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ABSTRACT. - The extended phase space P for Yang-Mills and Dirac fields
in the Minkowski space is a Sobolev space of Cauchy data. We prove in
P the existence and uniqueness theorem for the evolution equations. We
show that the Lie algebra g s ( P ) of infinitesimal gauge symmetries of P
is a Hilbert-Lie algebra carrying a Beppo Levi topology. The connected
group GS(P) of gauge symmetries of P with the Lie algebra gs(P) is a
Hilbert-Lie group acting properly in P. We construct a closed connected
subgroup GS(P )o of GS(P) , acting in P with a momentum map such
that the constraint equations are given by = 0. The action of GS(P)o
in P is free and proper.

Key words: Gauge group, Hilbert Lie group, Yang-Mills theory, Cauchy problem, gauge
fixing.

L’ espace de phases prolonge P pour le champ de Yang-Mills
couple avec le champ de Dirac sur l’espace-temps de Minkowski est un
espace Sobolev des données de Cauchy. Dans P, nous démontrons un
théorème d’ existence et d’unicité pour les equations d’évolution.
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110 G. SCHWARZ AND J. SNIATYCKI

On démontre que l’algèbre gs(P) des symétries infinitésimales de jauge
de P est une algèbre de Hilbert-Lie avec une topologie de Beppo Levi. Le
groupe connexe GS(P) de symétries de jauge de P, avec l’algèbre de Lie
gs(P), est un groupe de Hilbert-Lie et son operation sur P est propre.
Nous construisons un sous-groupe fermé GS(P)o de GS(P), opérant sur

P avec le moment tel que les equations de contrainte soient données
par :10 = 0. L’opération de GS(P)o sur P est libre et propre.

1. INTRODUCTION

The aim of this paper is to study the group of gauge symmetries for
minimally interacting Yang-Mills and Dirac fields. Since we want to cast
the gauge theory in a Hamiltonian form, we have to specify a gauge
condition. This gauge condition is needed to determine the evolution of
the scalar potential of the Yang-Mills fields. The extended phase space
P of the theory consists of all Cauchy data which admit a (finite time)
existence and uniqueness theorem for the evolution equations. The gauge
symmetries considered here are the gauge transformations which preserve
the gauge condition and the extended phase space. They give rise to the
conservation laws and the constraints. Moreover, the space of solutions
of the field equations with Cauchy data in the extended phase space P
is uniquely determined by the constraints. Other gauge transformations,
which are not gauge symmetries considered here, intertwine equivalent
Hamiltonian descriptions of the theory.
We study the Yang-Mills-Dirac system in the Minkowski space M~ =

IR x The the structure group G is assumed to be a compact classical
group, that is it is a compact subgroup of the Gl(l~,1R ). This implies that
G is a closed submanifold of the space of k x k matrices. Let

be a basis of the structure algebra q, and = the Lie
bracket. The usual (3 + 1 ) splitting of space-time yields a splitting of the
Yang-Mills field A~ _ (Ao, A) into the scalar potential Ao and the vector
potential A = It leads to a representation of the field strength 
in terms of the "electric" field E and the "magnetic" field

Annales de l’Institut Henri Poincaré - Physique théorique



111GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

We use the Euclidean metric in 1R 3 to identify vector fields and forms, and
x to denote the cross product. The field equations split into the evolution
equations

and the constraint equation

Here A, E, and B are treated as time dependent q-valued vector fields on
IR 3, and W is a time dependent spinor field with values in the space 
of the fundamental representation of G. Moreover [A; E] means the Lie
bracket contracted over the vector indices, and

Gauge transformations act on the fields (Ao, A, E, Bl1) via

where p(t) is a curve of maps from 1R 3 to the structure group G.
Since the scalar potential Ao does not appear as an independent degree of

freedom in ( 1.2) through ( 1.4), it can be fixed by a choice of an appropriate
gauge transformation. The most common gauge fixing for studies of Yang-
Mills fields as a dynamical system are the temporal gauge Ao = 0, cf [1-3],
the Lorentz gauge = 0, [4], or the Coulomb gauge div A = 0, [5].
Here we use a different gauge condition

It enables us to deal with the evolution equations also off the constraint set
and allows for static solutions with A = 0 and E = -grad Ao, where Ao
is proportional to a fixed direction in the structure algebra , and behaves
as when |xI - oo . We show that this gauge fixing can be achieved
by an appropriate gauge transformation.

Vol. 66, n° 1-1997.



