FRANCK MERLE

Nonexistence of minimal blow-up solutions of equations $i u_t = -\Delta u - k(x)|u|^{4/N} u$ in \mathbb{R}^N

<http://www.numdam.org/item?id=AIHPA_1996__64_1_33_0>
Nonexistence of minimal blow-up solutions
of equations $i u_t = -\Delta u - k(x) |u|^{4/N} u$ in \mathbb{R}^N

by

Franck MERLE

Université de Cergy-Pontoise, Centre de Mathématiques,
8, avenue du Parc, Le Campus, 95033 Cergy-Pontoise, France.

ABSTRACT. - In this paper, we prove the existence of blow-up solutions
of Equation of the form $i u_t = -\Delta u - k(x) |u|^{4/N} u$ in \mathbb{R}^N under some
conditions on $k(x)$. We then consider the problem to find minimal blow-up
solutions in L^2.

RÉSUMÉ. – On démontre l’existence de solutions explosives pour des
équations de la forme $i u_t = -\Delta u - k(x) |u|^{4/N} u$ dans \mathbb{R}^N, sous certaines
conditions sur $k(x)$. On considère ensuite le problème de trouver des
solutions singulières minimales dans L^2.

Mots clés : Schrödinger, critique, explosion, minimal, stabilité.

1. INTRODUCTION

In the present paper, we consider the nonhomogeneous nonlinear
Schrödinger equation with critical exponent

\begin{equation}
(1.1) \quad i \frac{\partial u}{\partial t} = -\Delta u - k(x) |u|^{4/N} u
\end{equation}

and

\begin{equation}
(1.2) \quad u(0, \cdot) = \phi(\cdot),
\end{equation}
where Δ is the Laplace operator on \mathbb{R}^N, $u : [0, T) \times \mathbb{R}^N \to \mathbb{C}$ and $\phi \in H^1(\mathbb{R}^N)$.

We assume in this paper that k is a given C^1 function such that there are $k_1 > 0$, $k_2 > 0$ and $c > 0$ such that

$$(H.1) \quad \forall x \in \mathbb{R}^N, \quad k_1 \leq k(x) \leq k_2,$$

$$(H.2) \quad \forall x \in \mathbb{R}^N, \quad |\nabla k(x)| + |x \cdot \nabla k(x)| \leq c,$$

$$(H.3) \quad \text{there is } x_0 \in \mathbb{R}^N, \quad k(x_0) = k_2.$$

We say that $u(\cdot)$ is a solution of Eq. (1.1)-(1.2) on $[0, T)$ if $\forall t \in [0, T)$,

$$u(t) = S(t) \phi + i \int_0^t S(t-s) \{k(x) |u(s)|^{2/N} u(s)\} \, ds,$$

where $S(\cdot)$ is the group with infinitesimal generator $i \Delta$ and, for each t, $u(t)$ denotes the function $x \mapsto u(t, x)$.

It is easy to prove as in the homogeneous case:

$$(1.4) \quad k(x) \equiv k_0,$$

that Eq. (1.1)-(1.2) has a unique solution $u(t)$ in $H^1(\mathbb{R}^N)$ and there exists $T > 0$ such that, $\forall t \in [0, T)$, $u(t) \in H^1(\mathbb{R}^N)$ and either

$$T = +\infty,$$

or

$$T < +\infty \quad \text{and} \quad \lim_{t \to T^-} \|u(t)\|_{H^1} = +\infty,$$

where $\| \cdot \|_{H^1}$ is the usual norm on H^1, and H^1 is $H^1(\mathbb{R}^N)$ (see Ginibre and Velo [2], Kato [6]).

Furthermore, we have $\forall t \in [0, T)$,

$$E(u(t)) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u(t, x)|^2 \, dx$$

$$- \frac{1}{4} \int_{\mathbb{R}^N} k(x) |u(t, x)|^{\frac{4}{N} + 2} \, dx$$

$$= E(\phi).$$
In this paper we are interested in the study of singular solutions of Eq. (1.1)-(1.2). In the case where

\begin{equation}
 k(x) \neq k_0,
\end{equation}

there are no results available.

Let us first recall some results in the case where $k(x) \equiv k_0$. For such a nonlinearity, there is another identity which is the following.

Let $\phi \in \Sigma = H^1 \cap \{ |x| \phi \in L^2 \}$ then $\forall t < T$, $u(t) \in \Sigma$, and

\begin{equation}
 \frac{d}{dt} \int |x|^2 |u(t,x)|^2 \, dx = 4 \text{Im} \int x \cdot \overline{\nabla} u u \, dx,
\end{equation}

and

\begin{equation}
 \frac{d^2}{dt^2} \int |x|^2 |u(t,x)|^2 \, dx = 16 E(\phi).
\end{equation}

From this identity, it follows easily that if

\begin{equation}
 E(\phi) < 0
\end{equation}

then

\[T < +\infty \]

(see Zakharov, Sobolev, Synach [15] and Glassey [5]). Moreover blow-up solutions have three important properties.

(i) They are bounded from below in L^2 (Weinstein [18]). That is, let Q_{k_0} be the unique radially symmetric solution of

\begin{equation}
 \Delta u + k_0 |u|^{\frac{4}{N}} u = u
\end{equation}

(see for existence Strauss, Berestycki, Lions, Peletier [1], [16], and for uniqueness Kwong [7]). If $u(t)$ is a blow-up solution then

\[\| \phi \|_{L^2} \geq \| Q_{k_0} \|_{L^2}. \]

(ii) The set of minimal blow-up solutions is known (Merle [10], [11]).

Let $u(t)$ be a blow-up solution with minimal mass in L^2, \(\| \phi \|_{L^2} = \| Q_{k_0} \|_{L^2} \). There are then constants $\theta \in S^1$, $\omega > 0$, $x_0 \in \mathbb{R}^N$, $x_1 \in \mathbb{R}^N$, $\omega \in \mathbb{R}$, with $x_1 \neq 0$ and $x_1 \cdot x_0 \neq 0$.
$T > 0$ such that

\begin{equation}
(1.12) \quad u(t, x) = \left(\frac{\omega}{T - t} \right)^{\frac{n}{2}} \exp \left\{ i \left(\theta + \frac{|x - x_1|^2}{4(-T + t)} - \frac{\omega^2}{(-T + t)} \right) \right\} \times Q_{k_0} \left(\frac{\omega(x - x_1)}{T - t} - \omega x_0 \right).
\end{equation}

In [3], [4], we point out the importance of such solutions as limits of “stable” (from the numerical point of view) blow-up solutions for more complex equations which have (1.1) as a limit case (see Landam, Papanicolaou, C. and P. L. Sulem, Wang for numerical simulations [8], [14]).

(iii) At the blow-up time, there is a concentration phenomenon (Merle, Tsutsumi [12], Weinstein [19], Merle [9], Proposition A.3 in [4]). Indeed, let $u(t)$ be a blow-up solution of Eq. (1.1) and T its blow-up time. There is then $x(t)$ for $t > T$ such that

\[
\forall R > 0, \quad \liminf_{t \to T} \| u(t) \|_{L^2(B(x(t), R))}^2 \geq \| Q_{k_0} \|_{L^2}^2,
\]

where $B(x, R)$ is the ball of radius R and center x.

We first have the following result about existence of blow-up solutions.

Theorem 1 (Existence and lower L^2-bound of blow-up solutions, concentration at the blow-up time). - (i) **Lower L^2-bound:** Assume that k satisfies (H.1)-(H.2). Let $\phi \in H^1$ be such that

\[
\| \phi \|_{L^2} < \| Q_{k_2} \|_{L^2}.
\]

Then $u(t)$ is globally defined in time.

(ii) **Existence of blow-up solutions:** Let k satisfy (H.1)-(H.3). Assume in addition that k satisfies (H.4) or (H.4)' where

(H.4) There is a $\rho_0 > 0$ such that

\[
(x - x_0) \cdot \nabla k(x) < 0 \quad \text{for} \ 0 < |x - x_0| < \rho_0
\]

and

(H.4)'

\[
\forall x, \quad (x - x_0) \cdot \nabla k(x) \leq 0,
\]

and x_0 is such that $k(x_0) = k_2$. Then there is $\varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$, there is $\phi_\varepsilon \in H^1$ such that

\[
- \| \phi_\varepsilon \|_{L^2} = \| Q_{k_2} \|_{L^2} + \varepsilon,
\]
\[u_\varepsilon(t) \text{ blows up in finite time where } u_\varepsilon(t) \text{ is the solution of Eq. (1.1)} \]

with initial data \(\phi_\varepsilon \). In addition, \(\varepsilon_0 = +\infty \) when \(k \) satisfies (H.4)'.

(iii) Concentration at the blow-up time: Let \(k \) satisfy (H.1)-(H.2), let \(u(t) \) be a blow-up solution of Eq. (1.1) and let \(T \) be its blow-up time. There is then \(x(t) \) for \(t < T \) such that

\[
\forall R > 0, \liminf_{t \to T} \| u(t) \|_{L^2(B(x(t), R))}^2 \geq \| Q_{k_2} \|_{L^2}^2.
\]

Remark. – In part (ii), assumption (H.4) or (H.4)' can be weaken (see section 3) and \(x_0 \) can be a local maximum. However, it is still an open problem to show existence of blow-up solutions in the case where there is no local maximum of \(k \).

Let us now consider \(k \) satisfying (H.1)-(H.3). The main question is whether there is or not \(L^2 \)-minimal blow-up solution: Is there a \(\phi \in H^1 \)

\[
\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2},
\]

\(u(t) \) blows-up in finite time where \(u(t) \) is the solution of (1.1)-(1.2).

These results related to \(L^2 \)-minimal blow-up solutions have a physical interest.

- In the case of existence of such a solution, we have a solution which blows up with minimal mass and is in some sense the limit point of numerically stable blow-up solution (see [8], [14]).

- In the case of nonexistence of such a solution, we obtain the existence of a space singularity which is in some sense, stable in time with respect to Eq. (1.1). We will call this kind of phenomenon a black hole (see Theorem 3).

THEOREM 2 (\(L^2 \)-minimal blow-up solutions). – Consider \(k \) satisfying (H.1)-(H.2) and (H.5) where

\[
\text{(H.5)} \quad \exists \delta_0 > 0 \text{ and } R_0 > 0 \text{ such that for } |x| > R_0, \quad k(x) \leq k_2 - \delta_0 \quad \text{and } M = \{x; k(x) = k_2\} \text{ is finite.}
\]

(i) **Characterization:** Assume that \(\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2} \) and \(u(t) \) blows-up in finite time. There is then \(x_0 \in M \) such that

\[
- |u(t, x)|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=x_0} \text{ in the distribution sense,}
- |x - x_0|^2 |u(t, x)|^2 \to 0 \text{ in } L^1, \text{ as } t \to T.
\]
(ii) Nonexistence result: Assume in addition that for \(x_0 \in M \), we have the following property:

\[(H.6) \quad \text{there is } \rho_0 \text{ and } \alpha_0 \in (0, 1) \text{ such that} \]
\[\nabla k(x) \cdot (x - x_0) \leq -|x - x_0|^{1+\alpha_0}, \quad \text{for } |x - x_0| \leq \rho_0.\]

There is then no blow-up solutions such that
\[\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2}.\]

Remark. – In the case where \(k(x) \equiv k_2 \) globally or \(k(x) \equiv k_2 \) for \(x \) near \(x_0 \), we are able to show the existence of minimal blow-up solution. Therefore, the existence of minimal blow-up solutions depends strongly on the form of the function \(k(x) \) near the points where \(k \) achieves its maximum. However, we do not know exactly the case of limiting behavior near \(x_0 \) (where \(x_0 \) is such that \(k(x_0) = k_2 \)) of \(k \) (between flatness near \(x_0 \) and assumption (H.5)) where there is nonexistence of minimal \(L^2 \) blow-up solutions.

We can in addition remark that in the elliptic situation in the case where \(k(x) \neq k_2 \) there is no solution of the equation
\[\Delta v + k(x) |v|^{\frac{N}{N-2}} v = \omega v\]
where \(\omega > 0 \) such that
\[\| v \|_{L^2} = \| Q_{k_2} \|_{L^2}.\]

Theorem 3 (Stability in time of singularity). – Assume that \(x_0 \) is such that \(k(x_0) = k_2 \) and \(x_0 \) is a strict local maximum. Moreover, assume that there is no blow-up solution of Eq. (1.1)-(1.2) such that

\[\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2}.\]

Consider now a sequence \(\phi_n \in H^1 \) such that
- \(\| \phi_n \|_{L^2}^2 \to \| Q_{k_2} \|_{L^2}^2, \)
- \(|\phi_n(x)|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=x_0} \) in the distribution sense,
- there is a \(c > 0 \) such that
\[E_{\varepsilon_n}(\phi_n) \leq c\]
where \(\varepsilon_n \to 0 \) as \(n \to +\infty \), \(\varepsilon_n > 0 \), \(q \in \left(\frac{4}{N+1}, 1 + \frac{4}{N-2} \right) \),
\[E_{\varepsilon}(u) = E(u) + \frac{\varepsilon}{q+1} \int |u|^{q+1}.\]
Then \(u_n(t) \), the solution of equation
\[iu_t = -\Delta u - k(x)|u|^{\frac{N}{N-2}} u + \varepsilon_n |u|^{q-1} u,\]
(1.13) \[u(0) = \phi_n,\]
(1.14)
is such that
- $u_n(t)$ is defined for all time,
- for all time $t > 0$,

$$\left| u_n(t, x) \right|^2 \rightarrow \| Q_{k_2} \|^2_{L^2} \delta_{x=x_0}$$

(1.15)

in the distribution sense as $n \rightarrow +\infty$,

and

$$\| u_n(t) \|_{L^2} \rightarrow \| Q_{k_2} \|_{L^2}, \text{ as } n \rightarrow +\infty.$$ (1.16)

Remark. – In this case, we say that $\| Q_{k_2} \|^2_{L^2} \delta_{x=x_0}$ is a singularity stable in time.

