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ABSTRACT. - We construct a calculus of observables suitable for a

description of measurements associated with a particle satisfying the Dirac
wave equation. The calculus, built on a four-component phase space, is fully
covariant with respect to all the usual symmetries of the Dirac equation,
including the discrete ones. Some simple classical observables correspond
to operators arising from representation-theoretic considerations or from
some Clifford analysis on the mass-shell; a discussion of position operators
is included. @ Elsevier, Paris

Key words: Symbolic calculus; Dirac equation; quantization; Poincare groL p; position
operator

RESUME. - On construit un calcul symbolique des observables associe
a une particule satisfaisant a 1’ equation de Dirac libre : ce calcul est

l’ analogue, pour ce qui conceme cette equation, de ce que sont le calcul de
Weyl ou celui de Klein-Gordon pour une particule satisfaisant a 1’equation
de Schrodinger libre ou a celle de Klein-Gordon. Les observables classiques
(les « symboles » pour ce calcul) sont a valeurs vectorielles, et le calcul
est covariant a regard de toutes les symétries classiques de 1’ eq uation de
Dirac (celles qui proviennent du groupe de Poincare restreint tc’ut autant
que les symetries discretes). On calcule les symboles, dans ce calcul, des
operateurs infinitésimaux de la representation du groupe de Poi ncare; on
revient egalement au tres classique probleme de Foperateur de position,
pour lequel on est conduit par ce calcul symbolique a un point de vue
nouveau. © Elsevier, Paris

Mots cles : Calcul symbolique ; equation de Dirac ; quantification ; groupe de Poincare ;
operateur de position
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1. INTRODUCTION

Whatever their true nature, quantum phenomena concern us only insofar
as they interact with our classical world. That they can produce appreciable
effects, and conversely that classical fields act on quantum systems is of
course crucial to the whole of physics. A more historical, if foundational,
role was played in quantum mechanics by the so-called measurement

process. It is true, too, that overemphasis on this scheme sometimes
led to depressing philosophical developments. What it did help bring to
light, however, was a wealth of new mathematical methods or domains
(the theory of operators, unitary representation theory, the Weyl calculus)
which, besides their fundamental mathematical interest, found their place
as essential tools in mathematical physics, though probably not at the exact
location they had been meant to fill.

In the measurement process, the central role is ascribed to a (generally
unknown) quantization rule, that associates an operator on some Hilbert
space with every suitable classical observable. The basic demands one

may raise about such a rule regard the compatibility between a geometric
structure on some phase space and a quantum analogue which can best be
put, up to some point, in representation-theoretic terms. It is therefore no
accident that the availability of such a construction should seem to depend
on the existence of sufficient symmetries in the (classical or quantum)
problem involved. A most interesting case occurs in connection with species
of elementary particles specified by some free wave equation. For instance,
the Schrodinger equation for a free non-relativistic particle yields the well-
known Weyl calculus of operators, as shown in [ 13], section 3, it being
granted that this calculus also arises from a variety of other ways. In the
same monograph, we developed, under the name of Klein-Gordon calculus,
a quantization procedure in connection with the square-root Klein-Gordon
equation. We here build a calculus associated with the Dirac equation: the
constraint that it should be covariant with respect to all symmetries of the
Dirac equation, including the discrete symmetries, is fully satisfied. Our

present Dirac calculus should set itself aside from the numerous papers
devoted to such classical issues as that of a position operator for the electron
in that it is concerned with a description of all operators acting on the space
of solutions of the given wave equation.

It is our belief that, generally speaking, calculi of observables should be
given some status in the bag of mathematical tools considered in elementary
particle theory: indeed, their construction should make considerable use of
the symmetries characterizing the species of particle under consideration, as
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is the case here with the symmetries of spacetime, while internal symmetries
should play a role too for stranger particles. Also, even though it may be a
little too early to tell, we believe that such calculi might contribute to some
extent to a proper understanding of the fields that interact with the particle.
We are fully aware, on the other hand, that in its present state this work
bears no obvious link with the domain where the most interesting physics
take place, namely that where collisions do occur. But, to (mis)quote the
humorous preface of D. Kastler’s book [7], mathematicians have a right,
after all, to take delight in trying to take part in the permanent refurbishing
of the first floor of the grandiose edifice of Physics. If nothing else, this may
lead to some non-trivial new mathematics (cf. e.g. [14], [15] for applications
of the Klein-Gordon calculus to the theory of Mathieu functions, or to a

generalization of the hypergeometric equation).