112 G. SCHWARZ AND J. SNIATYCKI

In order to specify the extended phase space of the theory we first

prove the finite time existence and uniqueness theorem for the evolution
equations (1.2) through (1.4) in

Here Hs (II~ 3, a~) and I~S (If~ 3, IR ~) are Sobolev spaces of the ~-valued
forms and IR k-valued spinors, respectively, which are square integrable
over 1R 3 together with their partial derivatives up to order s, [6]. Moreover
we show that the constraint (1.5) is preserved under the time evolution
in P. For the sake of completeness we show also the following regularity
result. If the initial data for the Yang-Mills-Dirac system are in

then the solution curve is in PS. In order to take account into the largest
class of classical solutions, we choose P as the extended phase space of the
system. The mathematically important problem of the infinite time existence
of solutions, ef. [3-5], is beyond the scope of this paper.
Having established an admissible extended phase space P, we can turn

to the study of the group of gauge transformations, acting via ( 1.7), which
preserve P. We denote by gs(P) the Lie algebra of all time independent
infinitesimal gauge transformations which preserve P. We prove that it is
a Hilbert-Lie algebra which carries a Beppo Levi topology with the norm

where Di denotes the unit ball in IR 3 centered at 0. This algebra admits
a splitting

where the subalgebra gs(P)o is the completion of the space of smooth
compactly supported maps 03BE : IR 3 ~  in the topology given by ( 1.11 ),
cf [7].
We construct a connected Hilbert-Lie group GS(P ) of gauge symmetries

for the Yang-Mills and Dirac fields in the phase space P with Lie algebra
gs(P) . It carries the uniform topology induced by topology of gs ( P ) . We
prove that the action of GS(P) in P is continuous and proper.

Annales de l’Institut Henri Poincaré - Physique théorique



113GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

We prove that for each curve (A(t), E(t), ~(t)) E P satisfying the

constraint equation (1.5) and each Ao(t) E 133(If~3, there exists a gauge
transformation such that the transformed fields satisfy the gauge condition
(1.8) on a finite time interval.
The extended phase space P is weakly symplectic. The action of GS(P)

on P is Hamiltonian with an equivariant momentum map V. The vanishing
of the restriction of V to the subalgebra gs(P)o gives rise to the constraints
of the theory. More precisely, if C is the constraint set of the theory, i.e.
the set of all (A, E, ’11) E P satisfying Eq. (1.5), then subalgebra gs(P)o
can be given a geometric interpretation as

gs(P)o = {~ E ~.7(A~ E, ’11)lç) = 0 ’v’ (A, E, ’11) E C}. (1.13)
We construct a connected Banach-Lie subgroup GS(P)o of GS(P) with Lie
algebra gs(P)o and prove that it acts freely and properly in P. Conversely,
the constraint set is shown to be the zero level of the momentum map ~7o
for the action of GS(P)o in P,

It follows from Eq. (1.14) that the natural choice for the reduced phase
space is the space P = C/GS(P)o of GS(P)o orbits in C. If C were
a submanifold of P, the reduced phase space P would be a symplectic
(Hausdorff) manifold with an exact symplectic form. The structure of the
constraint set and of the reduced phase space will be studied elsewhere.

This paper is organized as follows. In Section 2 we analyse our gauge
condition, and in Section 3 we prove the finite time existence and uniqueness
theorem for the evolution equations with Cauchy data in P. Section 4 is
devoted to the study of the gauge symmetry group of P. In Section 5
we prove that the gauge condition (1.8) can be achieved by a gauge
transformation. Constraints and their reduction are discussed in Section 6.

In Appendix A we consider some decomposition results and estimates for
Beppo Levi spaces.
The authors would like to thank L. Bos and U. Wernick for useful

comments on decompositions of Beppo Levi spaces, and to the referee for
valuable suggestions.

2. THE GAUGE CONDITION

Let be the Sobolev space of -valued vector fields 
Each each X E allows for a Helmholtz decomposition

Vol. 66,n° ° 1-1997.