The plan of the paper is the following:
- In section two, we establish some conservation laws for solutions of (1.1) and derive some concentration properties at the blow-up time.
- In section three, we prove some blow-up results.
- Sections four and five are devoted to minimal blow-up solutions.
- Finally, in section six, we study the existence of black holes.

2. CONCENTRATION PROPERTIES OF BLOW-UP SOLUTIONS

In the first subsection, we give various identities satisfied by solutions of Eq. (1.1). We assume that $\phi \in \Sigma = H^1 \cap \{u; xu \in L^2\}$.

2.A. Conservation laws

Let us consider $u(t, x)$ solution of Eq. (1.1) and T its blow-up time.

Proposition 2.1. – We have $\forall t \in [0, T)$,

$$\int |u(t, x)|^2 \, dx = \int |\phi(x)|^2 \, dx,$$

(2.1) (i)

$$E(u(t)) = E(\phi) \text{ where}$$

$$E(u) = \frac{1}{2} \int |\nabla u(x)|^2 \, dx - \frac{1}{4} \int k(x) |u(t, x)|^{\frac{4}{N}} + 2 \, dx,$$

(2.2) (ii)

Vol. 64, No 1-1996.
(2.3) (iii) \[\frac{d}{dt} \int |x|^2 |u(t, x)|^2 dx = 4 \text{Im} \int \bar{u} \nabla u \cdot x, \]

(2.4) \[\frac{d^2}{dt^2} \int |x|^2 |u(t, x)|^2 dx = 4 \left\{ 4 E(\phi) + \frac{1}{2N + 1} \int x \cdot \nabla k(x) |u(t, x)|^{\frac{2}{N}} dx \right\}. \]

Proof. – (i) and (ii) follow from direct calculation.

(iii) Let us show that

On the one hand,

On the other hand

Annales de l’Institut Henri Poincaré - Physique théorique

\[\frac{d}{dt} \int \text{Im} \bar{u} \nabla u \cdot x = 4 E(\phi) \]

\[+ \frac{1}{2N + 1} \int x \cdot \nabla k(x) |u(t, x)|^{\frac{2}{N}} dx. \]

(2.6) \[\frac{d}{dt} \text{Im} \int \bar{u} \nabla u \cdot x = \text{Im} \left\{ \int x \bar{u} \frac{\partial u}{\partial t} + \int x \frac{\partial \bar{u}}{\partial t} \nabla u \right\} \]

\[= \text{Im} \left\{ 2 \int x \frac{\partial \bar{u}}{\partial t} \nabla u - N \int \frac{\partial \bar{u}}{\partial t} \right\}. \]

On the one hand,

(2.7) \[N \text{Im} \int \bar{u} \frac{\partial u}{\partial t} = -N \text{Re} \int \bar{u} (\Delta u + k(x) |u|^{\frac{2}{N}} u) \]

\[= -N \int k(x) |u|^{\frac{4}{N} + 2} + N \int |\nabla u|^2. \]

On the other hand

(2.8) \[2 \text{Im} \int x \frac{\partial \bar{u}}{\partial t} \nabla u \]

\[= -2 \text{Re} \left\{ \int x \Delta u \nabla \bar{u} + \int x k(x) |u|^{\frac{2}{N}} u \nabla \bar{u} \right\} \]
From (2.6)-(2.8), (2.5) follows.

As in the case $k(x) = k_0$, let us derive some consequences of these conservation laws.

Corollary 2.2.

(i) \[
\frac{d}{dt} \int |\vec{x}| u(t, x) |^2 dx = 2 \text{Im} \int \bar{u} \nabla u,
\]

(ii) \[
\frac{d^2}{dt^2} \int |\vec{x}| u(t, x) |^2 dx = \frac{2}{N+1} \int \nabla |u(t, x) |^{\frac{4}{N}+2} dx.
\]

Proof. We have for all $x_0 \in \mathbb{R}^N$:

\[
\frac{d}{dt} \int |\vec{x} + \vec{x}_0|^2 |u(t, x) |^2 dx = 4 \text{Im} \int \bar{u} \nabla u \cdot (\vec{x} + \vec{x}_0).
\]

Therefore,

\[
\frac{d}{dt} \left\{ |x_0|^2 \int |u(t, x) |^2 dx + \int |x|^2 |u(t, x) |^2 dx + 2 \vec{x}_0 \cdot \int |\vec{x}| u(t, x) |^2 dx \right\}
\]

\[
= 4 \text{Im} \int \bar{u} \nabla u \cdot x + 4 \vec{x}_0 \text{Im} \int \bar{u} \nabla u,
\]

and from Proposition 2.1,

\[
(2.9) \quad \vec{x}_0 \cdot 2 \frac{d}{dt} \int |\vec{x}| u(t, x) |^2 dx = \vec{x}_0 \cdot 4 \text{Im} \int \bar{u} \nabla u.
\]

(i) follows from the fact that (2.9) is true for all $x_0 \in \mathbb{R}^N$. Proof of part (ii) is similar.
Let us write an energy type identity from Proposition 2.1 derived in the case $k(x) \equiv k_2$ by Anosov and rediscovered by Ginibre and Velo.

Corollary 2.3. We have

$$
\tilde{E}_t(u(t)) = \tilde{E}_0(u(0)) - \int_0^t \frac{s}{4N+2} \int x \cdot \nabla k |u(s,x)|^{\frac{N}{2}+2} \, dx \, ds
$$

$$
= \frac{1}{8} \int |x|^2 |\phi(x)|^2 \, dx
\quad - \int_0^t \frac{s}{4N+2} \int x \cdot \nabla k |u(s,x)|^{\frac{N}{2}+2} \, dx \, ds,
$$

where

$$
\tilde{E}_t(u) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{4N+2} \int k(tx) |v|^{\frac{N}{2}+2}
$$

with

$$
v = |t|^\frac{N}{2} e^{-i\frac{|x|^2 t}{4}} u(xt).
$$

Proof. Let $u \in \Sigma$,

(2.10) \[
\tilde{E}_t(u) = \frac{1}{2} \int |t|^N \left| \left(-\frac{ixt}{2} + t \nabla \right) u(xt) \right|^2
\quad - \frac{1}{4N+2} t^2 \int k(tx) |t|^N |u(xt)|^{\frac{N}{2}+2} \, dx
\]

$$
= \frac{1}{2} \int \left| \left(-\frac{iy}{2} + t \nabla \right) u(y) \right|^2 \, dy
\quad - \frac{t^2}{4N+2} \int k(y) |u(y)|^{\frac{N}{2}+2} \, dy
\]

$$
= \frac{1}{2} \left\{ \frac{1}{4} \int |x|^2 |u(x)|^2 \, dx
\quad - t \text{Im} \int x \cdot \nabla u\bar{u} \right\} + t^2 E(u).
$$
Let us now consider \(\tilde{E}_t(u(t)) \)

\[
\frac{d}{dt} \tilde{E}_t(u(t)) = \frac{1}{2} \left\{ \frac{1}{4} \frac{d}{dt} \int |x|^2 |u(t, x)|^2 \, dx - \text{Im} \int x \cdot \nabla u(t) \bar{u}(t) \right\} \\
- \frac{t}{2} \int x \cdot \nabla u(t) \bar{u}(t) + 2tE(\phi).
\]

From Proposition 2.1, we have

\[
\frac{d}{dt} \tilde{E}_t(u(t)) = \frac{1}{2} \left\{ \text{Im} \int x \cdot \nabla u(t) \bar{u}(t) - \text{Im} \int x \cdot \nabla u(t) \bar{u}(t) \right\} \\
- \frac{t}{2} \left\{ 4E(\phi) + \frac{1}{2} \frac{1}{N+1} \int x \cdot \nabla k |u(t, x)|^{\frac{4}{N}+2} \, dx \right\} \\
+ 2tE(\phi) \\
= -\frac{t}{4} \frac{1}{N+2} \int x \cdot \nabla k |u(t, x)|^{\frac{4}{N}+2} \, dx,
\]

which concludes the proof of Corollary 2.3 and Section 2.A.

2.B. Concentration properties of blow-up solutions of Eq. (1.1)

In this section, we consider a blow-up solution of Eq. (1.1), \(u(t) \). Let \(T \) be its blow-up time. Assume that

\[-0 < k_1 \equiv \inf_{x \in \mathbb{R}^N} k(x) \leq k_2 \equiv \sup_{x \in \mathbb{R}^N} k(x) < +\infty, \]
\[-k \in C^1, \]
\[-|\nabla k| \leq c_0. \]

We claim the following

Proposition 2.4. – There is \(x(t) \in \mathbb{R}^N \) such that for all \(R > 0, \)

\[
\lim_{t \to T} \inf_{t \to T} \|u(t)\|_{L^2(B(x(t), R))} \geq \|Q_{k_2}\|_{L^2},
\]

where \(Q_{k_2} \) is the unique positive radially symmetric solution of

\[
v = \Delta v + k_2 |v|^\frac{4}{N} v.
\]
Remark. – From scaling argument, we have \(Q_{k_2} = \frac{1}{k_2^{\frac{N}{4}}} Q \) where \(Q \) is the unique radially symmetric solution of (II, 1). In particular
\[
\| Q_{k_2} \|_{L^2} = \frac{\| Q \|_{L^2}}{k_2^{\frac{N}{4}}}.
\]
In fact, we have a slightly more precise result.

Proposition 2.5. – There is \(x(t) \in \mathbb{R}^N \) such that for all \(R > 0 \),
\[
\liminf_{t \to T} \left\{ \frac{\| u(t) \|_{L^2(B(x(t), R))}}{\| Q_{k(x(t))} \|_{L^2}} \right\} \geq 1.
\]

Remark.
\[
\| Q_{k(x(t))} \|_{L^2} = \frac{\| Q \|_{L^2}}{[k(x(t))]^{\frac{N}{4}}} \geq \frac{\| Q \|_{L^2}}{k_2^{\frac{N}{4}}}.
\]

Proof of Proposition 2.5 follows exactly the proof of Proposition 2.4 and will be omitted (it uses the fact that \(\forall R > 0, \)
\[
\sup_{|x-y| \leq R} \left| k \left(\frac{x}{\lambda(t)} \right) - k \left(\frac{y}{\lambda(t)} \right) \right| \leq c_0 \frac{|x-y|}{\lambda(t)} \leq \frac{Rc_0}{\lambda(t)} \to 0,
\]
where \(\lambda(t) = \| \nabla u(t) \|_{L^2} \).

Sketch of proof of Proposition 2.4. – It is a consequence of similar results in [18], [12], [9], [4]. Indeed, we have
\[
(2.11) \quad E_{k_2}(u(t)) = \frac{1}{2} \int |\nabla u(t, x)|^2 \left(\int \frac{k_2}{4} |u(t, x)|^{\frac{4}{N} + 2} dx \right)
\leq \frac{1}{2} \int |\nabla u(t, x)|^2 \left(\int \frac{k(x)}{4} |u(t, x)|^{\frac{4}{N} + 2} dx \right)
\leq E(u(t)) = E(\phi)
\]
and
\[
(2.12) \quad \| u(t) \|_{L^2} = \| \phi \|_{L^2}.
\]
Let us argue by contradiction. Assume there are \(R_0 > 0 \), \(\delta_0 > 0 \) and a sequence \(t_n \to T \) such that

\[
\sup_{x \in \mathbb{R}^N} \left\{ \int_{|x-y|<R_0} |u(t_n, x)|^2 \, dy \right\} \leq \| Q_{k_2} \|_{L^2}^2 - \delta_0.
\]

Then from results of [12], [19], [4], we have the existence of constants \(c_1 > 0 \) and \(c_2 > 0 \) such that

(2.13) \hspace{1cm} \forall t_n, \quad -c_1 + c_2 \int |\nabla u(t_n, x)|^2 \, dx \leq E_{k_2}(u(t_n))

(see from example Proposition A.3 in [4]).

From (2.11), we deduce that \(\int |\nabla u(t_n, x)|^2 \, dx \leq c \) which contradicts that \(t_n \to T \). This concludes the proof of Proposition 2.4 and Theorem 1. (iii).

As a direct consequence of Proposition 2.4 and (2.12), we obtain

Corollary 2.6. (Lower bound for blow-up solutions). – Assume

\[
\| \phi \|_{L^2} < \| Q_{k_2} \|_{L^2} = \frac{\| Q \|_{L^2}}{k_2^N}.
\]

Then the solution \(u(t) \) is globally defined in time.

In fact, from the proof of Proposition 2.4, we have a useful corollary (see also [19]):

Corollary 2.7. – Let \(u_n \in H^1 \) be such that \(\| u_n \|_{L^2} \to \| Q_{k_2} \|_{L^2} \), \(\lambda_n = \| \nabla u_n \|_{L^2} \to +\infty \) as \(n \to +\infty \) and \(E(u_n) \leq c \) for a \(c > 0 \). There are sequences \(x_n \in \mathbb{R}^N \), \(\theta_n \in S^1 \) such that

\[
|u_n(x-x_n)|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=x_0},
\]

and

\[
\lambda_n^{-\frac{N}{2}} e^{i\theta_n} u_n \left(\frac{x-x_n}{\lambda_n} \right) \to Q_{k_2} \text{ in } H^1.
\]

3. **BLOW-UP THEOREMS FOR SOLUTIONS OF EQ. (1.1)**

In the homogeneous case

(3.1) \hspace{1cm} k(x) \equiv k_0;
blow-up theorems are obtained using the virial identity

\begin{equation}
\frac{d^2}{dt^2} \int |x|^2 |u(t, x)|^2 dx = 16 E(\phi).
\end{equation}

(see [5], [15]). If \(E(\phi) < 0 \), then using the fact

\begin{equation}
\forall t, \int |x|^2 u(t, x)|^2 dx > 0
\end{equation}

and (3.2), we obtain a contradiction.

