$

Hence,

$$\pi(f) - f = \sum_{i=1}^{m} \alpha_i (f_{x_i} - f) + v.$$

For every $x \in G$,

$$||\pi_n(f)_{\mathbf{x}} - \pi_n(f)||_p^{\mathbf{B}} \le \frac{\gamma(\mathbf{A}_n \bigtriangleup \mathbf{x} \mathbf{A}_n)}{\gamma(\mathbf{A}_n)}||f||_p^{\mathbf{B}} \to 0,$$

so that $\pi(f)$ is invariant and $\pi_n(\pi(f)) = \pi(f)$ for all n. Hence,

$$\pi(f) - \pi_n(f) = \sum_{i=1}^m \alpha_i \pi_n(f_{x_i} - f) + \pi_n(v).$$

Since $|| \pi_n(v) ||_p^{\mathbf{B}} < \varepsilon$ and since for all $x \in \mathbf{G}$,

$$\lim_{n} || \pi_{n}(f_{x}) - \pi_{n}(f) ||_{p}^{B} \leq \lim_{n} \frac{\gamma(\mathbf{A}_{n} \bigtriangleup \mathbf{A}_{n}x)}{\gamma(\mathbf{A}_{n})} || f ||_{p}^{B} = 0,$$

it follows that $\lim_{n} || \pi_n(f) - \pi(f) ||_p^{\mathbf{B}} = 0$,

The case p = 1 follows from the case p = 2, since the π_n are uniformly bounded on L_1^B and since, if $\mu(M) < \infty$, L_2^B is B_1^B -dense in L_2^B and the $|| \cdot ||_2^B$ -topology is stronger than the L_1^B -topology. Q. E. D.

PROOF OF THEOREM 2

The key step of the proof is the Wiener-Calderon covering argument made in proving Lemma 1 below.

Let $\ll \$ benote set theoretic difference.

LEMMA 1. — Let h be a real-valued γ -integrable function defined on $A_k A_n$. Suppose that

(1) $h(x) \ge 0$ for all $x \in A_k A_n \setminus A_n$;

(2) for all $x \in A_n$, either $h(x) \ge 0$ or $h(x) \ge -\frac{\alpha}{K}$ and

$$\frac{1}{\gamma(\mathbf{A}_n)}\int_{\mathbf{A}_i}h(yx)d\gamma(y)\geq \alpha-\frac{\alpha}{K}$$

for some $i = 1, \ldots, K$, where a > 0.

Then, $\int_{\mathbf{A}_k\mathbf{A}_n} h d\gamma \geq 0.$

Proof. — Let \mathcal{M}_k be a maximal collection of disjoint subsets of the form $A_k x$, such that

$$x \in A_n$$
 and $\frac{1}{\gamma(A_k)} \int_{A_k} h(yx) d\gamma(y) \ge \alpha - \frac{\alpha}{K}$

Given \mathcal{M}_{i+1} , where $k > i \ge 1$, let \mathcal{M}_i be a maximal collection of sets of the form $A_i x$ where $x \in A_n$ and such that

$$\frac{1}{\gamma(\mathbf{A}_i)}\int_{\mathbf{A}_i}h(yx)d\gamma(y)\geq \alpha-\frac{\alpha}{K}$$

and the $A_i x$ are mutually disjoint and are disjoint from every set in \mathcal{M}_j for $i + 1 \le j \le k$. Let $\mathcal{M} = \bigcup_{i=1}^k \mathcal{M}_i$.

Let $\mathcal{N} = \{ A_i^{-1}A_i x \colon A_i x \in \mathcal{M} \}$. Let $N = A_k A_n \setminus \bigcup \mathcal{N}$. Suppose $x \in N$ and k(x) < 0. Then $x \in A_n$ and for some $i = 1, \ldots, k$,

$$\frac{1}{\gamma(\mathbf{A}_i)}\int_{\mathbf{A}_i x} h d\gamma \geq \alpha - \frac{\alpha}{\mathbf{K}}, \qquad \mathbf{A}_i x \notin \mathcal{M}.$$

Therefore, there exists $A_j x' \in \mathcal{M}$ with $j \ge i$ such that $A_i x \cap A_j x' \ne \phi$. But then $x \in A_i^{-1}A_j x' \subset A_j^{-1}A_j x' \subset \mathcal{N}$. This contradicts $x \in \mathbb{N}$. Hence, $h \ge 0$ on N and

$$\begin{split} &\int_{A_{k}A_{n}}h \geq \int_{N}h + \int_{\cup\mathcal{M}}h - \frac{\alpha}{K}\gamma(\cup\mathcal{N}\setminus\cup\mathcal{M}) \geq \left(\alpha - \frac{\alpha}{K}\right)\sum_{\mathcal{M}}\gamma(A_{i}x) \\ &- \frac{\alpha}{K}\gamma(\cup\mathcal{N}\setminus\cup\mathcal{M}) = \alpha\Sigma\gamma(A_{i}x) - \frac{\alpha}{K}\gamma(\cup\mathcal{N}) \geq \frac{\alpha}{K}\Sigma\gamma(A_{i}^{-1}A_{n}x) - \frac{\alpha}{K}\gamma(\cup\mathcal{N}) = 0. \end{split}$$

$$Q. E. D.$$

288

LEMMA 2. — Suppose that $f \in L_1(M)$ and that for each $m \in M$, either $f(m) \ge 0$ or $f(m) \ge -\frac{\alpha}{K}$ and for some i = 1, ..., k, $\frac{1}{\gamma(A_i)} \int_{A_i} f(ym) d\gamma(y) \ge \alpha - \frac{\alpha}{K}.$

Then, $\int f d\mu \geq 0$.