114 G. SCHWARZ AND J. SNIATYCKI

The components XL E and XT E are uniquely
determined by div X and curl X, and called the longitudinal and transverse
components of X, respectively. For details see the Appendix. Splitting the
gauge fields via (2.1 ) we obtain

The gauge condition (1.8) is chosen in such a way, that the longitudinal
component EL and the gradient of the scalar potential grad Ao cancel each
other. In order to prove that this gauge can be achieved we need the Beppo
Levi spaces ~~ ), which are defined as the spaces of q-valued
distributions on IR 3 with square integrable partial derivatives of order m.
For the intersection of s Beppo Levi spaces we write

These are Banach spaces with respect to the norm

c~: [8]. The integral over the unit ball Dl is essential for (2.4) to define
a norm. However, each I~’ norm on D 1 yields an equivalent norm. In
particular we may choose as in (1.11) the integral of I ç 12 to define the

THEOREM 2.1. - For each E E ~1 (ll~ 3, q) there exists a unique scalar
potential Ao E 132 (Il-~ 3, q) obeying the gauge condition

The potential Ao E ,~32 ~~ 3, ~~ satisfies the estimate

If (A,E, ~~ E C satisfy the constraint equation ( 1.5), then Ao E

~3 ~-~ 3 ~ and

Annales de l’Institut Henri Poincaré - Physique théorique



115GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

Proof . - Let and denote the p-weighted
Sobolev spaces, cf. (A.6). It is shown in [9], that the Laplace operator
A : H2 2 (ll~ 3, o~) -~ L2 (If~ 3, o~) is onto, Fredholm and has kernel

ker(A) = q. Therefore, for each ~ E 3, q), there exists a unique
~ E such that

By Fredholmness of A there exists a constant C independent of x such that

Given E E we consider -div E E The

corresponding solution of (2.8) we denote by Then the vector field

YE := grad 03A6E + EL is harmonic, that is curl YE = 0 and div YE = 0.
By the estimates (A.4) and (A.5),

see also [10]. Therefore YE is constant. Since, by construction, YE has a
finite norm in (ll~ 3, q), this implies that 0, cf (A.7). Therefore
we may set Ao = and have constructed the unique solution of the
problem (2.5).
From the a-priori estimate (2.9) and (A.6) we conclude that

Since this proves (2.6). Now assume (A, E, W) ~
C, that is

with

and J° is determined from ~ by ( 1.6). By standard Sobolev estimates

On the other hand we infer from (A.4) that

Vol. 66, n° 1-1997.



116 G. SCHWARZ AND J. SNIATYCKI

This proves the estimate (2.7). Q.E.D.

This particular gauge fixing allows for static solutions of the Yang-Mills
equations (2.2) with A = 0 and E = -grad Ao, where Ao is proportional
to a fixed direction in the structure algebra q, and behaves as when

Ixl - oo. On the constraint set C this gauge can be achieved by a gauge
transformation

where p(t) is a curve of maps from IR 3 to the structure group G. This
will be considered in detail in Section 5.

3. Existence and uniqueness results

Using the gauge fixing of Theorem 2.1 and linearizing the Yang-Mills
and Dirac equations (2.2) we obtain

We shall study these linear equations in the Hilbert spaces

PROPOSITION 3.1. - The operator T, defined by (3.2), with domain

is the generator of a continuous group exp( tT) of transformations in HT.

Proof . - By standard arguments, the operator

is dissipative, and satisfies

Annales de l’Institut Henri Poincaré - Physique théorique



117GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

for A &#x3E; 0. In fact, T is the infinitesimal generator corresponding to the
wave equation, [ 11 ] . We have to show that exp(tT) preserves the Hilbert
space HT of transverse fields. Given (X~, E HT we consider (A, E),
satisfying the equation

Since A maintains the Helmholtz decomposition Ã = ÃT + ÃL, this

implies that

Therefore, since T = we have

The Lumer-Phillips theorem implies that T generates a one parameter group
of continuous transformations in HT. Q.E.D.

PROPOSITION 3.2.

(i) The operator D, with domain

is the generator of a continuous group of (unitary) transformations exp(tD)
in HD.

(ii) restricts to a group of continuous transformations in

~2~~3,.~~).

Proof. - (i) It is known, [12], that the operator D with domain D D
is skew-adjoint in HD. Thus, D generates a group exp(tD) of unitary
transformations in HD.

(ii) The operator D : .~1-1 (IR 3, ~ ~ ) --~ is continuous, and
its square

is continuous and elliptic. With the elliptic a-priori estimate this implies that

Moreover, from the identity = + t ~~yi ~ ~y~~, we obtain

Vol. 66, n° ° 1-1997.



118 G. SCHWARZ AND J. SNIATYCKI

where

Integration by parts shows that vanishes for all W in IR k) n
Thus, by a density argument, = 0 for all W E

Therefore

and

Since exp(tD) is a unitary operator, which commutes on the domain DD
with its generator D, ef. [ 13], we can estimate for all W E 3, If~ ~ ~ :

Hence exp(tD) acts continuously in the Hilbert space Q.E.D.

