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Extension of the Birkhoff and von Neumann

ergodic theorems to semigroup actions (*)

Truman BEWLEY

Ann. Inst. Henri Poincaré,

Vol. VII, n° 4, 1971, p. 283-291.

Section B :

Calcul des Probabilités et Statistique.

In 1967, A. A. Tempelman announced generalizations of the Birkhoff
and von Neumann ergodic theorems [6]. This paper supplies proofs of
results similar to Tempelman’s. The main arguments are drawn from
Calderon’s paper [l ]. The author has also had the benefit of reading
Mrs. J. Chatard’s work on the same problem [2].

PRELIMINARIES

Let (M, M, ) and (G, J, y) be complete measure spaces, where  is
~-finite. Assume that G is a semigroup with product indicated by juxta-
position and that there is a map (x, m) - x(m) from G x M to M, mea-
surable with respect to G x ~ and such that x(y(m)) = xy(m) for all
x, y E G and mE M. Assume that for all xeG and

where Finally, assume that for all
x E G and xE and Ex are measurable, y(xE) = y(E) = y(Ex), and
that and Ex -1 are measurable, where x -1 E = ~ y e G : xy e E ~ and

If x E G and E and D are in ~, then

(*) This work was written for a seminar in ergodic theory organized by Professor A. AvEZ.
The seminar was supported by contract number AEC AT(11-1)-34.
The author would like to express his gratitude to Professor AvEZ for encouragement

and hepful comments.
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so that

where xD is the characteristic function of D. Therefore, if f is any inte-
grable function on G,

and similarly,

If f is any function on M and x E G, define fx by fx(m) = f (xm). If

f is any nonnegative integrable function on M,

Let A~ be a sequence of measurable subsets of G such that oo

for all n. We shall use the following conditions on the A~.
1. n  m implies A~, c A~;

. xAJ A.,x)II. lim = lim = 0, for all x e G, where A

denotes symmetric difference;

III. for each k and n, is measurable and lim = 0 ; and
n 

IV. there exists K > 1 such that K(AJ for all n, where

A~ = { x e G : yx e A~ for some y e 

Let B be a real or complex Banach space with norm [ [ . [ and dual B*.
If /~eB* and ~(b) will be denoted by ~’h. If (N, v) is a measure
space and if 1  p  ~, LBp(N, v) will denote the set of equivalence classes
of functions f : M -~ B such that f is the limit in measure of simple
functions and

L: is a Banach space, and if (N, v) is a-finite, its dual is Lq *, where 
if p = 1, and - + - = 1 otherwise.

q P



285BIRKHOFF AND VON NEUMANN ERGODIC THEOREMS TO SEMIGROUP ACTIONS

If we choose g so > 0 a. e., then (1) and Fubini’s theorem
imply that for almost every m,

exists. It follows that for almost every m, f .~(m) E y IAn) and hence
that

Applying Fubini’s theorem again and using (2), we obtain

Hence, the map from A" to L: is integrable.in the sense of Pettis [5],
and the integral is equal to fx(m)dy(x) almost everywhere. Define

Clearly, nn is a continuous linear operator of norm less than or equal to one.

THE ERGODIC THEOREMS

THEOREM 1 (von Neumann’s Mean Ergodic Theorem). - If the An
satisfy II and if 1  p  o0 or if p = 1 and Jl(M)  oo, then there is n( f) E L:
such that lim n( f) I ( p - 0 and such that n( f) = 

for all x E G. If p = 1, = 03C0 is the projection of Lp
onto Ip along Mp, where Ip is the subspace of invariant functions and M:
is the closed subspace generated by { fx - f : 

ANN. INST. POINCARE, B-VII-4 20
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THEOREM 2 (Wiener-Calderon Dominated Convergence Theorem). -

Suppose that the A" satisfy I, III, and IV. If f is a nonnegative integrable
function and if for a > 0,

then

THEOREM 3 (BirkhofFs Individual Ergodic Theorem). If the A" satisfy
I-IV and if f E L:, where 1  p  oo, then nn(f) converges almost every-
where. If 1  p  o0 or if p = 1 and  oo, then nn(f) converges
almost everywhere to the n( f) of Theorem 1.

PROOF OF THEOREM 1

LEMMA 1. - If f ~ LBp and 1  p  ~, then C( f ) =  {fx: 
is weakly compact.

Proof. If p > 1 let1- + 1 - 1. If p = 1 let q = ~. C (f) is weakly
q P

compact if for each sequence xm E G and each sequence ~,n E Lq * such
that [ ~,n ~  1 for all n, lim lim ~.n ’ fxm = lim lim ~,n ’ fxm whenever each

m n 
m 

n m 
m

limit exists [4, p. 159].
Let E > 0 and choose a simple function g E Lp such that ( f - g  E.