Proof. — Let *n* be a positive integer and for each $m \in M$, let $h_m: A_k A_n \to R$ be defined by

$$h_m(y) = \begin{cases} |f(ym)|, & \text{if } y \in A_k A_n \setminus A_n; \\ f(ym), & \text{if } y \in A_n. \end{cases}$$

Let $M' = \{m \in M : | f(ym) | \text{ is } \gamma \text{-integrable on } A_k A_n \}$. By Fubini's Theorem, $\mu(M \setminus M') = 0$. For each $m \in M'$, h_m satisfies the assumptions of Lemma 1. Hence,

$$0 \leq \int_{\mathbf{A}_k \mathbf{A}_n} h_m d\gamma = \int_{\mathbf{A}_n} f(ym) d\gamma(y) + \int_{\mathbf{A}_k \mathbf{A}_n \setminus \mathbf{A}_n} |f(ym)| d\gamma(y).$$

Applying Fubini's Theorem, we have

$$0 \leq \gamma(\mathbf{A}_n) \int_{\mathbf{M}} f d\mu + \gamma(\mathbf{A}_k \mathbf{A}_n \setminus \mathbf{A}_n) \int_{\mathbf{M}} |f| d\mu,$$

or

$$0 \leq \int_{\mathsf{M}} f d\mu + \frac{\gamma(\mathsf{A}_k \mathsf{A}_n \bigtriangleup \mathsf{A}_n)}{\gamma(\mathsf{A}_n)} || f ||.$$

Let $n \to \infty$ and apply III. Q. E. D.

PROOF OF THEOREM 2. — It is sufficient to prove that

$$\mu(\mathbf{F} \cap \mathbf{E}^k_{\alpha}) \leq \frac{\mathbf{K}}{\alpha} \int f d\mu$$

where $\mu(F) < \infty$ and

$$\mathbf{E}_{\alpha}^{k} = \big\{ m \in \mathbf{M} \colon \max_{i=1,\ldots,k} \pi_{i}(f)(m) \geq \alpha \big\}.$$

Let

$$h = f - \frac{\alpha}{K} \chi_{\mathbf{F} \cap \mathbf{E}_{\alpha}^{k}}$$

Since h satisfies the assumptions of Lemma 3, $\int hd\mu \ge 0$. Q. E. D.

PROOF OF THEOREM 3

Suppose at first that if p = 1, $\mu(M) < \infty$.

Let $\pi(f)$ be the limit defined by the Mean Convergence Theorem. Since $\pi_n(f - \pi(f)) = \pi_n(f) - \pi(f)$, one may suppose that $\pi(f) = 0$. We show that $\pi_n(f) \to 0$ a. e.

Let $\varepsilon > 0$. Choose f^b bounded and such that $|| f^b - f ||_p^{\mathbf{B}} < \frac{\varepsilon}{3}$. Choose k such that $|| \pi_k(f^b) - \pi(f^b) ||_p^{\mathbf{B}} < \frac{\varepsilon}{3}$. Then, $f = \mathbf{H} + \mathbf{G}$, where

 $H = (f - f^{b}) + (\pi_{k}(f^{b}) - \pi(f^{b})) + \pi(f^{b}) \text{ and } G = f^{b} - \pi_{k}(f^{b}).$ Clearly, $||H||_{p}^{B} < \varepsilon$.

 $\pi_n(G)$ converges to zero almost everywhere since, for almost every m,

$$\begin{aligned} || \pi_{n}(\mathbf{G})m || &= \frac{1}{\gamma(\mathbf{A}_{n})} \left\| \int_{\mathbf{A}_{n}} \frac{1}{\gamma(\mathbf{A}_{k})} \int_{\mathbf{A}_{k}} f_{xy}^{b}(m)d\gamma(x) - \int_{\mathbf{A}_{n}} f_{y}^{b}(m)d\gamma(y) \right\| \\ &\leq \frac{1}{\gamma(\mathbf{A}_{k})} \int_{\mathbf{A}_{k}} \frac{1}{\gamma(\mathbf{A}_{n})} \int_{\mathbf{A}_{n}} (f_{xy}^{b}(m) - f_{y}^{b}(m))d\gamma(y) \left\| d\gamma(x) \right\| \\ &\leq \frac{1}{\gamma(\mathbf{A}_{k})} \int_{\mathbf{A}_{k}} \frac{1}{\gamma(\mathbf{A}_{n})} \int_{\mathbf{A}_{n}\Delta x\mathbf{A}_{n}} || f_{y}^{b}(m) || d\gamma(y)d\gamma(x) \\ &\leq \frac{\gamma(\mathbf{A}_{n} \Delta \mathbf{A}_{k}\mathbf{A}_{n})}{\gamma(\mathbf{A}_{n})} \sup || f^{b} || \to 0 \quad \text{as} \quad n \to \infty. \end{aligned}$$