COROLLARY 3.3. - The linear operator

with domain D = HL x DT x DD, corresponding to the dynamical
system (3.1), (3.2) and (3.3), generates a one parameter group exp(tS)
of continuous transformations in H = HL x HT x RD. The space

is preserved by the action of exp(tS) in H. The restriction of to P is

a continuous one parameter group U (t) of continuous transformations in P,

and ~(~)(~,E,~) is the unique solution of the linear evolution equations
(3.1 ), (3.2) and (3.3) with initial condition (A,E,~).
Having solved the linearized problem, we can rewrite the coupled

nonlinear equations ( 1.2), ( 1.3) and ( 1.4) in an abstract form as

Annales de l’Institut Henri Poincaré - Physique théorique
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Here .~’ describes the nonlinearity of the theory and is given by

In order to solve the system (3.24) we apply the method of nonlinear
semigroups. It requires the knowledge of some analytic properties of the
nonlinearity.

PROPOSITION 3.4. - The nonlinear part of the Yang-Mills-Dirac system,
given by Eq. (3.25), is a map .~’ : P -~ P. It is continuous and smooth
with respect to the norm

Proof. - The continuity and smoothness was proved for the component
;:1 in [3], and for the minimal coupling component ~2 in [14]. The proof
given there under the bag boundary conditions literally generalizes to II-~ ~ .
For the component .~’3 we get with the estimates of Lemma A.3 and (2.6)

This proves the continuity of ~3 : P -~ P. To show differentiability we
write (a, e, ~) for an arbitrary infinitesimal variation and evaluate

where Aao = -dive. Since (a, e, V;) are of the same Sobolev class as

(A, E, Bl1) we can estimate similarly as in (3.27)

’i’his proves that ~-3 : P ~ P is differentiable. Higher order differentiability
is shown accordingly. Q.E.D.

Vol. 66,n° 1-1997.



120 G. SCHWARZ AND J. SNIATYCKI

The result of Proposition 3.4 enables us to infer the existence and

uniqueness of solutions of minimally coupled Yang-Mills and Dirac

equations from the corresponding results for nonlinear semigroups, cf. [ 16] :

THEOREM 3.5. - For every (A, E, E P there exists a unique maximal
T E (0 , cxJ] and a unique curve (A~t), E(t), in C1~[o,T), P)
satisfying the Yang-Mills and Dirac equations (1.2), (1.3) and (1.4 j, and
the initial condition (A(0) , E(0), 03A8(0)) = (A, E, 03A8). If T  ~, then

Observe that the time evolution of the Yang-Mills-Dirac system discussed
here gives rise to local diffeomorphisms of the phase space P. To see this,
we consider the map

By differentiation of this map in the direction of a vector (a, e, u/~) in

P we obtain

which is continuous, since .~’ is smooth. A corresponding argument for
the higher derivatives implies that the time evolution (3 .31 ) is smooth. Since
the dynamics is reversible, this shows that it is a local diffeomorphism. It
should be emphasized that this diffeomorphism is not a symplectomorphism.
To obtain a Hamiltonian evolution one has to modify the gauge condition
of Theorem 2.1, cf [17].

If the initial conditions for the Yang-Mills-Dirac system are more regular,
say in

with s &#x3E; 1, then the time evolution maintains this regularity. To see
this, note that

Annales de l’lnstitut Henri Poincaré - Physique théorique



121GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

is the domain of the s-th power of the operator T. Moreover, by repeating
the arguments of Proposition 3.2(ii), it follows that the domain of D~ is

It is straightforward to show that 0 : ps is continuous and smooth.
Therefore we can conclude with [18]:

COROLLARY 3.6. - For every initial condition (A, E , ~~ E PS the solution
of Eqs. (1.2), (1.3) and (1.4) is a curve (A(t), L~’(t~, ~(~)~ in C1 (~0, T) , 

4. GAUGE SYMMETRIES

The group of maps p from IR3 to the structure group G acts on

configurations (A, E, Bl1) E P via the transformation law

The group GS(P) of gauge symmetries of P is the connected group of
gauge transformations which preserve the space P. The infinitesimal action
of the elements ~ of the Lie algebra gs(P) of GS(P) is given by

where

is the covariant differential of ç with respect to the connection defined by
A. Since the Yang-Mills potential A in P is of Sobolev class H2 ~IR 3, v~),
it follows that ~ E gs(P) only if grad ç E 3, ~~. This suggests the
following:

PROPOSITION 4.1. - The set of infinitesimal gauge symmetries of P is the
Hilbert-Lie algebra

The action of gs(P) in P is continuous.