At this point, it may be useful to tell the reader that, even though
the Klein-Gordon calculus is sometimes alluded to, mostly in the present
introduction, no knowledge of it is a prerequisite towards reading this paper.
In graduating from the (square-root) Klein-Gordon calculus to the present
Dirac calculus, there are several major difficulties or novelties, some of
which it may be of some interest to report.

First, there is the obvious fact that Dirac wave functions are no longer
scalar, but vector-valued; as an acknowledgement of this fact, one has to
use as classical observables (mathematicians would call these functions

symbols), so to speak, matrix-valued functions on the phase space. It is

essential, however, to identify these with functions having some physical
interpretation: what we get here is functions whose range of values is the
same as that of the electromagnetic vector potential. Up to the choice of
some electromagnetic unit, this is of course just the same as functions
valued in Minkowski’s space, but the electromagnetic vector potential also
interacts (through the minimal coupling) with Dirac particles in an already
known way. This coincidence is necessary if we wish to consider the case

of particles in some external field, a question we hope to return to in some
other work, and which we certainly do not view as a generalization of
the free case, rather as a situation calling (in the present frame in which
observables are considered) for some fundamental new ideas: indeed, when
general external fields are present, symmetries are lost. Let us insist, on the
other hand, on the fact that one should not confuse two issues: the discussion
of some wave equation (which, indeed, is trivial in the free case), and that
of measurements which do not perturb the evolutionary process associated
with the given wave equation. Even though it deals with observables acting
on free Dirac particles only, the whole construction described in the present
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paper is just as relevant as the one which yields the Weyl symbolic calculus
from the consideration of a free non-relativistic particle. That we get general
symbolic calculi from free wave equations is due in both cases to the fact
that the wave equation only serves as a means of extending a function to
the whole spacetime from its restriction to some appropriate hypersurface,
thus giving functions on the hypersurface more elbow-room for the action
of symmetries: spacetime, not space, is where the action lies !

Next, there is the important question, which has been met by all the

people who tried to define, in the Dirac case, such operators as the position
operator [10] (whatever this may mean): namely, should one consider only
those operators which preserve the sign of the energy, thus avoiding the
phenomenon known as Zitterbewegung? Our answer is yes, not only from
such considerations, but from other ones too, which shall be explained
in due time.

Finally, the greatest difficulty arose from the following circumstance.
There is a concept of restricted observers, the set of which constitute a
7-dimensional manifold; it is elementary, but quite deep in some sense, that
it should coincide with the phase-space (spacetime x energy-momentum:
time is included) corresponding to a free relativistic particle of mass 1, with
positive frequency. Moreover, some natural equivalence relation (which
cuts down the dimension from 7 to 6) yields the set of straight worldlines
as a quotient set: classical observables, in the Klein-Gordon calculus, were
just functions living on this quotient set. One major difficulty, in the Dirac
calculus, comes from the fact that there is no genuine concept of what a
classical analogue of a Dirac particle should be, thus preventing the second
interpretation of the phase space given above to enter the picture; however,
there is a notion of observer under the extended Poincare group, which is

just what we need. Making a choice between four components in view of
the four types of observers, or two in view of the two possible signs of the
energy was finally settled in favour of the observers.
Some common spirit guides the present work and that of Cordes [4],

in which an algebra of observables invariant under the time evolution
associated with a Dirac equation is constructed: the concern there lies with
the study of hyperbolic systems, not the quantization problem. The Dirac
equation itself is treated in many physics textbooks: we relied on several
ones [2], [6], [11] ] but, above all, on Thaller’s book [12], where one can
find a very lucid discussion of some of the difficulties associated with the