Therefore, if $\delta > 0$,

$$\mu \{ m: \lim_{n \to \infty} || \pi_n(f)(m) || > 3\delta \} \le \mu \{ m: \lim_{n \to \infty} \pi_n(|| H(m) ||) > 2\delta \}.$$

If p = 1, by Theorem 2 we obtain

$$\mu \left\{ m: \overline{\lim_{n}} \pi_{n}(|| \operatorname{H}(m) ||) > 2\delta \right\} \leq \frac{K}{2\delta} || \operatorname{H} ||_{1}^{\mathsf{B}} < \frac{K\varepsilon}{2\delta}.$$

Since ε is arbitrarily small, we obtain $\lim_{n} \pi_{n}(f) = 0$ a.e.

If p > 1, let

$$\mathbf{H}^{\delta}(m) = \begin{cases} || \mathbf{H}(m) || & \text{if } || \mathbf{H}(m) || \geq \delta, \\ 0, & \text{otherwise.} \end{cases}$$

 $||\mathbf{H}|| \leq \mathbf{H}^{\delta} + \delta, \text{ so that } \mu\{m: \overline{\lim} \pi_n(||\mathbf{H}(m)||) \geq 2\delta\} \leq \mu\{m: \overline{\lim} \pi_n(\mathbf{H}^{\delta}(m)) \geq \delta\}.$

Furthermore,

$$\mathbf{H}^{\delta} \in \mathbf{L}_{1}$$
 and $||\mathbf{H}^{\delta}||_{1} \leq \frac{(||\mathbf{H}||_{1}^{\mathbf{B}})^{p}}{\delta^{p-1}} < \frac{\varepsilon^{p}}{\delta^{p-1}}$

so that by Theorem 2,

$$\mu \{ m: \overline{\lim_{n}} \pi_{n}(\mathbf{H}^{\delta}(m)) \geq \delta \} \leq \mathbf{K} \left(\frac{\varepsilon}{\delta}\right)^{p} \text{ and } \lim_{n} \pi_{n}(f) = 0$$

almost everywhere.

We now remove the assumption that $\mu(M) < \infty$ as in the case p = 1and prove that $\pi_n(f)$ converges almost everywhere. We call a set $E \in \mathcal{M}$ invariant if $xE \subset E$, $\forall x \in G$. It is possible to find a sequence of invariant sets, I_k , of finite measure and such that if I is invariant and measurable and if $\mu(I \cap \bigcup_k I_k) = 0$, then either $\mu(I) = 0$ or $\mu(I) \equiv \infty$. By what we have already proved, $\pi_n(f)$ converges on each I_k and hence on $\overline{I} = \bigcup I_k$.

Let $\varepsilon > 0$ and let f^b be a bounded function such that $|| f - f^b ||_1^B < \varepsilon$.

$$\{ m \in \mathbf{M} \setminus \overline{\mathbf{I}} \colon \overline{\lim_{n}} \mid \mid \pi_{n}(f)(m) \mid \mid > 2\delta \} \subset \{ m \in \mathbf{M} \colon \overline{\lim_{n}} \pi_{n}(\mid \mid f - f^{b})(m) \mid \mid) > \delta \}$$
$$\cup \{ m \in \mathbf{M} \setminus \overline{\mathbf{I}} \colon \overline{\lim_{n}} \pi_{n}(\mid \mid f^{b}(m) \mid \mid) > \delta \}.$$

The measure of the first set on the right is bounded by $\frac{K\varepsilon}{\delta}$. It is easy to show that the second set is invariant. Since it is bounded by $\frac{K}{\delta} || f^b ||_1^B$ it must have measure zero. Q. E. D.

BIBLIOGRAPHY

- [1] A. P. CALDERON, A General Ergodic Theorem. Annals of Mathematics, t. 58, 1953, p. 182-191.
- [2] J. CHATARD, « Application des propriétés de moyenne d'un groupe localement compact à la théorie ergodique », Université de Paris (mineographed).
- [3] N. DUNFORD and J. SCHWARTZ, Linear Operator, Part I. Interscience, 1966.
- [4] J. L. KELLY, I. NAMIOKA and coauthors, *Linear Topological Spaces*. Van Nostrand, 1963.
- [5] B. J. PETTIS, On Integration on Vector Spaces. Trans. Amer. Math. Soc., t. 44, 1938, p. 277-304.
- [6] A. A. TEMPELMAN, Ergodic Theorems for General Dynamic Systems. Soviet Math. Dokl., t. 8, 1967, p. 1213-1216.
- [7] Norbert WIENER, The Ergodic Theorem. Duke Math. Journal, t. 5, 1934, p. 1-18.

Manuscrit reçu le 9 juin 1971.