Proof. - The estimates of Lemma A.3 imply that

and

Vol. 66, n° 1-1997.



122 G. SCHWARZ AND J. SNIATYCKI

for ç E L~i3(IR 3, a,~). Therefore the infinitesimal action (4.2) of each

ç E L33(If~3,o~) preserves P. This implies that j33(IR3,a~) C gs(P). By
the argument above (grad ~) has to be in H2(If~’~. a~) in order to have

ç E gs(P). With the definition of 133(IR3,o~), cf (2.4), this proves (4.4).
Moreover,

which proves that gs(P) is a Banach-Lie algebra. Since 133(IEZ3,a~) is a

Hilbert space, cf Theorem A.2, gs(P) is a Hilbert-Lie algebra. Finally, the
continuity of the action of gs(P) in P follows from the estimates (4.5). Q.E.D.

Let C°° (lE~ 3, ~) denote the space of all smooth maps ~ : 71~ ‘~ ~ q which
are constant outside a compact set, and let C~ (If~ 3, af) be the subspace
of compactly supported maps. From the decomposition results of [7] we
infer that

where gs(P)o is the closure of in the topology given by the
norm (1.11). From Theorem A.2 it follows that gs(P)o C 
Therefore infinitesimal gauge transformations in gs(P) are C1 maps from
IR 3 the structure Lie algebra 07, and C°°(If~ 3, q) is dense in gs(P), cf also
Lemma A.1.

The topology of the gauge group on non-compact manifolds with a
Sobolev-Lie algebra has been studied in [1] and [19]. Here we adapt the

approach of [1] to our case of a B3 Hilbert-Lie algebra. Let C°° (IR 3, G)
denote the space of all smooth maps cp : IR 3 -&#x3E; G which are constant
outside a compact set. It forms a group under pointwise multiplication
with the identity denoted by e. By assumption, G C so that

3, G) c Cx (IR 3, gl(k, can be topologized by the norm 11’BB83.
One parameter subgroups of G) are of the form where

ç is in the dense subalgebra C°°(IR 3, a~) of gs(P). The topology of gs(P)
induces a uniform structure in C§° (R 3, G), with a neighbourhood basis
at e consisting of the sets

In order to show that the completion of C°° (ll-~ 3, G) in this uniform

structure is a topological group, relatively to the canonically extended

multiplication, we need to show:

PROPOSITION 4.2. - The mapping r-+ is uniformly
continuous relative to Nl. That is, for every E &#x3E; 0, there exists 8 &#x3E; 0

Annales de l’lnstitut Henri Poincaré - Physique théorique



123GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

such that, for every E Nb

Proof. - Let p E NF C then

and

Using the estimates of Lemma A.3 this implies that

and

For each ( E gs(P) we then obtain by using Lemma A.3 once more:

This proves (4.9) with 6 = Q.E.D.

By a result of [20], Proposition 4.2 implies that the completion of
3, G) in this uniform structure is a topological group, relatively to

the canonically extended multiplication. It is a Hilbert-Lie group, whose

Lie algebra is canonically isomorphic to the Hilbert-Lie algebra gs(P). In
view of this we set:

DEFINITION 4.3. - The Hilbert-Lie group GS(P) of gauge symmetries is
the completion of the group G) in the uniform structure defined
by the topology of its Lie algebra gs(P).
The exponential map exp : gs(P)  GS(P) maps the unit ball in gs(P)

onto the neighbourhood of identity in GS(P) given by the completion N1
of N1. Since G is connected, it follows that C~°(IR3, G) is connected, and
GS(P) is connected. Therefore, GS(P) is the union of the sets

Vol. 66, n ° 1-1997.



124 G. SCHWARZ AND J. SNIATYCKI

The inequality (4.12) together with (4.15) implies that, for each cp E GS(P),

Moreover, since G is compact, it is bounded in gl(k, IR ), and the Sobolev
embedding theorem implies that each cp E GS(P) is a bounded continuous
map. Hence, is finite for every cp in GS(P). We can give an
alternative characterization of the topology of GS(P).

PROPOSITION 4.4. - A sequence cpk E GS(P) converges to cp in GS(P)
if and only if the sequence of maps cpk : Il3 3 ~ G converges to p in the

topology defined by the 

Proof. - Suppose that pk converges to cp in the uniform topology of

GS(P). For sufficiently large k,

where the sequence converges to zero in the topology of gs(P). The
estimate (A.26) implies that

Since k  0 in the norm topology of gs(P) the right hand side converges
to zero. Therefore (/? in the topology defined 

Conversely, suppose that ~~. - 0. Then

with Ek ~ 0 as k goes to infinity. Eq. (4.17) yields

for k sufficiently large. Therefore, by (A.26),

This implies that ~~ - 0 in the topology of gs(P), and hence w in

the uniform topology of GS(P). Q.E.D.