In the case where

\(k(x) \equiv k \)

such an identity is not true anymore (see (2.4)) and we have \(\forall x_0 \in \mathbb{R}^N \),

\begin{equation}
\frac{d^2}{dt^2} \int |x - x_0|^2 |u(t, x)|^2 dx = 16 E(\phi) + \frac{4}{2} + 1
\end{equation}

\(\times \int (x - x_0) \nabla k |u(t, x)|^{\frac{4}{N} + 2} dx. \)

Under some global or local conditions on the sign of

\((x - x_0) \nabla k(x) \)

we are able to obtain some blow-up theorems for solutions of Eq. (1.1).

Theorem 3.1 (Global condition on \((x - x_0) \cdot \nabla k(x) \)). - Assume there is \(x_0 \in \mathbb{R}^N \) such that

\begin{equation}
\forall x \in \mathbb{R}^N, \quad (x - x_0) \cdot \nabla k(x) \leq 0
\end{equation}

so that \(x_0 \) is global maximum of \(k(x) \).

(i) Let \(\phi \in \Sigma \) be such that \(E(\phi) < 0 \). Then the solution \(u(t) \) of Eq. (1.1)

blows up in finite time.

For all \(\varepsilon > 0 \), there is \(\phi_\varepsilon \) such that

- \(\| \phi_\varepsilon \|_{L^2} = \| Q_{k_2} \|_{L^2} + \varepsilon \),

- \(u_\varepsilon(t) \) blows-up in finite time, where \(u_\varepsilon(t) \) is the solution of Eq. (1.1)

with initial data \(\phi_\varepsilon \).

Theorem 3.2 (Local condition on \((x - x_0) \cdot \nabla k(x) \)). - Assume there is

\(x_0 \in \mathbb{R}^N \) and \(\rho_0 > 0 \) such that

\begin{equation}
(x - x_0) \cdot \nabla k(x) < 0, \quad \text{for} \quad 0 < |x - x_0| < \rho_0,
\end{equation}

Annales de l’Institut Henri Poincaré - Physique théorique
so that x_0 is a local strict maximum of $k(x)$

$$k(x_0) \geq k(x) \quad \text{for } 0 < |x - x_0| < \rho_0.$$

There is ε_0 such that for all $0 < \varepsilon < \varepsilon_0$, there exists $\phi_\varepsilon \in \Sigma$ such that

- $\| \phi_\varepsilon \|_{L^2} = \| Q_{k(x_0)} \|_{L^2} + \varepsilon$,
- $u_\varepsilon(t)$ blows up in finite time where $u_\varepsilon(t)$ is the solution of Eq. (1.1) with initial data ϕ_ε.

Remark. Theorem 3.2 implies Theorem 3.1 but the proof of Theorem 3.1 is completely elementary. Assumption (3.6) can be weaken and replaced by

$$(3.6)' \quad \{(x - x_0) \cdot \nabla k(x) \leq 0 \quad \text{for } 0 < |x - x_0| < \rho_0,
(x - x_0) \cdot \nabla k(x) < 0 \quad \text{on } S,$$

where S is a closed hypersurface included in $B(x_0, \rho_0)$ with x_0 in its interior.

In Theorem 3.1 or 3.2, we have to assume that x_0 is a local maximum. An open problem left in this direction is to obtain blow-up theorem in the case where there is no local maximum of k in \mathbb{R}^N. For example, consider in \mathbb{R} a function $k(x)$ such that

- $k' < 0$,
- $\lim_{x \to +\infty} k(x) = k_1 > 0$,
- $\lim_{x \to -\infty} k(x) = k_2 > 0$.

Is there a blow-up solution of Eq. (1.1)?

Proof of Theorem 3.1. The proof is completely elementary.

(i) Let $\phi \in \Sigma$ such that $E(\phi) < 0$. Consider $y(t) = \int |x - x_0|^2 |u(t, x)|^2 dx$ and assume by contradiction that $u(t)$ and $y(t)$ are defined for all time; we have $\forall t > 0, y''(t) \leq 16 E(\phi)$. Thus by integration

$$\forall t > 0, \quad y(t) \leq y(0) + ty'(0) + 8 t^2 E(\phi) = z(t).$$

Since $E(\phi) < 0, z(t) = 0$ for t large which is contradiction. This concludes the proof of (i).

(ii) (3.5) implies directly that x_0 is a global maximum. Let $k_2 = k(x_0)$. For all $\varepsilon > 0$, consider for $\lambda > 0$, $w_{\varepsilon, \lambda} = (1 + \varepsilon) \frac{1}{\lambda^{\frac{N}{2}}} Q_{k_2} \left(\frac{x - x_0}{\lambda} \right)$.

$$\forall \lambda > 0,$$

$$(3.7) \quad \| w_{\varepsilon, \lambda} \|_{L^2} = (1 + \varepsilon) \| Q_{k_2} \|_{L^2}.$$
In addition,

\[
E (w_\epsilon, \lambda) = \frac{1}{2} \int |\nabla w_\epsilon, \lambda|^2 - \frac{1}{4} \int k(x) |w_\epsilon, \lambda|^\frac{4}{N} + 2
\]

\[
= E_{k_2} (w_\epsilon, \lambda) + \frac{1}{4} \int \frac{k(x_0) - k(x)}{w_\epsilon, \lambda} |w_\epsilon, \lambda|^\frac{4}{N} + 2
\]

where \(E_{k_2} (w) = \frac{1}{2} \int |\nabla w|^2 - \frac{1}{4} \int k_2 |w|^\frac{4}{N} + 2 \).

On the one hand, by scaling arguments

\[
E_{k_2} (w_\epsilon, \lambda) = (1 + \epsilon)^2 \frac{1}{\lambda^2} E_{k_2} (Q_{k_2})
\]

\[
+ ((1 + \epsilon)^2 - (1 + \epsilon)^{\frac{4}{N} + 2}) \frac{1}{\lambda^2} \int Q_{k_2}^\frac{4}{N} + 2.
\]

Since \(E_{k_2} (Q_{k_2}) = 0 \) (Pohazaev identity),

\[
\forall \lambda > 0, \quad E_{k_2} (w_\epsilon, \lambda) \leq - \frac{c(\epsilon)}{\lambda^2} \quad \text{where} \quad c(\epsilon) > 0.
\]

Since \(\forall x, \ Q_{k_2} (x) \leq c_0 e^{-c_1 |x|} \) and \(|\nabla k(x)| \leq c_0, \) for \(\lambda > 1, \)

\[
\int |k(x_0) - k(x) | \left| \begin{array}{c}
\frac{w_\epsilon, \lambda}{x} \end{array} \right|^\frac{4}{N} + 2
\]

\[
\leq c + c \int \frac{|x|}{\lambda^2 + N} e^{-c_1 |x|} \frac{1}{\lambda} d\lambda
\]

\[
\leq c + c \int \frac{|1|}{\lambda} e^{-c_1 |1|} \frac{1}{\lambda} d\lambda \leq c \left(1 + \frac{1}{\lambda} \right).
\]

From (3.9)-(3.10) we derive that for \(\lambda \geq \lambda (\epsilon), \ E (w_\epsilon, \lambda) < 0 \) and for \(\epsilon > 0, \)
\(\phi_\epsilon = w_\epsilon, \lambda (\epsilon) \) satisfies the conclusions of Theorem 3.1. This concludes the proof of Theorem 3.1.

Proof of Theorem 3.2. – We remark that we had showed in the proof of Theorem 3.1 (ii) the following lemma.
LEMMA 3.3. - ∀ ∈ (0, 1), for all A(ε) > 0, there is a φ ∈ Σ such that
- \(\| φ_ε \|_{L^2} = \| Q_k(x_0) \|_{L^2} + ε, \)
- \(E(φ_ε) = -A(ε), \)
- \(\int |x|^2 |φ_ε|^2 \leq C, \) (where C is independent of ε and A(ε)),
- \(∀ x ∈ \mathbb{R}^N, φ_ε(x) ∈ \mathbb{R}, \)
- \(\| \nabla φ_ε \|_{L^2} \underset{ε \to 0}{\to} +∞, \) and \(|φ_ε(x)|^2 \to \| Q_k(x_0) \|_{L^2}^2 \delta_{x=x_0}. \)

Proof. - It follows from the proof of Theorem 3.1 (ii) and direct computations.

We claim now for A(ε) sufficiently large as \(ε \to 0, \) the solution \(u_ε(t) \) associated with \(φ_ε \) blows up in finite time. We now assume that \(A(ε) \underset{ε \to 0}{\to} +∞. \) We argue by contradiction. We suppose that \(u_ε(t) \) is globally defined in time. The two key arguments of the proof are
- On one hand, the use of the geometry of \(k(x) \) near \(x_0 \) to control the evolution of the concentration point;
- On the other hand, the use of local virial identity as in [10], [11]. We proceed in three steps to obtain a contradiction.

Step 1. - Concentration properties of \(u_ε(t). \)

PROPOSITION 3.4 (Concentration in \(L^2 \) of \(u_ε(t)). - For all ε' > 0, there is \(ε_0 \) such that, \(∀ \epsilon ∈ (0, ε_0), ∀ t ≥ 0, \)

\[
∫_{|x−x₀|≤ε'} |u_ε(t, x)|^2 dx - ∫_{\mathbb{R}^N} Q_k^2(x_0)(x) dx < ε',
\]

and

\[
∫_{|x−x₀|≥ε'} |u_ε(t, x)|^2 dx ≤ ε'.
\]

Proof of Proposition 3.4. - One uses the fact that \(x_0 \) is a strict local maximum and some contraction lemma.

LEMMA 3.5. - Consider a sequence \(t_ε ∈ \mathbb{R}. \) We then have

\[
\| \nabla u_ε(t_ε) \|_{L^2} \underset{ε \to 0}{\to} +∞.
\]

Proof. - Indeed, by contradiction, assume there is a \(c > 0 \) such that for a sequence \(ε_n \to 0 \)

\[
\| \nabla u_{ε_n}(t_ε_n) \|_{L^2} \leq c.
\]

Vol. 64, n° 1-1996.
Then by Sobolev imbeddings

\[E(\phi_{\varepsilon_n}) = |E(u_{\varepsilon_n}(t_{\varepsilon_n}))| \leq \frac{1}{2} \| \nabla u_{\varepsilon_n}(t_{\varepsilon_n}) \|_{L^2}^2 + c \| u_{\varepsilon_n}(t_{\varepsilon_n}) \|_{L^{N+2}}^{N+2} \leq c \]

which contradicts the fact

\[|E(\phi_{\varepsilon_n})| = A(\varepsilon_n) \to +\infty \text{ as } n \to +\infty. \]

Similarly with Proposition 2.5, we have the following lemma.

Lemma 3.6. Let \(u_n \) be such that for constants \(a, b, \)

\[(3.13) \quad \| u_n \|_{L^2} \leq a,\]

\[(3.14) \quad E(u_n) \leq b,\]

\[(3.15) \quad \| \nabla u_n \|_{L^2} \to +\infty \text{ as } n \to +\infty.\]

There is \(x_n \) such that for all \(R > 0 \)

\[\liminf_{n \to +\infty} \left\{ \frac{\| u_n \|_{L^2(B(x_n, R))}}{\| Q_{k(x_n)} \|_{L^2}} \right\} \geq 1. \]

Proof. See Corollary 2.7.

Applying Lemma 3.6 with \(u_\varepsilon(t) \) \((a = 2 \| Q_{k(x_0)} \|_{L^2}, b = 0)\), we obtain the conclusion.