position operator and related observables.
In order to keep the present paper within a reasonable size, we stopped

short of developing the Dirac calculus as a full pseudodifferential analysis,
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along the lines of what has been done for the Klein-Gordon analysis in [ 13] .
For this would require extensive work (part of it could be saved by relying
on the Klein-Gordon analysis itself), even though the results might not

appear as the most novel feature of the present calculus. Let us also admit

that we do have in mind some possibly more urgent, or more exciting,
developments. Besides constructing the calculus, we have been satisfied,
in the present paper, with listing a few important operators together with
their symbols. Considering first the infinitesimal generators of the Poincare

representation 7r, we show that the symbols of the operators as

X describes the set of spacetime translations (resp. the Lie algebra of
the Lorentz group) are canonically associated, in the most natural way,

with elements of the Minkowski space M (resp. with elements of 
Next, we discuss the issue of position operators. Finally, we note in the
last section that from the consideration of position operators or, rather,
of position symbols, there arises in a very natural way a certain operator
which, when Dirac wave functions are viewed as sections of some linear

bundle on the mass-shell, turns out to be just the Dirac operator associated
with this spinor bundle. Here, the word "Dirac operator" should be taken
in the sense ascribed to it by Riemannian geometers, or "Clifford analysts"
(ef [3], [5], [8]).
One final remark: in our presentation of the Dirac equation, which is just

the usual chiral representation under some slight disguise, we found it much
better, for several reasons, to rely on abstract data (for instance, the space
of spinors is just a 2-dimensional complex vector space, not C2) than on
column or row vectors and matrices. The major reason is that the concept
of observer our whole construction is made of is just some additional
structure put on Minkowski’s space M : now, this is better understood if

M is not encumbered with a fixed isomorphism with f~4. On the other

hand, we have made it our policy to denote the relevant coordinate-free
concepts by the same letters (--y, cr...) they are usually denoted by in their
matrix-realizations. Last, we have carefully avoided all kinds of pedantry
(like defining the Minkowski space as an affine rather than as a vector
space) our mathematical taste might have led us to.

2. SPINORS AND SPACETIME

Sections 2 to 4 of the present paper are a reminder of well-known
facts and notions: however, it has been found necessary to define the

various concepts in a coordinate-free version, equivalent to the usual one
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as soon as assorted bases have been introduced. We take spinors, rather
than space-time, as the prime notion.

AXIOMS 2.1. - We assume that V and Ware two given complex
vector spaces of dimension two; besides, there is a given non-degenerate
sesquilinear form on V x W (antilinear with respect to the first variable),
denoted as ( v, w ) , v E V, w E W. Finally, one has given the phase-class

fi.e. the class up to multiplication by a complex constant of modulus one)
of some non-zero complex two-form ri on V x V.

On the other hand, there is a given 4-dimensional real vector space 
together with an R-linear isomorphism a from M onto the space Herm(W)
of all hermitian forms on W.

Remark. - The spaces V and W stand for the spaces of spinors with
undotted (resp.dotted) indices; M of course stands for Minkowski’s space.
So far as physical dimensions are concerned, we assume that c = 1,
thus assigning the dimension L to elements of M: then (so as to have
a dimensionless a), we assume that the elements of W have dimension
L- 2 , consequently that those of V have dimension L . A two-form on
V thus has dimension L-1, so that -1 is nothing but a length-unit: we
shall assume that it is precisely the Compton wavelength -~-, where m is
the mass of the electron.