Annales de l’Institut Henri Poincaré - Physique théorique



125GAUGE SYMMETRIES FOR YANG-MILLS AND DIRAC FIELDS

COROLLARY 4.5. - The Hilbert-Lie group GS(P) forms a submanifold of
the space ,~33 (IR 3, gl(k, ~ ) ).
Proof. - By construction C°° (IR 3, G) c C°° (IR 3, gl (1~, IR )). Therefore

Proposition 4.4 implies that GS(P) can be identified with the subset of
3, gl(k, IR )) given by the 83 -maps from IR3 with values in G.

Since G is a closed submanifold of it follows that GS(P) is a
submanifold of ,t33 ( IR 3 , g l ( 1~ , .Il~ ) ) , cf [21 ] . Q.E.D.

THEOREM 4.6. - The action of GS(P) in P, given by (4.2 ), is continuous
and proper.

Proof. - Let pn be a sequence in GS(P) converging to p, and

pn = a sequence in P converging to p = (~E,~). From
(4.2) we obtain by using the estimate (A.25) and the fact that the inversion
p - cp-1 in GS(P) is continuous:

Writing symbolically cpp for the action of cp E gs(P) on pEP, and (pp)A
for its A component, this implies that

since ~03C6n~B3 is bounded. Correspondingly we estimate with (A.24) and
(A.25),

Therefore ~03C6npn - cpp/lp - 0 as n - oo, which proves the continuity
of the action.

Let p~ = (An, En, Wn) converge in P to p = (A, E, ~), and ~n be
a sequence in GS(P) such that converges to p E P . To prove
properness of the action it is to show that pn converges to p E GS(P)
and p = pp. The argument used in [15] for compact domains implies
Vol. 66, n° 1-1997.



126 G. SCHWARZ AND J. SNIATYCKI

that, for every compact domain M the restrictions converge
in H2(M) to a map H2(M). Since, M C M implies that 03C6|M
restricted to M coincides with ’PM, it follows that there exists a continuous

such that is the restriction of p to M. The proof
that grad pn converges to grad’P in the H2 topology is the same as in the
compact case, [15]. Hence, Proposition 4.4 implies that pn converges to cp
in the uniform topology. Q.E.D.

Let be the subgroup of consisting of maps
p : H~ 2014&#x3E; G which are the identity in G outside a compact set. Its

closure in the uniform topology discussed above defines the closed subgroup
GS(P)o of GS(P). The subalgebra gs(P)o of gs(P), defined by (4.7), is
an ideal and hence GS(P ) o is a normal subgroup of GS(P).

PROPOSITION 4.7. - GS(P)o is a Hilbert-Lie group with Lie algebra.
gs(P)o. The action of GS(P)o in P is free and proper.

Proof. - To show that the infinitesimal action is also free suppose that
ço E gs(P)o has a fixed point (~,E,~). By (4.2)

that is, ço is covariantly constant with respect to the connection given
by A. Since the scalar product in q is ad-invariant, this implies that I
is constant. Since gs(P)o C C~ (1133, a~), this implies that ço = 0. This
proves that the action of gs(P)o is free. Since GS(P)o is connected, every
cp E GS(P)o is of the form

for some Ç1, ... Çn in gs(P)o. Therefore the action of GS(P)o is free.
The result of Proposition 4.4 implies that the Lie algebra of GS(P)o is

the closure of in the 133 topology. By the decomposition (4.7)
this coincides with gs(P )o. Since GS(P)o is a closed subgroup of GS(P)
which acts properly in P, it follows that the action of GS(P)o in P is
proper. Q.E.D.