Indeed, consider \(\delta > 0 \) such that

\[(3.16) \quad \forall x, \quad \| Q_{k(x)} \|_{L^2}^2 \geq 2 \delta.\]

\[
\left((3.16) \text{ is equivalent to, } \forall x, \quad \frac{\| Q \|_{L^2}^2}{k(x)^{\frac{N}{2}}} \geq 2 \delta \text{ or equivalently } \delta \leq \frac{\| Q \|_{L^2}^2}{2 k_2^{\frac{N}{2}}}. \right)
\]
Consider, for each $\epsilon > 0$, \tilde{T}_ϵ such that

\begin{equation}
\forall t \in [0, \tilde{T}_\epsilon), \quad \| u_\epsilon (t, x) \|_{L^2 (B (x_0, \frac{\epsilon \rho_1}{4}))}^2 \geq \| Q_k (x_0) \|_{L^2}^2 - \delta,
\end{equation}

(3.17)

and from (3.18)

\begin{equation}
\| u_\epsilon (\tilde{T}_\epsilon, x) \|_{L^2 (B (x_0, \frac{\epsilon \rho_1}{4}))}^2 = \| Q_k (x_0) \|_{L^2}^2 - \delta.
\end{equation}

(3.18)

From Lemma 3.3, for ϵ small enough, $\tilde{T}_\epsilon > 0$. Let us show that for $\epsilon < \epsilon_0$ (where $\epsilon_0 > 0$)

\begin{equation}
\tilde{T}_\epsilon = +\infty.
\end{equation}

(3.19)

Indeed, by contradiction, assume that for $\epsilon_n \to 0$

\begin{equation}
\tilde{T}_{\epsilon_n} = \tilde{T}_n < +\infty.
\end{equation}

(3.20)

Consider $u_n = u_{\epsilon_n} (\tilde{T}_n, x)$. u_n satisfies (3.13)-(3.15), therefore from Lemma 3.6, there is x_n

\begin{equation}
\forall R, \quad \lim_{n \to +\infty} \inf \| u_n \|_{L^2 (B (x_n, R))}^2 \geq \lim_{n \to +\infty} \sup \| Q_k (x_n) \|_{L^2}^2.
\end{equation}

(3.21)

We chain for n large

\begin{equation}
\| x_n - x_0 \| \leq \frac{\rho_0}{2}.
\end{equation}

(3.22)

Indeed if not

\begin{align*}
\liminf_{n \to +\infty} \| u_n \|_{L^2 (B (x_0, \frac{\epsilon \rho_1}{4}))}^2 &\geq \lim_{n \to +\infty} \| u_n \|_{L^2 (B (x_n, \frac{\epsilon \rho_1}{4}))}^2 \\
&\geq \limsup_{n \to +\infty} \| Q_k (x_0) \|_{L^2}^2 \geq 2 \delta
\end{align*}

and from (3.18)

\begin{equation}
\liminf_{n \to +\infty} \| u_n \|_{L^2}^2 \geq \| Q_k (x_n) \|_{L^2}^2 + \delta.
\end{equation}

(3.23)

Since $\| u_n \|_{L^2} = \| u_{\epsilon_n} (\tilde{T}_{\epsilon_n}, x) \|_{L^2} = \| \phi_{\epsilon_n} \|_{L^2} \to \| Q_k (x_0) \|_{L^2}$ as $n \to +\infty$, we obtain a contradiction. We then remark that

\begin{equation}
x_n \to x_0 \text{ as } n \to +\infty.
\end{equation}

(3.24)
Indeed, we have from (3.21)

\[(3.25) \quad \liminf_{n \to +\infty} \| \phi_{\epsilon_n} \|_{L^2}^2 = \liminf_{n \to +\infty} \| u_n \|_{L^2}^2 \geq \limsup_{n \to +\infty} \| Q_k(x_n) \|_{L^2}^2 \geq \limsup_{n \to +\infty} \frac{\| Q \|_{L^2}^2}{[k(x_n)]^{\frac{N}{2}}} \geq \| Q_k(x_0) \|_{L^2}^2 \limsup_{n \to +\infty} \left[\frac{k(x_0)}{k(x_n)} \right]^{\frac{N}{2}}.\]

From Lemma 3.3,

\[\| Q_k(x_0) \|_{L^2}^2 \geq \| Q_k(x_0) \|_{L^2}^2 \limsup_{n \to +\infty} \left[\frac{k(x_0)}{k(x_n)} \right]^{\frac{N}{2}} \]

or

\[\liminf_{n \to +\infty} k(x_n) \geq k(x_0),\]

which is equivalent from (3.6) and (3.22) to

\[x_n \to x_0 \quad \text{as} \quad n \to +\infty.\]

From (3.21)

\[(3.26) \quad \liminf_{n \to +\infty} \| u_{\epsilon_n}(\tilde{T}_{\epsilon_n}) \|_{L^2(x_0, \frac{\rho}{8})}^2 \geq \liminf_{n \to +\infty} \| u_{\epsilon_n}(\tilde{T}_{\epsilon_n}) \|_{L^2(x_n, \frac{\rho}{8})}^2 \geq \liminf_{n \to +\infty} \| u_n \|_{L^2(x_n, \frac{\rho}{8})}^2 \geq \| Q_k(x_0) \|_{L^2}^2\]

which is a contradiction with (3.18). Therefore there is \(\epsilon_0 > 0\) such that for \(0 < \epsilon < \epsilon_0\), \(\tilde{T}_\epsilon = +\infty\).

Let us conclude the proof of Proposition 3.4 by contradiction. We claim that (3.11), (3.12) follow from Lemma 3.3 and the conservation of mass. Assume there is \(t_{\epsilon_n}\) and \(\epsilon_n \to 0\), \(\epsilon' > 0\) such that

\[(3.27) \quad \left| \| Q_k(x_0) \|_{L^2}^2 - \int |x-x_0|\leq\epsilon' |u_n|^2 \right| \geq \epsilon',\]

where \(u_n = u_{\epsilon_n}(t_{\epsilon_n}, x)\).
As before, there is x_n such that

\begin{equation}
(3.28) \quad \forall R, \quad \liminf_{n \to +\infty} \| u_n \|_{L^2(B(x_0, R))}^2 \geq \| Q_k(x_0) \|_{L^2}^2.
\end{equation}

We have from (3.17) and (3.19) by the same arguments than before that for n large $|x_n - x_0| \leq \frac{\rho_0}{2}$ and then $x_n \to x_0$ as $n \to +\infty$.

In particular, from (3.28) as classical arguments,

\begin{equation}
(3.29) \quad \forall R, \quad \liminf_{n \to +\infty} \| u_n \|_{L^2(B(x_0, R))}^2 \geq \| Q_k(x_0) \|_{L^2}^2.
\end{equation}

Since

$$\| \phi_{\varepsilon_n} \|_{L^2} = \| u_{\varepsilon_n} \|_{L^2} = \| u_n \|_{L^2} \xrightarrow{n \to +\infty} \| Q_k(x_0) \|_{L^2},$$

we have

$$\lim_{n \to +\infty} (\| u_n \|_{L^2(B(x_0, R))}^2 - \| Q_k(x_0) \|_{L^2}^2) = 0,$$

which is a contradiction with (3.27). Thus Proposition 3.4 is proved.

Remark. – In the case where x_0 is a global maximum, we do not need to prove (3.19).

Step 2. – Energy estimates outside the concentration point.

Using local virial identity, we are able to prove the following proposition.

Proposition 3.7. – There are constants $0 < B_0 < \frac{\rho_0}{4}$, $c_1 > 0$ and $c_2 > 0$ independent of ε such that $\forall t$,

$$- \left[8 E(\phi_{\varepsilon}) t^2 + \int_0^t (t-s) \frac{4}{(2 + \frac{N}{1})} \int_{|x-x_0| \leq 2B_0} (x-x_0) \times \nabla k(x) |u_{\varepsilon}(s, x)|^{\frac{4}{N}+2} dx ds \right]$$

$$\geq c_2 \int_0^t (t-s) \int_{|x-x_0| \geq \frac{\rho_0}{2}} |\nabla u_{\varepsilon}(s, x)|^2 dx ds - c_1.$$
LEMMA 3.8 (Local virial identity). – Consider $\psi \in C^4(\mathbb{R}^N, \mathbb{R})$ with compact support.

\[
\frac{d}{dt} \int \psi(x) |u(t, x)|^2 = 2 \text{Im} \int \nabla \psi \nabla u \overline{u},
\]

(ii) $\frac{d^2}{dt^2} \int \psi(x) |u(t, x)|^2 = 2 \left\{ -\frac{2}{N(N + 1)} \int \Delta \psi k |u|^{\frac{4}{N} + 2}
+ 2 \sum_{i,j} \int \partial_i \partial_j \psi \partial_i \overline{u} \partial_j \overline{u} - \frac{1}{2} \int |u|^2 \Delta^2 \psi
+ \frac{1}{N + 1} \int \nabla \psi \cdot \nabla k |u|^{\frac{4}{N} + 2} \ dx \right\}.

Proof. – It follows from similar calculation as in [10].

LEMMA 3.9. – Let $\rho(x) \in C^1(\mathbb{R}^N, \mathbb{R})$ such that $\rho \in L^\infty$ and $\nabla \rho \in L^\infty$. There is a $c_\rho > 0$ such that

\[
\forall u \in H^1, \quad \int |u(x)|^{\frac{4}{N} + 2} \rho^2(x) \ dx \leq c_\rho \left(\int u^2 \right)^{\frac{4}{N}} \times \left\{ \int |\nabla u|^2 \rho^2 + \int \nabla \rho^2 u^2 \right\}.
\]

We claim now that applying Lemma 3.8 to a suitable function $\psi(x)$, we obtain Proposition 3.7. Indeed, consider ψ such that

(3.27) $\psi \in C^4(\mathbb{R}^N, \mathbb{R})$ and $\psi(x) = \psi(|x|),$

(3.28) $\psi(x) < |x|^2$ for $|x| > \beta_0,$

$\psi(x) \equiv |x|^2$ for $|x| \leq \beta_0,$

$\frac{1}{2} |x|^2 \leq x \cdot \nabla \psi \leq 3 |x|^2$ for $|x| \leq 2 \beta_0,$

$\Delta \psi - 2 N \geq 0$ for $|x| \leq 2 \beta_0,$

(3.29) $\psi(x) \equiv c$ for $|x| \geq \frac{\rho_0}{2}.$
there are a constant c_0 and a function g such that for

$$\beta_0 \leq |x| \leq \frac{\rho_0}{2}, \quad \forall a \in \mathbb{C}^N$$

$$
\left(\sum_i |a_i|^2 - \sum_{i,j} \frac{\partial_i \partial_j \psi}{2} a_i \bar{a}_j \right) \geq g(x) \left(\sum_i |a_i|^2 \right),
$$

where $g(x) \geq c_0$ for $|x| \geq 2 \beta_0$ and $g(x) \geq 0, \forall x$.

The existence of such a ψ can be proved easily, and the proof is omitted.

We have then by Lemma 3.8 and Lemma 3.3, $\forall \varepsilon, \forall t > 0$,

$$\int \psi (x - x_0) |u_\varepsilon (t, x)|^2 \, dx$$

$$= \int \psi (x - x_0) |\phi_\varepsilon|^2$$

$$+ 2 t \text{Im} \int \nabla \psi \cdot \nabla \phi_\varepsilon \phi_\varepsilon$$

$$+ 2 \int_0^t (t - s) \left\{ - \frac{2}{N \left(\frac{2}{N} + 1 \right)} \int \Delta \psi \frac{1}{s} \left| u_\varepsilon (s) \right|^{\frac{4}{N} + 2}
$$

$$+ 2 \sum_{i,j} \int \partial_i \partial_j \psi \partial_i u_\varepsilon (s) \overline{\partial_j u_\varepsilon (s)} - \frac{1}{2} \int \left| u_\varepsilon (s) \right|^2 \Delta^2 \psi$$

$$+ \frac{1}{\frac{2}{N} + 2} \int \nabla k \nabla \psi (x - x_0) \left| \frac{1}{s} \right|^{\frac{4}{N} + 2} \right\} ds.$$

From (3.31), the conservation of mass, Lemma 3.3 and (3.27)-(3.30), we obtain, $\forall \varepsilon, \forall t$

$$\left| \int_0^t (t - s) \left\{ - \frac{2}{N \left(\frac{2}{N} + 1 \right)} \int \Delta \psi \frac{1}{s} \left| u_\varepsilon (s) \right|^{\frac{4}{N} + 2}
$$

$$+ 2 \sum_{i,j} \int \partial_i \partial_j \psi \partial_i u_\varepsilon (s) \overline{\partial_j u_\varepsilon (s)}$$

$$+ \frac{1}{\frac{2}{N} + 2} \int \nabla k \nabla \psi (x - x_0) \left| u_\varepsilon (s) \right|^{\frac{4}{N} + 2} \right\} ds \right|$$

$$\leq c_1 + c_1 t^2.$$
Thus
\begin{align}
(3.33) \quad & \int_t^s \left\{ 8 E(\phi_\epsilon) + \int_{|x-x_0| \geq \beta_0} -2 \frac{N}{N+1} \times (\Delta \psi - 2N) k |u_\epsilon|^{\frac{4}{N}+2} \\
& + 2 \left(\sum_{i,j} \partial_i \partial_j \psi \partial_i \mu_\epsilon \partial_j \bar{u}_\epsilon \right) - 4 \left(\sum_i |\partial_i u_\epsilon|^2 \right) \right\} \, dx \\
& + \frac{1}{2} \frac{N+2}{N+2} \int \nabla k \nabla \psi (x-x_0) \, |u_\epsilon|^{\frac{4}{N}+2} \, ds \leq c_1 + c_1 t^2,
\end{align}

or equivalently
\begin{align}
(3.34) \quad & \int_t^s 2 \int_{|x-x_0| \geq \beta_0} \left(\sum_i |\partial_i u|^2 \right) - \frac{1}{2} \left(\sum_{i,j} \partial_i \partial_j \psi \partial_i u \partial_j u \right) \\
& \leq c \left(|E(\phi_\epsilon)| t^2 + 1 + \int_0^T \int_{|x-x_0| \leq \frac{\beta_0}{N}} |u|^{\frac{4}{N}+2} \, dx \, ds \right) \\
& + \left| \int_0^T (T-t) \int_{|x-x_0| \leq \frac{\beta_0}{2}} \nabla k \cdot (x-x_0) \, |u|^{\frac{4}{N}+2} \, dx \, dt \right|.
\end{align}

In addition, from (3.6) and a compactness argument in \(\mathbb{R}^N \), we have
\begin{equation}
(3.35) \quad |(x-x_0) \cdot \nabla k| \geq c_0 > 0 \quad \text{for} \quad \beta_0 \leq |x-x_0| \leq \frac{\rho_0}{2}.
\end{equation}

Thus (3.34)-(3.35) yield Proposition 3.7.

Step 3. – Conclusion of the proof.