To allow a comparison with a more traditional setting, let us introduce,
in a coherent way, bases for the linear spaces V, Wand M : we shall refer
to the various bases involved as to assorted bases. To start with, the pair
~~1, ~2~ shall be any basis of V subject to the condition (E1,E2)1 == 1;
then, {~,~2} shall be the dual basis of W, i.e. the one characterized by

= Since the given sesquilinear form ( , ) on V x W permits to
identify W to the space of antilinear forms on V, hermitian forms h[ , ]
on W can, and will, be canonically identified with hermitian maps from
W to V under the rule

Given the assorted bases, defined above, of V and W, we define the assorted
basis {eo, ei, ~2,63} of M, and the corresponding set of linear coordinates

X2 , x3~, in such a way that, for any x the matrix representing
a(x) E Herm(W) C ,C~W, V) should be
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in other words ~~~~ _ ~ x~‘~,~ where To is the identity matrix and

Let us now take Planck’s constant as a unit of action: then the space

K4 ’, linear dual of M, should be interpreted as the space of energy-
momentum covectors. On the other hand, there is an intrinsic duality
between Herm(W) c G(W,V) and Herm(V) c £(V, W), namely that
defined by the pairing

We may then define ff : K4 ’ - Herm(V) as the contragredient

of cr: in matrix-form, ff (p) is the same as 0" (x), substituting the components
of p for those of x.

The canonical Minkowski form Q on M is defined, in assorted

coordinates, as

which is just the determinant of the matrix (2.2) representing a-~~~. This
is an intrinsic notion, whose polarized form Q(x, y) permits to define the
linear isomorphism 03B8 from 

I 
onto M through the equation

The following formulas, whose verification is immediate, are useful:

and (a particular case since  p, Bp &#x3E;= C~(B~~)

Fix a two-form yy in the given phase-class Then there is a unique
antilinear map x : V - W such that the identity
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holds for every pair (v1, v2~ of points of V. If the basis ~2~ of V is
chosen so that = 1, one then has

Of course, if only , not 7?, is defined, which is our genuine assumption,
then only the phase-class of x will be defined: this is just what is needed,
since x will be essential principally in the construction of the antilinear
maps (for instance the charge conjugation) that occur in the theory of the
Dirac equation, and these should be defined only up to some constant
phase. The formula

will be useful later, and may be proved as a consequence of (2.12) and (2.2)
together with the fact that, in assorted coordinates, one has, for every
p E K4 ’,

The definition of the standard covering homomorphism

where SL(V) stands for the group of linear automorphisms of V which
preserve any non-degenerate complex two-form on V (it does not depend
on which two-form we choose), and ~~ stands for the restricted Lorentz
group of M, i.e. the connected component of the identity in the Lorentz
group £ consisting of all linear transformations of M which preserve the
Minkowski form Q, is well-known: namely, define s* E SL(W) through

in other words

Let us list the formulas

where A(s)’ denotes the transpose of A(s), and

or

which will all be useful later.
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3. OBSERVERS

The following concept, adapted to our needs, is not exactly the usual
one. In connection with Minkowski’ s space M, we define an unrestricted

observer W as a set

where the data are the following: x is a point of M ; Tw is a one-dimensional
linear subspace of M such that Q(y, y) &#x3E; 0 for all y E Tw; the three-
dimensional subspace Sw of M is the orthogonal of TW with respect to
the Minkowski form Q. Finally, 1 and 6 together amount to an orientation
of TW and an orientation of Sw according to the following rules: as M is

provided with a given causality, it has a well-defined cone of the future,
and the variable 1 shall be set to the value I or ! according to whether a
vector in T~, positive with respect to the given orientation of Tw, does point
in the direction of the future or not. Last, the variable E stands for a global
orientation of M : to simplify notations, we set its value to 1 or -1 according
to whether it is compatible or not with the orientation of M canonically
associated with the isomorphism 03C3 : K4 - Herm(W) . We denote as 0 the
set of all observers: it splits into four connected components as

We may refer to 5~ and Twas to the space and time as viewed from the

point of view of the observer w. On the space of all observers, there is

a natural equivalence relation, which identifies two observers (x, ...) and
(y, ...) if they share the same splitting K4 = S of spacetime, the
same concepts of orientation and causality, finally if x - y lies in T: from
the point of view of the observer (x, ...), this means that, just sitting and
getting older, he would eventually reach the point y in spacetime, unless it
is after one has exchanged x and y that this situation should prevail.
We shall denote as A4 the mass-hyperboloid, i.e. the subset of 

characterized as

where 0 (A4 l ) and 0 (A4 °° ) are the two components of {x Q (x) ~1}
which lie within the cone of the future, or that of the past respectively. As
is well known, A4l is a Riemannian space with a ds2 written, in assorted
coordinates, as

Vol. 69, n° 2-1998.
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For each p e A4 l , let 5p denote the linear map: M’ - M’ defined as

As is well-known too, A4 l is actually a Riemannian symmetric space, and
the restriction of the map Sp to is nothing but the geodesic symmetry
of around p.