5. TIME DEPENDENT GAUGE TRANSFORMATIONS

Let 03C6 be a Minkowski space gauge transformation, given by a map
from the space M4 = R x IR 3 to the structure group G. It acts on the

Yang-Mills and Dirac fields x P via
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In order to preserve P the map ~ has to be chosen such that

at each instant of time t. If also ~t03C6 E t33(IR 3; then Lemma A.3 implies
that the gauge transformation (5.1) preserves the Beppo Levi class of the
scalar potential. Gauge transformations of this type are essential in view of
the attainability of the gauge fixing given by Theorem 2.1 :

THEOREM 5.1. - Let (A(t), E(t), ~(t)) be a Cl curve in the constraint set
C, and Ao (t) a Cl curve in t33(If~‘~. Then there exists a maximal T &#x3E; 0
and a C1 curve of gauge transformations with

such that the gauge transformed scalar potential Ao (t) satisfying the gauge
condition

Proof. - The aim is to find a curve of gauge transformations

~ : (-r,T) 2014~ GS(P) which satisfies the initial value problem

where

For fixed (Ao(t); E(t)) in t33(IR’~; q) x aJ) we consider the map

as a vector field on the Hilbert submanifold GS(P) c 
First we show that ç is (locally) Lipschitz in In view

of (5.6) we have to estimate

66, n° 1-1997.
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With Lemma A.3 and the estimate (2.13) we get

where the constant C depends on The second term of (5.8)
can be estimated accordingly by observing that Lemma A.3 implies that

with C depending on and 1It?-11IB3. Taking into account (5.6) and
the estimate (2.7) it then follows from Lemma A.3 that

where C’ depends on 83 norms of p, g3, ~p-1 and cp-1. Applying Lemma
A.3 once more to estimate the term ~A003C6- A0~B3 we end up with

where

This proves that 9(.,~4o?~) is (locally) Lipschitz. Therefore the Picard

proof on the existence and uniqueness of a flow applies to the case under
consideration, cf [21].

Since GS(P) C R )) is a closed submainfold, and the map
~(., Ao, E) is a vector field tangential to GS(P), this implies that the curve
cp(t) stays in GS(P). Thus we have shown that there exists T &#x3E; 0 such

that the gauge fixing (5.4) can be achieved by a gauge transformation

provided that the fields (Ao (t) , A(t ) , E(t) , W (t)) are of class ,~33(IH 3, o~) x
H2 (1R 3 , ~) x H1 ~~ 3, o~) x H2 (~R ~, and satisfy the constraint equation
( 1.5). Q.E.D.
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A time dependent gauge transformation § is a gauge symmetry of our
system, if for each t E R it preserves the phase space P of Cauchy data
and it preserves the gauge condition of Theorem 2.1, which implies that

As in Theorem 5.1 we can prove that, given cPo E GS(P), Eq. (5.14)
defines a Cl curve cP(t) in GS(P), such that ~o. This implies that
the Minkowski space gauge symmetries of our system are C1 curves in

GS(P), which is uniquely determined by their initial data.

6. CONSTRAINTS AND REDUCTION

The extended phase space P is endowed with a 1-form ~ given by

for (a, e, ~ ) E TP, where E.a = - tr(Ea ) . The exterior differential w == dB
of 03B8 is a weakly symplectic form on P, that is w is non-degenerate and
closed, but the induced mapping b : TP 2014~ T*P defined by = w(u, v)
is not onto. Here T* P, the cotangent bundle of P, is the topological dual
of the tangent bundle TP.
The action of gs(P) in P is Hamiltonian with the momentum map V

given by

Each ~ in gs(P)o is the limit of a sequence of smooth and compactly
supported elements of gs(P)o. The continuity of the momentum map J
implies that

which follows by integration by parts. Therefore, for every ~ in gs(P)o,
the vanishes for all ( A, ~, ~ ) satisfying the
constraint equation (1.5). On the other hand, if ~ : is a constant
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map, then there exists (~4,E,~) E C such that (J(A, E, w)lç) does not
vanish. Hence, we have obtained a geometric characterization of gs (P )o as

Let Jo be the restriction of the momentum mapping J to the subalgebra
gs(P)o. That is, J is the map from P to such that

for all ç E gs(P)o. It follows from Eq. (6.4) that the constraint set C is
contained in the zero level of Jo. Conversely, the vanishing of for all
smooth compactly supported maps ç from 1R 3 to the Lie algebra o? implies
the constraint equations. This follows from the Fundamental Theorem of
the Calculus of Variations and Eq. (6.3). Since the momentum mapping Jo
is continuous and every ç E gs(P)o is the limit of a sequence of smooth
and compactly supported elements ~~, it follows that the zero level of Jo
is contained in C. Hence, we have proved that

We define the reduced phase space to be the space P of the GS(P)o
orbits in C,

and denote by p the canonical projection from C to P. Since C is a closed
subset of P and the action of GS(P)o in P is proper and preserves C,
it follows that the quotient topology in P is Hausdorff. The differentiable
structure of P will be analysed in another paper, [22].