From Proposition 2.1, we have \(\forall \epsilon, \forall t > 0 \),
\begin{align}
\frac{d}{dt} \int |x|^2 |u_\epsilon(t, x)|^2 \, dx & = 4 \text{Im} \int \bar{u}_\epsilon \nabla u_\epsilon \cdot x, \\
\frac{d^2}{dt^2} \int |x|^2 |u_\epsilon(t, x)|^2 \, dx & = 4 \left\{ 4 E(\phi_\epsilon) + \frac{1}{N+1} \int (x-x_0) \nabla k |u_\epsilon|^{\frac{4}{N}+2} \right\}.
\end{align}
We integrate twice these identities and using Lemma 3.3 we obtain for \(t \),

\[
(3.36) \quad y_\varepsilon(t) = \int |x|^2 |u_\varepsilon(t, x)|^2 \, dx = 8E(\phi_\varepsilon)t^2 \\
+ \int |x|^2 |\phi_\varepsilon|^2 + \int_0^t (t-s) \frac{4}{2 + 1} \\
\times \int (x-x_0) \nabla k |u_\varepsilon(s)|^{\frac{4}{N}+2} \, dx \, ds
\]

\[
(3.37) \quad = 8E(\phi_\varepsilon)t^2 + \int |x|^2 |\phi_\varepsilon|^2 \\
+ \int_0^t (t-s) \frac{4}{2 + 1} \\
\times \int_{|x-x_0| \leq \rho_0} (x-x_0) \nabla k |u_\varepsilon(s)|^{\frac{4}{N}+2} \, dx \, ds \\
+ \int_0^t (t-s) \frac{4}{2 + 1} \\
\times \int_{|x-x_0| \geq \rho_0} (x-x_0) \nabla k |u_\varepsilon|^{\frac{4}{N}+2} \, dx \, ds.
\]

Let us estimate the last term.

Lemma 3.10. There is a constant \(c(\varepsilon) \) depending only on \(\varepsilon \) such that

(i) \(c(\varepsilon) \to 0 \) as \(\varepsilon \to 0 \)

(ii) \(\forall t, \quad \left| \int_0^t (t-s) \frac{4}{2 + 1} \\
\times \int_{|x-x_0| \geq \rho_0} |x-x_0| \nabla k |u_\varepsilon|^{\frac{4}{N}+2} \, dx \, ds \right| \leq c(\varepsilon) \left| c_1 + 8E(\phi_\varepsilon)t^2 + \int_0^t (t-s) \frac{4}{2 + 1} \\
\times \int_{|x-x_0| \leq \rho_0} (x-x_0) \nabla k |u_\varepsilon|^{\frac{4}{N}+2} \, dx \, ds \right|. \)
Proof. We have

\[
\beta_\varepsilon (t) = \left\| \int_0^t (t - s) \frac{4}{N} + 1 \int_{|x-x_0| \geq \rho_0} \times (x-x_0) \nabla k |u_\varepsilon|^{\frac{N}{2} + 2} dx ds \right\|
\leq c \int_0^t (t - s) \int_{|x-x_0| \geq \rho_0} |u_\varepsilon|^{\frac{N}{2} + 2} dx ds
\leq c \int_0^t (t - s) \int \rho^2 (x) |u_\varepsilon|^{\frac{N}{2} + 2} dx ds,
\]

where \(\rho \) is a \(C^\infty \) function such that

- \(0 \leq \rho \leq 1 \)
- \(\rho = 1 \) for \(|x-x_0| \geq \rho_0 \)
- \(\rho = 0 \) for \(|x-x_0| \leq \frac{\rho_0}{2} \).

Therefore from Lemma 3.9,

\[
\beta_\varepsilon (t) \leq c \int_0^t (t - s) \left\{ \left(\int_{|x-x_0| \geq \rho_0} |u_\varepsilon (s, x)|^2 dx \right)^{\frac{N}{2}} \right. \\
\left. \quad \left(\int |\nabla u_\varepsilon (s, x)|^2 \rho^2 (x) dx + \int \nabla \rho^2 (x) |u_\varepsilon (s, x)|^2 dx ds \right) \right\}
\leq c \int_0^t (t - s) \left\{ \left(\int_{|x-x_0| \geq \frac{\rho_0}{2}} |u_\varepsilon (s, x)|^2 dx \right)^{\frac{N}{2}} \right. \\
\left. \quad \left(\int |u_\varepsilon (s, x)|^2 + |\nabla u_\varepsilon (s, x)|^2 dx \right) \right\} ds.
\]

From Step 1, we have

\[
\beta_\varepsilon (t) \leq c (\varepsilon) \left\{ c_1 + t^2 + \int_0^t (t - s) \\
\times \int_{|x-x_0| \geq \frac{\rho_0}{2}} |\nabla u_\varepsilon (s, x)|^2 dx ds \right\}
\]
where
\[
c(\varepsilon) = \left(\sup_{t \in \mathbb{R}} \int_{|x-x_0| \geq \frac{\rho_0}{\varepsilon^2}} |u_{\varepsilon}(t, x)|^2 \right)^{\frac{2}{N}} \to 0 \quad \text{as} \quad \varepsilon \to 0.
\]

From Proposition 3.7 and (3.40), we conclude the proof of Lemma 3.10.

Let \(\varepsilon_0 \) be such that
\[
c(\varepsilon) \leq \frac{1}{2}, \quad \text{for} \quad \varepsilon \leq \varepsilon_0.
\]

For \(\varepsilon \leq \varepsilon_0 \), \(\forall t \),
\[
y_{\varepsilon}(t) \leq \frac{1}{8} 8 E(\phi_{\varepsilon}) t^2 + c_1 - \frac{1}{2} E(\phi_{\varepsilon}) t^2
\]
\[
+ \frac{3}{2} \int_0^t (t-s) \frac{4}{2} \frac{4}{N+1} \left(x-x_0\right) \nabla k |u_{\varepsilon}|^{\frac{4}{N}+2} dx ds
\]
\[
+ \int_0^t (t-s) \frac{4}{2} \frac{4}{N+1} \left(x-x_0\right) \nabla k |u_{\varepsilon}|^{\frac{4}{N}+2} dx ds.
\]

Since \((x-x_0) \nabla k \leq 0 \) on \(|x-x_0| \leq \rho_0 \), we have
\[
\forall t, \quad y_{\varepsilon}(t) \leq c_1 + \frac{1}{2} E(\phi_{\varepsilon}) t^2.
\]

Therefore, from the fact that \(y_{\varepsilon}(1) \geq 0 \), we obtain that for a \(c > 0 \),
\[
\forall \varepsilon \leq \varepsilon_0, \quad E(\phi_{\varepsilon}) \geq -c.
\]

This is a contradiction with Lemma 3.3 and the solution \(u_{\varepsilon}(t) \) for \(\varepsilon \leq \varepsilon_0 \) blows up in finite time. This concludes the proof of the Theorem 3.2 and Section 3.

4. PROPERTIES OF \(L^2 \)-MINIMAL BLOW-UP SOLUTIONS \((\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2})\)

In this section, we assume that \(k \) is \(C^1 \) and
\[
0 < k_1 \equiv \inf_{x \in \mathbb{R}^N} k(x) \leq k(x) \leq \sup_{x \in \mathbb{R}^N} k(x) \equiv k_2 < +\infty.
\]
Moreover, we assume compactness and nondegeneracy conditions on \(k(x) \), that is

\[(4.1)' \text{ There are } R_0 > 0, \ c_0 > 0 \text{ and } \delta_0 > 0 \text{ such that for } |x| \geq R_0, \]

\[k(x) \leq k_2 - \delta_0, \quad |\nabla k(x)| \leq c_0, \]

and

\[(4.1)'' \text{ there are } x_1, \ldots, x_p \text{ such that } M = \{x; \ k(x) = k_2\} = \{x_1, \ldots, x_p\}. \]

In this section we are interested by qualitative properties satisfied by blow-up solutions such that

\[(4.2) \quad \|\phi\|_{L^2} = \|Q_{k_2}\|_{L^2} = \left\| \frac{Q}{k_2^{N/4}} \right\|_{L^2}. \]

We had seen in Section 2 that if

\[(4.3) \quad \|\phi\|_{L^2} < \|Q_{k_2}\|_{L^2} \]

then \(u(t) \) is globally defined.

Moreover under some compactness assumptions on \(k(x) \) in Section 3, we had seen that for all \(\varepsilon > 0 \), there is a blow-up solution with initial data \(\phi_{\varepsilon} \) such that

\[(4.4) \quad \|\phi_{\varepsilon}\|_{L^2} = \|Q_{k_2}\|_{L^2} + \varepsilon. \]

Therefore, if \(u(t) \), solution of Eq. (1.1) with initial data \(\phi \) satisfying (4.2), blows-up in finite time \(T < +\infty \), then \(u(t) \) is a minimal blow-up solution in \(L^2 \). Let \(u(t) \) be such a solution.

In the case \(k(x) \equiv k \), in [10], the following result has been proved: there is \(x_0 \in \mathbb{R}^N \) such that

\[
\begin{align*}
|u(t, x)|^2 & \rightarrow \|Q_{k_0}\|_{L^2} \delta_{x=x_0} \quad \text{as } t \rightarrow T, \\
|x - x_0|^2 |u|^2 & \rightarrow 0 \quad \text{in } L^1 \quad \text{as } t \rightarrow T.
\end{align*}
\]

Using variational arguments we prove the following in the case where \(k(x) \neq k \).
PROPOSITION 4.1. - Assume that \(\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2} \) and \(u(t) \) blows-up in finite time at \(T < +\infty \). We then have the existence of \(x_0 \) such that

\[
- |u(t, x)|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=x_0} \text{ in the distribution sense as } t \to T,
\]

and

\[
- |x - x_0|^2 |u(t, x)|^2 \to 0 \text{ in } L^1 \text{ as } t \to T,
\]

and

\[
\nabla k(x_0) = 0, \quad k(x_0) = k_2.
\]

Remark. - It follows from Proposition 4.1 that we do not have ejection of mass in finite time with a minimal mass \(\| Q_{k_2} \|_{L^2} \). That is

\[
|u(t, x - x(t))|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=0} \quad \text{and} \quad |x(t)| \to +\infty \quad \text{as } t \to T.
\]

In the case where \(k(x) \) does not satisfy (4.1)' and there is a sequence \(x_n \) such that

- \(|x_n| \to +\infty \) as \(n \to +\infty \),
- \(k(x_n) \to k_2 \) as \(n \to +\infty \),

we still have the existence of \(x(t) \) such that

\[
|u(t, x + x(t))|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=0}.
\]

But we do not know whether \(x(t) \) is bounded or not.

Remark. - For a general initial data \(\| \phi \|_{L^2} > \| Q_{k_2} \|_{L^2} \), we don’t know whether the concentration point of the solution in \(L^2 \) at the blow-up time is a critical point of \(k(x) \) or not.

Proof of Proposition 4.1. - We establish the result in three steps. Let us consider \(u(t) \) solution of Eq. (1.1) with intial data \(\phi \in H^1 \) such that

\[
\| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2}, \text{ and } u(t) \text{ blows up at } T < +\infty.
\]

Step 1. - **Variational estimates.**

We show that there is \(x(t) \) such that

\[
|u(t, x - x(t))|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=0}
\]

and

\[
\forall \delta > 0, \quad \text{there is a } c_\delta > 0 \text{ such that } \forall t \in [0, T),
\]

\[
\int_{|x(t) - x| \geq \delta} |\nabla u(t, x)|^2 \, dx \leq c_\delta.
\]

Step 2. - **Localization of the concentration point.**
There is \(x_0 \in \mathbb{R}^N \) such that \(x(t) \to x_0 \) as \(t \to T \). Moreover \(k(x_0) = k_2 \) and \(\nabla k(x_0) = 0 \).

Step 3. Control of \(u(t, x) \) for \(x \) large and conclusion.

We then show that

\[
|x||u(t, x)| \in L^2 \quad \text{for all } t \in [0, T)
\]

and

\[
|x - x_0|^2 |u(t, x)|^2 \to 0 \quad \text{in } L^1 \quad \text{as } t \to T.
\]

Step 1. Variational estimates: Concentration and compactness outside the concentration point.

We show that there is \(x(t) \) such that

\[
|u(t, x + x(t))|^2 \to \|Q_{k_2}\|_{L^2} \delta_{x=0}
\]

and

\[
\forall \delta > 0, \text{ there is a } c_\delta > 0 \text{ such that } \forall t \in [0, T), \quad \int_{|x(t) - x| \geq \delta} |\nabla u(t, x)|^2 \, dx \leq c_\delta.
\]

We claim this result as a consequence of the concentration properties (Section 2.B) and a crucial compactness lemma.