The same holds with in place of A4l : observe that, for p E 
Sp also acts within M 1, but we shall never consider this, as Sp is just the
same as We shall use at some point the easily proven identity

Given an oriented one-dimensional space entering the definition of
some observer (3.1), let denote the vector in Tw, normalized by the
condition = 1 and positive with respect to the given orientation;
we also set

which is a vector that lies in A4. From the pair (x, Pw) one can recover
all the data that enter the definition (3.1 ) of the observer 03C9, except for the
global orientation E (or, what amounts just to the same, the orientation of

Thus any of the two spaces of observers

can be identified, through the (x, Pw ), with the space M x 
under this identification, the two shells of A4 correspond to the two

possible causalities associated with cv (we get the f or ! sign according
to whether this causality is compatible or not with the one canonically
inherited from the isomorphism 03C3 introduced in the Axioms 2.1 ). Observe
that the component M x can be thought of as the classical phase
space (including time: the standard phrase is extended phase space but
we do not want to risk any confusion with the extended Poincare group)
associated with a free relativistic particle of mass 1: p would stand for the

energy-momentum of the particle, and x for its location in spacetime.
Any set of assorted coordinates defines an observer cvo that may serve as

an observer of reference, namely that for which x = 0 and T~ and Sw are
generated by the bases {eo} respectively, and these two
bases are compatible with the orientation and causality on M as viewed by

Now, if w is any other observer with the same concept of causality as
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and Uw = 03BBe0 + w03C9 for some A &#x3E; 0 and ww E span(e1, e2, e3), one
may think of the vector Vw = À -lww, which is purely spatial from the point
of view of the observer of reference and  1,
as the velocity of the observer with respect to the observer of reference;

II VW 116) -! and, in assorted coordinates,

may be written as (1 - ( ~ v~, ~ ~ o ) 2 ( 1, - vl , - v2 , - v3 ) is the

set of (assorted) components of v~; then pW is nothing but the energy-
momentum of a classical relativistic particle of mass 1 that would move

with the velocity Vw with respect to the observer of reference. Thus, under
the identification just described of Q) with M x an equivalence
class of observers transforms to a worldline times the point p in whose

associated velocity v = -Po 1 P is such that the vector (1, v) E M is parallel
to the given worldline: it may thus be identified with the worldline itself.
The coincidence just explained, to wit that the space of observers SZ+ (we

shall also refer to this space as to the space of restricted observers) can be
identified with the classical phase space corresponding to a relativistic

particle of mass 1, in a way which transforms an equivalence class

of observers into a straight worldline, was basic in our construction

of the Klein-Gordon calculus. Actually, in that case, symbols (classical
observables) were just scalar functions living on these sets of equivalence
classes. This cannot be carried over in the Dirac case to a full extent.

Indeed, there is no genuine classical analogue of a Dirac particle. Even if
we agreed, to account for the two possible signs of the frequency, to say
that in that case A4 l should be replaced by .M, this would only double the
number of components of the extended phase space for the given particle,
whereas the space of observers gets four components. As will be seen, if
we demand that the Dirac calculus be covariant under all symmetries of
the Dirac wave equation, including the discrete symmetries, we have to
give observers the precedence.

- 4. THE DIRAC EQUATION

This section contains no novel features: only we must fix our notations.
Complex-linear endomorphisms of the space of bispinors V ~ W may be
represented as block-matrices relative to this decomposition. In particular,
given p EM’, set
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