I ~n I c I I g I Ip for all n and m, so that we may, by a diagonal process,
choose a subsequence gx mk such that for each n, lim 03BBn.gxm, ~ an. We

may assume that an ~ a. Similarly, we may choose a subsequence
gxmk such that lim 03BBnl. gxmk = ck for each k. Again, we may assume

that Ck ~ C. Since ( ~Bp  I ~B*q~fxm - gx,.,., ~Bp  E for

all m, n, it suffices to show that a = c.

Since the ~,n are uniformly bounded, the sequence has a weak star
s

limit point, 03BB0. g = hibi, where Lp and B. Since ) ) 

for all x E G, { x E G} is weakly relatively compact for each i. Hence,
xmk has a subnet such that converges weakly to some hio
for each i. Then, a = ~,o ~ = c. Q. E. D.
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PROOF OF THEOREM 1. 2014 Suppose that p > 1. Since

C( f ) is weakly compact, has a weak cluster point ~( f ). Given
G > 0, there are with ~03BD~Bp  G and a;, i = 1, ..., m, with

such that

Hence,

For every x E G,

so that n( f) is invariant and = n( f) for all n. Hence,

 E and since for all xeG,

it follows that ~Bp = 0,
The case p = 1 follows from the case p = 2, since the nn are uniformly

bounded on LB1 and since, if Jl(M)  oo, LB2 is BB1-dense in LB2 and the
~. ~B2-topology is stronger than the LB-topology. Q. E. D.

PROOF OF THEOREM 2

The key step of the proof is the Wiener-Calderon covering argument
made in proving Lemma 1 below.

Let « B » denote set theoretic difference.
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LEMMA 1. - Let h be a real-valued y-integrable function defined on
Suppose that

for some f = 1, ..., K, where a > 0.

Proof - Let ~k be a maximal collection of disjoint subsets of the
form Akx, such that

Given ~l~ + 1, where k > i > 1, let be a maximal collection of sets of
the form A;x where x, E An and such that

and the A;x are mutually disjoint and are disjoint from every set in ~~
k

for i + 1  j  k. Let M = U 
Let A;x E Let N = AkAnBu N. Suppose x e N

and k(x)  0. Then x E An and for some i = 1, ..., k,

Therefore, there exists with j~i such that Atx n Ajx’~ 03C6.
But then x E Ai-l Ajx’ c This contradicts xeN. Hence,
h > 0 on N and
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LEMMA 2. - Suppose that and that for each either

/(~) ~ 0 or /(~) ~ 2014 2014 and for some f = 1, ..., k,
K

Then, 0.

Proof - Let n be a positive integer and for each m E M, let hm : AkAn  R
be defined by

Let M’= { m E M : is y-integrable on AkAn }. By Fubini’s Theo-
rem, = 0. For each m E M’, hm satisfies the assumptions of
Lemma 1. Hence,

Applying Fubini’s Theorem, we have

or

Let n - oo and apply III. Q. E. D.

PROOF OF THEOREM 2. It is sufficient to prove that

where Jl(F)  oo and

Let

Since h satisfies the assumptions of Lemma 3, 0. Q. E. D.
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PROOF OF THEOREM 3

Suppose at first that if p = 1,  oo.

Let ~( f ) be the limit defined by the Mean Convergence Theorem. Since
~n( f - ~( f )) = ~c"( f ) - ~c( f ), one may suppose that ~( f ) = 0. We show
that ~"( f ) -~ 0 a. e.

Let E > 0. Choose f b bounded and such that [ f b - f ~ ~B  E . 3 Choose

k such that !! ~cx( f b) - ~( fb) ~ ~B  E . 3 Then, f = H + G, where

Clearly, [ ) H ~p  E.

converges to zero almost everywhere since, for almost every m,

Therefore, if 03B4 > 0,

If p = 1, by Theorem 2 we obtain

Since E is arbitrarily small, we obtain lim = 0 a. e.
n
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Furthermore,

so that by Theorem 2,

almost everywhere.
We now remove the assumption that  oo as in the case p = 1

and prove that converges almost everywhere. We call a set E E 

invariant if xE c E, Vx E G. It is possible to find a sequence of invariant
sets, Ik, of finite measure and such that if I is invariant and measurable

and if n U Ik) = 0, then either = 0 or =00. By what we
k

have already proved, converges on each Ik and hence on I = U Ik.
k

Let G > 0 and let f b be a bounded function such that !!  G.

The measure of the first set on the right is bounded by ~~ . It is easy
6

to show that the second set is invariant. Since it is bounded by 
K 

[ [ [t
it must have measure zero. Q. E. D. 

~
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