Lemma 4.2 ([10], p. 433). - Let \(u_n \in H^1(\mathbb{R}^N) \) and \(R_0 > 0 \) such that for a \(c_0 \), we have \(E_{k_2}(u_n) \leq c_0 \),

- \(\int |u_n(x)|^2 \, dx \leq \int |Q_{k_2}(x)|^2 \, dx, \)

- \(\int |\nabla u_n(x)|^2 \, dx \to +\infty \text{ as } n \to +\infty, \)

- \(\int_{|x| \geq R_0} |u_n(x)|^2 \, dx \leq \varepsilon(N), \)

where \(\varepsilon(N) > 0 \) is depending only on \(N \). Then there is \(A > 0 \) depending only on \(R_0, c_0 \) such that

\[
\forall n, \quad \int_{|x| \geq 4R_0} |\nabla u_n(x)|^2 \, dx \leq A.
\]
Proof of (4.5)-(4.6). Let be \(x(t) \) defined in Section 2.B (Proposition 2.4). For all \(R > 0 \), we have

\[
\liminf_{t \to T} \| u(t) \|_{L^2(B(x(t), R))} \geq \| Q_{k_2} \|_{L^2}.
\]

Let

\[
v(t, x) = |u(t, x + x(t))|^2.
\]

(4.8) \(\| v(t, x) \|_{L^1} = \| u(t, x) \|_{L^2}^2 = \| \phi \|_{L^2}^2 = \| Q_{k_2} \|_{L^2}^2, \)

and from (4.7)

(4.9) \(\forall R > 0, \)

\[
\liminf_{t \to T} \int_{|x| < R} v(t, x) = \liminf_{t \to T} \int_{|x| < R} u(t, x + x(t))^2 \, dx \geq \| Q_{k_2} \|_{L^2}^2.
\]

Therefore from (4.8)-(4.9)

(4.10) \(v(t, x) \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=0} \text{ as } t \to T, \)

or equivalently

(4.11) \(|u(t, x + x(t))|^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=0} \text{ as } t \to T. \)

And, \(\forall R > 0 \)

(4.12) \(\int_{|x| > R} |u(t, x + x(t))|^2 \, dx \to 0 \text{ as } t \to T. \)

We now claim the following lemma.

Lemma 4.3. - (i) \(\forall t \in [0, T), \)

\[
- \int (k_2 - k(x)) |u(t, x)|^{\frac{4}{N} + 2} \, dx \leq \left(\frac{4}{N} + 2 \right) E(\phi)
\]

\[
- E_{k_2}(u(t)) \leq E(\phi).
\]
(ii) \(\forall \delta > 0, \) there is a \(c_\delta > 0 \) such that \(\forall t \in [0, T) \)
\[
\int_{|x-x(t)| \geq \delta} |\nabla u(t, x)|^2 \leq c_\delta.
\]

Proof. (i) Indeed \(\forall t \in [0, T), \)
\[
E(u(t)) = E(\phi).
\]
Therefore
\[
\begin{align*}
(4.13) \quad & \left\{ \frac{1}{2} \int |\nabla u(t, x)|^2 - \frac{1}{4} \int k_2 |u(t, x)|^{\frac{4}{N} + 2} dx \right\} \\
& + \frac{1}{4} \int (k_2 - k(x)) |u(t, x)|^{\frac{4}{N} + 2} dx = E(\phi).
\end{align*}
\]
Since \(\|u(t)\|_{L^2} = \|Q_{k_2}\|_{L^2} \), we have
\[
(4.14) \quad E_{k_2}(u(t)) = \frac{1}{2} \int |\nabla u(t, x)|^2 - \frac{1}{4} \int \frac{k_2}{N} + 2
\times \int k_2 |u(t, x)|^{\frac{4}{N} + 2} dx \geq 0
\]
and from (4.1),
\[
(4.15) \quad \int (k_2 - k(x)) |u(t, x)|^{\frac{4}{N} + 2} dx \geq 0.
\]
From (4.13)-(4.15), we derive part (i) of the lemma.

(ii) Let \(\delta > 0. \) From (4.12), there is a \(t_\delta < T \) such that
\[
\forall t \in [t_\delta, T), \quad \int_{|x| > \frac{\delta}{4}} |u(t, x + x(t))|^2 dx < \varepsilon(N),
\]
where \(\varepsilon(N) \) is defined in Lemma 4.3.

From Lemma 4.2, we have the existence of \(A_\delta > 0 \) such that
\[
\forall t \in [t_\delta, T), \quad \int_{|x| > \delta} |\nabla u(t, x + x(t))|^2 dx \leq A_\delta.
\]
Since $\forall t \in [0, t_\delta]$,
\[
\int_{|x| > \delta} |\nabla u(t, x + x(t))|^2 \, dx \leq \int |\nabla u(t, x)|^2 \, dx \leq c,
\]
we have the conclusion. This concludes the proof of Lemma 4.3 and of (4.5)-(4.6).

Step 2. – Localisation of the concentration point.

In this step we use strongly the assumptions $(4.1)'-(4.1)''$. Since
\[
\int \bar{e} |u(t, x)|^2 \, dx \text{ as } t \to T \text{ can not be controlled as in the case } k(x) \equiv k_0,
\]
we cannot apply arguments such as in [10].

Let us show that there is x_0 such that

\[
(4.16) \quad x(t) \to x_0 \text{ as } t \to T,
\]

\[
(4.17) \quad k(x_0) = k_2 \quad \text{and} \quad \nabla k(x_0) = 0.
\]

Proof of (4.16)-(4.17).

Lemma 4.4. – There is a constant $c_0 > 0$ such that

\[
\forall t \in [0, T), \quad |x(t)| \leq c_0.
\]

Proof. – Indeed, from Lemma 4.3 and $(4.1)'$:

\[
(4.17) \quad \forall t, \quad \int (k_2 - k(x)) |u(t, x)|^{\frac{N}{N-2}} \, dx \leq c,
\]

and

\[
\forall |x| \geq R_0, \quad k_2 - k(x) \geq \delta.
\]

Therefore

\[
\forall t, \quad \int_{|x| \geq R_0} \delta |u(t, x)|^{\frac{N}{N-2}} \, dx \leq c,
\]

and

\[
(4.18) \quad \forall t, \quad \int_{|x| \geq R_0} |u(t, x)|^{\frac{N}{N-2}} \, dx \leq \frac{c}{\delta}.
\]
Moreover, from (4.11) and Hölder inequality we have

\begin{equation}
\int_{|x-x(t)| \leq 1} |u(t, x)|^{\frac{N}{N+2}} \, dx \to +\infty \quad \text{as } t \to T.
\end{equation}

It follows from (4.18)-(4.19) that

\[\limsup_{t \to T} |x(t)| \leq R_0 + 1, \]

and the conclusion follows.

Lemma 4.5. There is a \(x_0 \) such that

\[x(t) \to x_0 \quad \text{as } t \to T \quad \text{and} \quad k(x_0) = k_2. \]

Remark. It follows directly from \(k(x_0) = k_2 = \max_{x \in \mathbb{R}^N} k(x) \) that

\[\nabla k(x_0) = 0. \]

Proof. (i) We first remark that

\[M(t) = \min_{i=1, \ldots, p} \{ |x(t) - x_i| \} \to 0 \quad \text{as } t \to T, \]

where \(x_1, \ldots, x_p \) are defined by (4.1)\('' \). Indeed, by contradiction, assume that there are \(t_n \to T \) as \(n \to +\infty \) and \(\delta > 0 \) such that

\[M(t_n) \geq \delta. \]

Compactness arguments in \(\mathbb{R}^N \) yield the existence of \(\alpha > 0 \) such that

\begin{equation}
\forall n, \quad \forall x \in B \left(x(t_n), \frac{\delta}{2} \right), \quad (k_2 - k(x)) \geq \alpha.
\end{equation}

Therefore from Lemma 4.3,

\[\forall n, \quad \int_{|x-x(t_n)| \leq \frac{\delta}{2}} (k_2 - k(x)) |u(t_n, x)|^{\frac{N}{N+2}} \, dx \leq c_0 \]

and

\begin{equation}
\forall n, \quad \int_{|x-x(t_n)| \leq \frac{\delta}{2}} |u(t_n, x)|^{\frac{N}{N+2}} \, dx \leq c.
\end{equation}

(4.21) contradicts the fact that

\[\int_{|x-x(t_n)| \leq \frac{\delta}{2}} |u(t_n, x)|^{\frac{N}{N+2}} \, dx \quad \text{as } n \to +\infty \]

\[\to +\infty. \]
(from (4.11)). Therefore

\[M(t) \to 0 \quad \text{as} \quad t \to T. \]

(ii) Let us show now that there is \(i \in \{1, \ldots, p\} \) such that

\[x(t) \to x_i \quad \text{as} \quad t \to T. \]

Let \(\delta = \frac{1}{4} \min_{i \neq j} \{|x_i - x_j|\} > 0 \) and \(\psi \in C^\infty \) such that

\[-\psi(x) \equiv 1 \quad \text{for} \quad |x| < \delta, \]
\[-0 \leq \psi(x) \leq 1, \]
\[-\psi(x) \equiv 0 \quad \text{for} \quad |x| > 2\delta. \]

From Part (i) and Lemma 4.3 we have the existence of \(c > 0 \) such that

\[\forall t \in [0, T), \quad \forall i = 1, \ldots, N, \]

\[\int_{\delta < |x-x_i| < 2\delta} |\nabla u(t, x)|^2 \, dx \leq c. \]

We remark that \(\forall i = 1, \ldots, p \), there is \(e_i \) such that

\[\int \psi(x-x_i) |u(t, x)|^2 \, dx \to e_i \quad \text{as} \quad t \to T. \]

Indeed from direct calculations and (4.23),

\[\left| \frac{d}{dt} \int \psi(x-x_i) |u(t, x)|^2 \, dx \right| \]
\[= \left| 4 \text{Im} \int \nabla \psi(x-x_i) u \nabla u \right| \]
\[= \left| 4 \text{Im} \int_{\delta < |x-x_i| < 2\delta} \nabla \psi(x-x_i) u \nabla u \right| \]
\[\leq c \left(\int_{\delta < |x-x_i| < 2\delta} |\nabla u|^2 \right)^{\frac{1}{2}} \leq c \]

and (4.24) follows.

Therefore, from (4.11)-(4.12) and (i), there is \(i_0 \in \{1, \ldots, p\} \) such that \(e_{i_0} = \|Q_{k_2}\|_{L^2} \) and

\[x(t) \to x_{i_0} \quad \text{as} \quad t \to T. \]

This concludes the proof of Lemma 4.5 and (4.16)-(4.17).
Step 3. – Control of the solution at infinity and conclusion.
Let us show that $\phi \in \Sigma$, that is

(4.25) $|x| |\phi(x)| \in L^2,$

and

(4.26) $\int |x - x_0|^2 |u(t, x)|^2 \, dx \to 0 \quad \text{as} \quad t \to T.$

The proof will use the same type of argument than in [10].

We remark that from Lemmas 4.3 and 4.5, we have

(4.27) $\forall \delta > 0,$ there is a $c_\delta > 0$ such that $\forall t \in [0, T),$

$$\int_{|x - x_0| \geq \delta} |\nabla u(t, x)|^2 \, dx \leq c_\delta.$$

Lemma 4.6.

(i) $\int |x|^2 |\phi(x)|^2 < +\infty.$

There is a constant $c > 0$ such that

(ii) $\forall t \in [0, T), \int |x - x_0|^2 |u(t, x)|^2 \, dx \leq c.$

Proof. – Let us argue by contradiction. Suppose $\int |x|^2 |\phi(x)|^2 \, dx = +\infty.$

(i) Let us consider $\psi_A(x) = \tilde{\psi}_A(|x - x_0|)$ where

- $\tilde{\psi}_A(0) = 0,$
- $\tilde{\psi}_A'(r) = 0$ for $r \leq 1,$
- $\tilde{\psi}_A'(r) = r - 1$ for $1 \leq r \leq A,$
- $\tilde{\psi}_A'(r) = 2A - 1 - r$ for $A \leq r \leq 2A - 1$
- $\tilde{\psi}_A'(r) = 0$ for $r \geq 2A - 1.$
By direct calculations, we have for a $c > 0$,

(4.28) \[\forall x, \quad \forall A \geq 1, \quad |\nabla \psi_A|^2 \leq c \psi_A + c, \]

(4.29) \[1 + \psi_4(x) \geq \frac{|x - x_0|^2}{4}, \quad \forall 1 \leq |x - x_0| \leq A, \]

(4.30) \[\psi_A(x) \equiv c_A, \quad \text{for } |x - x_0| \geq 2A - 1. \]

Let $Y_A(t) = \int \psi_A(x) |u(t, x)|^2 \, dx$. We have for a $c > 0$,

(4.31) \[\forall A \geq 1, \quad \forall t, \quad |Y_A'(t)| \leq c \sqrt{Y_A(t)} + 1, \]

(4.32) \[Y_A(0) \to +\infty, \quad \text{as } A \to +\infty, \]

(4.33) \[\forall A, \quad Y_A(t) \to 0 \quad \text{as } t \to T. \]

(4.33) follows from (4.11)-(4.12) and (4.30). (4.32) is a consequence of (4.29) and the fact that $\int |x|^2 \phi(x)^2 \, dx = +\infty$. (4.31) can be deduced from (4.28) and (4.27). Indeed,

\[
Y_A'(t) = 4 \Im \int \nabla \psi_A \, u \overline{u} \\
\leq c \left(\int_{|x-x_0| \geq 1} |\nabla u|^2 \right)^{1/2} \left(\int |\nabla \psi_A|^2 |u|^2 \right)^{1/2} \\
\leq c \left(\int \psi_A(x) |u|^2 + \int |u|^2 \right)^{1/2} \leq c (Y_A(t) + 1)^{1/2}.
\]

Integrating in time (4.31), we obtain

\[\forall A, \quad \forall t \in [0, T), \quad |\sqrt{Y_A(0)} + 1 - \sqrt{Y_A(t)} + 1| \leq c. \]

Letting $t \to T$, we then have $\sqrt{Y_A(0)} + 1 \leq c$, which contradicts (4.32). Therefore

\[\int |x|^2 |\phi(x)|^2 \, dx < +\infty. \]
(ii) Considering now
\[\psi (x) = \tilde{\psi}(|x - x_0|) \]
where \(\tilde{\psi}(0) = 0, \tilde{\psi}'(r) = 0 \) for \(r \leq 1, \tilde{\psi}'(r) = r - 1 \) for \(r \geq 1 \). We obtain
- \(|Y'(t)| \leq c \sqrt{Y(t) + 1}, \)
- \(Y(0) < +\infty. \)