It follows from Eq. (4.7) that gs(P)o is an ideal in gs(P) and that the
quotient algebra

is isomorphic to q. For ç E gs(P) and (A, E, ~) E C, the momentum
(J(A, E, w)lç) depends only on the class [ç] in colour(P) and on the
GS(P)o orbit through ( A, E, ~ ) . It is interpreted as the colour charge
in the physical state in the direction of ~~~ E colour (P). It

should be noted that in the decomposition (4.7) of gs (P ) the second term
o~ is not an ideal. Hence, the notion of the "constant infinitesimal gauge
transformations" makes invariant sense only as an element of the quotient
algebra colour(P), [23].
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Appendix : Decompositions and estimates for Beppo Levi spaces

Let S denote the Schwartz space of smooth fast falling test functions on
IR 3. The Fourier transformation X f--&#x3E; 0(X) is a homeomorphism from
S to S which extends to a unitary map from to L2(IR3). Given
a vector field one has

and

This implies a splitting of 0(X ) = with the components
given as

The Helmholtz decomposition X = X L + X T is defined by the inverse
Fourier transformation

on S. It extends to a decomposition for vector fields in L2(IE~3). Moreover
(A.2) implies that
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for k &#x3E; 1. Similarly

In order to solve the Laplace equation on one needs to introduce

the weighted Sobolev space V) and H2 z (IR’~; V ), where V is a
finite dimensional vector space. With the weight function p = I + Ixl2
these spaces are defined as the respective completions of in

the norms

By this definition, the derivatives are continuous as maps 9j :
H2 2 (If~ 3, Y) - l~l 1 ~~R 3, V~ . The space H11 ~ll-~ 3, Y) does not contain
the constants, since for all c E V

Let be the first Beppo Levi space of V-valued

distributions which have a square integrable gradient, [8]. The following
result can be found in a paper of Aikawa [7] :

LEMMA A.I. - The space can be topologized by the
norm 

It has a direct sum decomposition

where V is considered as the space of constant functions from IR 3 to V and
D1 is the closure of the space 00 ~~ 3, V) of smooth compactly supported
functions in the topology of V)) given by the norm (A.8).
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The intersection of k Beppo Levi spaces we denote by

This space is topologized by the norm

It is not so difficult to see that this norm is equivalent to

Let (,) and «, »Hk denote the scalar products in V and 
Then 13k (lf~ 3, V ) is a Hilbert space with a norm corresponding to the
scalar product

THEOREM A.2.

(i) The space Bk(IR 3, V) splits into

where Dk is the closure of the space C~0(IR 3, V) of smooth compactly
supported functions in the topology given by the norm (A.12). Each

g E ~~ (~R 3, V) uniquely decomposes into

(ii) The scalar product (A.13) on V) is equivalent to the scalar
product

(iii) For k ~ 2, each f E is continuous and 

differentiable. Let denotes the partial .derivative .corresponding to a
multi-index 0152, then
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Proof.
(i) The decomposition (A.14) is obvious by intersecting (A.9) with

3, V).
(ii) On the space the B1-norm (A.8) is equivalent to the

weighted Sobolev norm induced by the scalar product

This follows from the weighted Poincare inequality for the weight function
p, cf [24], which states that there is a constant Cp &#x3E; 0 such that

Conversely

which implies that Di = 3, V).
The finite dimensional subspace V c is split. Therefore the

scalar product on given by (A.18) induces a norm which is
equivalent to the norm given by (A.8). The result for V) then
is obvious.

(iii) To prove the embedding result of the Sobolev type consider the
Fourier transform 0(g) of g E V). Then

Using the Cauchy-Schwarz inequality we estimate

Since + IpI2)1-kdp  oo for k &#x3E; ~ and 

this implies that

This shows that each f ~ V) is continuous and

uniformly bounded. For the higher order derivatives the argument applies
correspondingly. Q.E.D.
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LEMMA A.3. - Let f and g be maps from IR 3 to normed vector spaces,
and f ~ g any pointwise multiplication with values in a normed vector space.
If f E 3, V) and k &#x3E; 2, the following estimates hold:

Proof. - By Theorem A.2, f E implies that is finite,
and hence

With an appropriately defined pointwise product ’ on the right hand side
we have

If f E then grad ( f ) E H1(IR3,V) and

Together with (A.17) and (A.27) this implies that

which proves (A.24). Differentiating (A.28), we get

Therefore, for g E ~2 (lF~ 3, 

With (A.24) and (A. 17) this implies that

which proves (A.25). Finally the estimates above yield

Since  C][ f[[82 this proves

For k &#x3E; 2 the estimate (A.26) is shown accordingly. Q.E.D.
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