Therefore, there is a constant \(c > 0 \) such that
\[\forall t \in [0, T), \ Y(t) \leq c, \]
and since \(2 + \tilde{\psi}(r) \geq \frac{r^2}{4} \),
\[\forall t \in [0, T), \ \int |x - x_0|^2 |u(t, x)|^2 \, dx \leq c. \]

Lemma 4.7.
\[\lim_{t \to T} \int \frac{|x - x_0|^2 |u(t, x)|^2}{A} \, dx = 0. \]

The proof is the same than the one in [10] (Step 2, p. 442). Let us recall the key parts of the proof. From (4.11)-(4.12), we have \(\forall \, A \geq 0, \)
\[\lim_{t \to T} \int_{|x - x_0| \leq A} |x - x_0|^2 |u(t, x)|^2 \, dx = 0. \]

The conclusion will follow from an uniform integrability property:
\[\forall \varepsilon > 0, \text{ there is a } A_\varepsilon \text{ such that} \]
\[\forall t \in [0, T), \ \int_{|x - x_0| \geq A_\varepsilon} |x - x_0|^2 |u(t, x)|^2 \, dx \leq \varepsilon. \]

Proof of (4.35). - Let us consider \(\psi \in C^4(\mathbb{R}^N, \mathbb{R}) \)
- \(\psi(x) = \psi(|x - x_0|), \)
- \(\psi(x) = 0 \) for \(|x - x_0| \leq 1, \)
- \(\frac{1}{2} |x|^2 \leq \psi(x) \leq |x|^2 \) for \(|x - x_0| \geq 2, \)
- there is \(c > 0 \) such that \(\forall x, \forall r \geq 0, \)
\[|\nabla \psi(x)| \leq c |x - x_0| \text{ and } |\psi''(r)| + |\psi'''(r)| + |\psi''''(r)| \leq c, \]

Annales de l'Institut Henri Poincaré - Physique théorique
and

\[\psi_A(x) = A^2 \psi\left(\frac{x}{A}\right). \]

Considering \(\frac{d}{dt} \int \psi_A(x)|u(t, x)|^2 \, dx \), we obtain the existence of \(\varepsilon(A) > 0 \) such that

\[(4.36) \quad \sup_{t \in [0, T]} \int \psi_A(x)|u(t, x)|^2 \, dx \leq \varepsilon(A) \]

where \(\varepsilon(A) \to 0 \) as \(A \to +\infty \) (see proof below). The fact that \(\psi_A(x) \geq \frac{1}{2} |x - x_0|^2 \) for \(|x - x_0| \geq 2A \) implies (4.35) and the conclusion follows.

Proof of (4.36). – Let us define

\[Y_A(t) = \int \psi_A(x)|u(t, x)|^2 \, dx. \]

We have

\[|Y_A'(t)| = |2 \text{Im} \int \nabla \psi_A(x) u \bar{u}| \]

\[\leq 2 \left| \int_{|x| \geq A} \nabla \psi_A u \bar{u} \right| \]

\[\leq 2 \left(\int_{|x| \geq A} |\nabla \psi_A|^2 |u|^2 \right)^{1/2} \]

\[\times \left(\int_{|x| \geq A} |\nabla u(t, x)|^2 \, dx \right)^{1/2}. \]

We can remark that \(\forall A \geq 1, \)

\[\forall x, \quad |\nabla \psi_A|^2 \leq c \psi_A(x) + c. \]

Therefore from Lemma 4.6,

\[|Y_A(t)| \leq c \left(\int_{|x| \geq A} \psi_A(x)|u|^2 + \int_{|x| \geq A} |u|^2 \right)^{1/2} \]

\[\times \left(\int_{|x| \geq A} |\nabla u|^2 \right)^{1/2} \]

\[\leq c \left(Y_A(t) + \frac{1}{A^2} \right)^{1/2} \left(\int_{|x| \geq A} |\nabla u|^2 \right)^{1/2}. \]
or equivalently

\begin{equation}
|Y_A' (t)| \leq Y_A (t) + \frac{1}{A^2} + c \int_{|x| \geq A} |\nabla u|^2.
\end{equation}

Since (4.27),

\[
\int_0^T \int_{|x| \geq A} |\nabla u (t, x)|^2 dx dt \leq c,
\]

the convergence dominated theorem yields

\[
\lim_{A \to +\infty} \int_0^T \int_{|x| \geq A} |\nabla u (t, x)|^2 dx dt = 0.
\]

Therefore by integration of (4.39),

\[
\lim_{A \to +\infty} \left\{ \sup_{t \in [0, T]} Y_A (t) \right\} \leq c \left\{ \lim_{A \to +\infty} \int_0^T \int_{|x| \geq A} |\nabla u (t, x)^2| dx dt \right\}
\]

\[
+ c \left\{ \lim_{A \to +\infty} Y_A (0) \right\} = 0,
\]

which concludes the proof of (4.36) and of Proposition 4.1.

5. NONEXISTENCE OF L^2-MINIMAL BLOW-UP SOLUTIONS

In this section, we discuss nonexistence and existence of L^2-minimal blow-up solutions.

Under some conditions on the function $k (x)$ at infinity, we saw in Section 4 that a blow-up solution such that

\begin{equation}
\| \phi \|_{L^2} = \| Q k_2 \|_{L^2}
\end{equation}

concentrates at the blow-up time at a point x_0 such that

\begin{equation}
k (x_0) = k_2, \quad \nabla k (x_0) = 0.
\end{equation}

In subsection 5.1, under some condition on the form of $k (x)$ for x near x_0, we prove that such a solution does not exist. We briefly give the existence of such a solution in subsection 5.2 under some condition of flatness on $k (x)$ for x near x_0.

Annales de l'Institut Henri Poincaré - Physique théorique
5.1. Nonexistence of minimal blow-up solution

Let x_0 be such that $k(x_0) = k_2$ (in particular $\nabla k(x_0) = 0$). We assume for a $c_0 > 0$ that

$$\nabla k(x) \cdot (x - x_0) \leq -c_0 |x - x_0|^{1+\alpha_0} \quad \text{for } x \text{ near } x_0,$$

where $0 < \alpha_0 < 1$. It implies in particular

$$(5.3)x_0 \quad k(x_0) - k(x) \geq c|x - x_0|^{1+\alpha_0} \quad \text{for } x \text{ near } x_0;$$

(this condition does not allow $k(x)$ to be C^2 near x_0). We claim the following theorem.

Theorem 5.1. Assume that $k(x)$ satisfies $(5.3)x_0$. There is then no blow-up solution such that

$$|u(t, x)|^2 \to \|Q_{k_2}\|_{L^2}^2 \delta_{x=x_0} \text{ in the distribution sense as } t \to T$$

(where T is the blow-up time).

This theorem has the following corollary:

Corollary 5.2 (Nonexistence of L^2-minimal blow-up solutions). Assume that k satisfies (4.1), $(4.1)'$, $(4.1)''$ and all x_0 such that $k(x_0) = k_2$ satisfies $(5.3)x_0$. There is no blow-up solutions such that

$$\|\phi\|_{L^2} = \|Q_{k_2}\|_{L^2}$$

We remark that the corollary follows directly from Section 4 and Theorem 5.1. Let us prove Theorem 5.1.

Proof of Theorem 5.1. We argue by contradiction. Assume there is a $\phi \in H^1$ such that

$$(5.4) \quad \|\phi\|_{L^2} = \|Q_{k_2}\|_{L^2},$$

$u(t)$ blows-up in finite time T, and

$$(5.5) \quad |u(t, x)|^2 \to \|Q_{k_2}\|_{L^2}^2 \delta_{x=x_0}.$$

A contradiction follows from asymptotic estimates on the solution and energy arguments.
LEMMA 5.3. (Energy estimates). – We have

(i) \[E(\phi) \geq E_{k_2} (u(t)) \geq 0, \]

(ii) \[E(\phi) \geq \frac{1}{N + 2} \int (k_2 - k(x)) |u(t, x)|^{\frac{N+2}{N}} dx \geq 0, \]

(iii) \[E_{k_2} (u(t)) + \frac{1}{N + 2} \int (k_2 - k(x)) |u(t, x)|^{\frac{N+2}{N}} dx \leq E(\phi). \]

Proof. – Parts (i) and (ii) follow from \[\| \phi \|_{L^2} = \| u(t) \|_{L^2} \leq \| Q_{k_2} \|_{L^2}, \]
Part iii), and the definition of \(k_2 \). The conservation of the energy yields (iii).

We claim that

\[
\int (k_2 - k(x)) |u(t, x)|^{\frac{N+2}{N}} dx \to +\infty
\]

which will be a contradiction with part (ii) of Lemma 5.3.

Proof of (5.6). – From (5.3)x₀, (5.6) is implied by

\[
\int_{|x-x_0| \leq \rho_0} |x-x_0|^{1+\alpha_0} |u(t, x)|^{\frac{N+2}{N}} dx \to +\infty \quad \text{for a } \rho_0 > 0.
\]

LEMMA 5.4. – We have the existence of \(x(t) \to x_0 \), \(\theta(t) \in \mathbb{R}^2 \), such that

\[
\frac{1}{\lambda(t)} e^{i\theta(t)} u\left(t, x(t) + \frac{x-x(t)}{\lambda(t)}\right) \to Q_{k_2} (x) \quad \text{in } H^1,
\]

where \(\lambda(t) = \| \nabla u(t) \|_{L^2} \to +\infty. \)

Proof. – See Corollary 2.7.

Therefore for \(t \) near \(T \)

\[
|x_0 - x(t)| < \frac{\rho_0}{2}
\]
and

\[
\int_{|x-x_0|\leq r_0} |x-x_0|^{1+\alpha_0} |u(t, x)|^{\frac{N}{2}+2} \, dx \\
\geq \int_{|y| \leq \frac{r_0}{t}} \left| \frac{y}{\lambda(t)} + (x(t) - x_0) \right|^{1+\alpha_0} \\
\times \left| u \left(t, \frac{y}{\lambda(t)} + x(t) \right) \right|^{\frac{N}{2}+2} \, dx \\
\geq \lambda(t)^2 \int_{|y| \leq 10} \frac{1}{\lambda(t)^{1+\alpha_0}} |y + (x(t) - x_0) \lambda(t)|^{1+\alpha_0} Q_{k_2}^{\frac{N}{2}+2}(y) \, dy \\
\geq c \left(\int_{|y| \leq 10} Q_{k_2}^{\frac{N}{2}+2}(y) \, dy \right) \frac{\lambda(t)^2}{\lambda(t)^{1+\alpha_0}} \\
\geq c \lambda(t)^{1-\alpha_0} \xrightarrow{t\to T} +\infty.
\]

This concludes the proof of (5.6). A contradiction follows and Theorem 5.1 is proved.

5.2. Existence of L^2-blow-up solution and open problems

Using the same method as [9′], that is a fixed point and compactness argument near the solution of the homogeneous Schrödinger equation

\[
u(t, x) = w(t)^N e^{i|w(x_0)|^2} \frac{|x-x_0|^2}{4t^2} Q_{k_2} \left(\frac{w(x-x_0)}{t} \right),
\]

we are able to prove the following proposition.

PROPOSITION 5.4 (Existence L^2-minimal blow-up solution under flatness condition). – Assume $k(x) \equiv k_2$ for x near x_0. There is then a L^2-minimal blow-up solution $u(t)$ such that

\[
|u(t, x)|^2 \to \|Q_{k_2}\|_{L^2} \delta_{x=x_0} \quad \text{as} \quad t \to T
\]

(where T is the blow-up time of $u(t)$).
Remark. – Section 5 leaves open the question of existence and nonexistence of L^2-minimal blow-up solution in the case where k is a C^2 near x_0 and

$$c_1 \leq \left| \frac{D^2 k(x, x)}{|x - x_0|^{2+i}} \right| \leq c_2$$

for $i = 0, 1, \ldots$

In addition, knowing which i (and eventually c_1, c_2) separates the cases of existence and nonexistence is an open question.

6. STABILITY OF SINGULARITY

In this section, we point out the relation between the nonexistence of minimal blow-up solutions and the existence of black holes. We define a black hole as a “space singularity stable in time with respect to initial data”. More precisely, assume that there is no minimal blow-up solution $Q(x_0) = k_2$ and x_0 is a strict local maximum. Then the singularity

(6.1) $|u|^2 = \|Q_{k_2}\|_{L^2}^2 \delta_{x=x_0}$

will be stable in some sense. That is,

THEOREM 6.1. – Consider a sequence of initial data ϕ_n in H^1 such that

(6.2) $\int |\phi_n|^2 \to \|Q_{k_2}\|_{L^2}^2$, as $n \to +\infty$,

(6.3) $|\phi_n(x)|^2 \to \|Q_{k_2}\|_{L^2}^2 \delta_{x=x_0}$, as $n \to +\infty$

in the distribution sense,

(6.4) there is a $c > 0$ such that $E_{\epsilon_n}(\phi_n) \leq c$,

where $E_{\epsilon_n}(u) = E(u) + \frac{\epsilon_n}{q+1} \int |u|^{q+1}$, $\epsilon_n > 0$, $\epsilon_n \to 0$, and

$$\frac{N+2}{N-2} > q > \frac{4}{N} + 1.$$ Let $u_n(t)$ be the solution of

(6.5) $\begin{cases} iu_t = -\Delta u - k(x)|u|^{\frac{N}{2}} u + \epsilon_n |u|^{q-1} u \\ u_n(0) = \phi_n. \end{cases}$

(6.6) For all time $t > 0$,

$$|u_n(t, x)|^2 \to \|Q_{k_2}\|_{L^2}^2 \delta_{x=x_0}$$ in the distribution sense as $n \to +\infty$.

Annales de l'Institut Henri Poincaré - Physique théorique
Remark. – We have considered $u_n(t)$ solution of equation (6.5) to assure that $u_n(t)$ will be defined for all time. The same conclusions hold for solutions of equation (1.1) ($\varepsilon_n = 0$) on their maximum common time existence interval.

Remark. – In the case of nonexistence of minimal blow-up solution such that

$$E(\phi) \leq a,$$

if we assume $E(\phi_n) \to a$, same conclusion holds.

Remark. – It is an open problem to show that there is no black hole at a mass level different of $\|Q_{k_2}\|_{L^2}^2$. We conjecture there is none.

Proof of Theorem 6.1. – We do it in three steps.

Step 1. – Reduction.

We claim using concentration properties that Theorem 6.1 is implied by the following property

(6.7) $\forall t, \liminf_{n \to +\infty} \{ \inf_{s \in [0, t]} \| \nabla u_n(s) \|_{L^2} \} = +\infty.$

(6.7) implies (6.6). – Indeed, assume (6.7) and let us fix $t > 0$. From Corollary 2.7, there is a $x_n(s)$ such that

$$\|u_n(s, x - x_n(s))\|^2 \to \|Q_{k_2}\|_{L^2}^2 \delta_{x = x_0}$$

in the distribution sense uniformly in s, that is: $\forall \delta_1 > 0, \forall \delta_2 > 0$, for n large

$$\sup_{s \in [0, t]} \int_{|x - x_n(s)| \geq \delta_2} |u_n(s, x)|^2 \, dx \leq \delta_1.$$

We remark that the energy identity

$$E_{\varepsilon_n}(u_n(t)) = E_{\varepsilon_n}(\phi_n) \leq c$$

implies $E(u_n(t)) \leq c - \frac{\varepsilon_n}{q + 1} \int |u_n(t)|^{q+1} \leq c.$

Moreover, direct continuity arguments on the solution (with respect to the initial data) show that we can choose for a fixed $n, x_n(\cdot): [0, t] \to \mathbb{R}^N$ continuous with respect to s.

We claim that

$$\lim_{n \to +\infty} \sup_{s \in [0, t]} |x_n(s) - x_0| = 0.$$
Indeed, by contradiction, assume there is \(\delta > 0 \) such that \(\forall n, \) there is \(s_n \in [0, t] \) such that

\[
\forall n, \quad |x_n(s_n) - x_0| \geq \delta.
\]

We remark from (5.2) that

\[
x_n(0) \to x_0 \quad \text{as } n \to +\infty.
\]

Since \(x_n(s) \) is a continuous function of \(s \), there is a sequence \(\tau_n \in [0, t] \) such that

\[
|x_n(\tau_n) - x_0| = \delta.
\]

From the fact that \(x_0 \) is a strict local maximum, taking \(\delta \) small enough, there is \(\varepsilon > 0 \) such that

\[
k(x_n(\tau_n)) \leq k_2 - \varepsilon_0.
\]

By similar arguments than in the proof of Proposition 2.5, we have in addition

\[
\liminf_{n \to +\infty} \frac{\|\phi_n\|_{L^2}}{\|Q_{k_2}(x_n(\tau_n))\|_{L^2}} \geq \liminf_{n \to +\infty} \frac{\|u_n(\tau_n)\|_{L^2}}{\|Q_k(x_n(\tau_n))\|_{L^2}} \geq \liminf_{n \to +\infty} \frac{\|u_n(\tau_n)\|_{L^2} (B(x_n(\tau_n)))}{\|Q_k(x_n(\tau_n))\|_{L^2}} \geq 1.
\]

Going to the limit in (6.13) as \(n \to +\infty \), we obtain

\[
\frac{\|Q\|_{L^2}}{k_2^{\frac{N}{4}}} = \|Q_{k_2}\|_{L^2} \geq \limsup_{n \to +\infty} \|Q_k(x_n(\tau_n))\|_{L^2} \geq \limsup_{n \to +\infty} \frac{\|Q\|_{L^2}}{\left(k(x_n(\tau_n)) \right)^{\frac{N}{4}}} \geq \frac{\|Q\|_{L^2}}{(k_2 - \varepsilon_0)^{\frac{N}{4}}},
\]

which is a contradiction. This concludes the proof of (6.8) and the fact that (6.7) implies (6.6).
Proof of (6.7). – We are now reduced to prove (6.7). Let us argue by contradiction: assume there is a sequence \(s_n \) such that

\[
|s_n| \leq c \quad \text{and} \quad \| \nabla u_n (s_n) \|_{L^2} + \| u_n (s_n) \|_{L^2} \leq c.
\]

There is then a \(\delta_0 > 0 \), by Sobolev imbedding such that

\[
\int_{|x-x_0| \leq \delta_0} |u_n (s_n, x)|^2 \leq \frac{1}{2} \| Q_{k_2} \|_{L^2}^2.
\]

The fact that \(x_0 \) is a strict local maximum implies that taking \(\delta_0 \) sufficiently small, there is a \(\varepsilon_0 > 0 \) such that

\[
k(x) \leq k_2 - \varepsilon_0 \quad \text{for } |x-x_0| = \delta_0.
\]

Consider now \(t_n \in [0, s_n] \) such that

\[
\int_{|x-x_0| \leq \delta_0} |u_n (t_n, x)|^2 \, dx = \frac{1}{2} \| Q_{k_2} \|_{L^2}^2,
\]

for \(t \in [0, t_n] \), \(\int_{|x-x_0| \leq \delta_0} |u_n (t, x)|^2 \, dx \geq \frac{1}{2} \| Q_{k_2} \|_{L^2}^2.
\]

We have then \(t_n \) such that for a \(c_0 > 0 \), \(\delta_0 > 0 \) and

\[
|t_n| \leq c_0,
\]

\[
\| \nabla u_n (t_n) \|_{L^2} \leq c_0,
\]

\[
\int_{|x-x_0| \leq \delta_0} |u_n (t_n, x)|^2 \, dx = \frac{1}{2} \| Q_{k_2} \|_{L^2}^2.
\]

We just have to check (6.19). We argue by contradiction: assume for a subsequence also denoted \(t_n \)

\[
\| \nabla u_n (t_n) \|_{L^2} \xrightarrow{n \to +\infty} + \infty.
\]

Then by Corollary 2.7 and Proposition 2.5 (see (6.13)), we have

\[
|u_n (t_n, x-x_n)|^2 \to \| Q_{k_2} \|_{L^2}^2 \| \delta_{x=x_0} \|_{L^2}^2.
\]
and

\[
(6.23) \quad \liminf_{n \to +\infty} \left\{ \frac{\| \phi_n \|_{L^2}}{\| Q_k(x_n) \|_{L^2}} \right\} \geq \liminf_{n \to +\infty} \left\{ \frac{\| u_n(t_n) \|_{L^2(B(x_n,1))}}{\| Q_k(x_n) \|_{L^2}} \right\} \geq 1.
\]

Since \(\| \phi_n \|_{L^2} \to \| Q_{k_2} \|_{L^2} \), we have from (6.17) and (6.22),

\[
(6.24) \quad x_n \to \hat{x} \quad |x_0 - \hat{x}| = \delta_0.
\]

(6.23) implies that

\[
(6.25) \quad \| Q_{k_2} \|_{L^2} \geq \| Q_{k}(\hat{x}) \|_{L^2},
\]

that is

\[
\frac{\| Q \|_{L^2}}{k_{2}^{\frac{3}{2}}} \geq \frac{\| Q \|_{L^2}}{[k(\hat{x})]^{\frac{3}{2}}} \quad \text{or} \quad k(\hat{x}) \geq k_2,
\]

which is a contradiction with (6.16) and (6.24). Thus (6.19) is proved. Let us now obtain a contradiction with \(u_n(t_n) \).

Step 2. – Compactness of \(u_n(t_n) \) in \(L^2 \).

Lemma 6.2. – There is a \(\phi \in H^1 \) such that

\[
(6.26) \quad u_n(t_n) \to \phi \quad \text{in} \quad L^2 \quad \text{as} \quad n \to +\infty
\]

(eventually subtracting a subsequence).

Proof of Lemma 6.2. – From (6.19) and (6.20) and the fact that

\[
(6.27) \quad \| u(t_n) \|_{L^2} = \| \phi_n \|_{L^2} \xrightarrow[n \to +\infty]{} \| Q_{k_2} \|_{L^2},
\]

we have, by standard compactness arguments, (eventually subtracting a subsequence) the existence of \(\phi \in H^1 \) such that

\[
(6.28) \quad u_n(t_n) \to \phi \quad \text{in} \quad L^2_{loc} \quad \text{as} \quad n \to +\infty.
\]

In addition,

\[
(6.29) \quad \| \nabla \phi \|_{H^1} \leq c,
\]

\[
(6.30) \quad \| \phi \|_{L^2} \leq \| Q_{k_2} \|_{L^2}.
\]
We claim that in fact

\[(6.31) \quad \| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2} .\]

Then (6.31) together with (6.27)-(6.28) give that

\[(6.32) \quad u_n (t_n) \to \phi \text{ in } L^2 \text{ as } n \to +\infty.\]

We show (6.31) by contradiction. We have to avoid in some sense dichotomy. Assume that

\[(6.33) \quad \| \phi \|_{L^2} = \| Q_{k_2} \|_{L^2} - \delta \quad \text{where} \quad \delta > 0.\]

We can remark from (6.37), (6.33) and (6.28) that

\[(6.34) \quad \frac{1}{2} \| Q_{k_2} \|_{L^2} \leq \| \phi \|_{L^2} \text{ or } \delta < \frac{\| Q_{k_2} \|_{L^2}}{2}.\]

We then have the existence of \(R_0 \) and a sequence \(R_n \to +\infty \) such that for \(n \) large

\[(6.35) \quad \| u_n (t_n) \|_{L^2 (|x| > R_0)} \geq \| Q_{k_2} \|_{L^2} - \delta - \frac{\delta}{8};\]

and

\[(6.36) \quad \| u_n (t_n) \|_{L^2 (|x| > R_n)} = \delta - \frac{\delta}{8}.\]

We consider now \(\psi \) such that

\[\psi \in C^\infty, \quad |\psi| \leq 1, \quad \psi \equiv 0 \text{ for } |x| \leq \frac{1}{2}, \quad \psi \equiv 1 \text{ for } |x| \geq 1.\]

Let us consider \(t'_n \) such that

\[(6.37) \quad \text{for } t \in [t'_n, t_n], \quad \int \psi \left(\frac{x}{R_n} \right) |u_n (t, x)|^2 \, dx \geq \frac{\delta}{2},\]

\[(6.38) \quad \int \psi \left(\frac{x}{R_n} \right) |u_n (t'_n, x)|^2 \, dx = \frac{\delta}{2}.\]
We have from (6.15), (6.2)-(6.3) that

\begin{equation}
0 < t'_n < t_n \quad \text{and} \quad 0 \leq t_n - t'_n \leq c.
\end{equation}

In addition, we have, for \(c > 0 \),

\begin{equation}
\forall t \in [t'_n, t_n], \quad \|
\nabla u_n(t) \|_{L^2} \leq c.
\end{equation}

Indeed by contradiction Lemma 5.6 (ii) implies that for \(x_n \) and \(\tau_n \in [t'_n, t_n] \)

\begin{equation}
| u_n(\tau_n, x - x_n) |^2 \to \| Q_{k_2} \|_{L^2}^2 \delta_{x=x_0}.
\end{equation}

We have in addition

\[\| u_n \|_{L^2}^2 = \| \phi_n \|_{L^2} \to \| Q_{k_2} \|_{L^2}^2. \]

For \(n \) large \(\| u_n \|_{L^2}^2 - \| Q_{k_2} \|_{L^2}^2 \leq \frac{1}{8} \| Q_{k_2} \|_{L^2}^2 \) and from (6.17)

\[\int_{|x-x_0| \leq \delta_0} | u_n(\tau_n, x) |^2 \, dx \geq \frac{1}{2} \| Q_{k_2} \|_{L^2}^2, \]

we obtain using (6.40) that

\begin{equation}
| x - x_0 | \leq 2 \delta_0.
\end{equation}

Then, from (6.41)-(6.42), we obtain for \(n \) large

\[\| u_n(\tau_n) \|_{L^2 (|x-x_0| \geq 3\delta_0)} \leq \frac{\delta}{4} \]

or

\[\| u_n(\tau_n) \|_{L^2 (|x| > R_n/2)} \leq \frac{\delta}{4}, \]

which is a contradiction with (6.37). Therefore (6.40) is proved.

Let \(y_n(s) = \int \psi(\frac{x}{R_n}) | u_n(t_n - s, x) |^2 \, dx \). We have

\begin{equation}
y_n(0) \geq \int_{|x| > R_n} | u_n(t_n, x) |^2 \, dx \geq \delta - \frac{\delta}{8},
\end{equation}

\begin{equation}
y_n(t_n - t'_n) = \int \psi(\frac{x}{R_n}) | u_n(t'_n, x) |^2 \, dx = \frac{\delta}{2},
\end{equation}

Annales de l’Institut Henri Poincaré - Physique théorique
for $s \in [0, t_n - t'_n]$,

$$\left| y'_n(s) \right| \leq \frac{c}{R_n} \left| \int \nabla \psi \left(\frac{x}{R_n} \right) \nabla u_n u_n \right| \leq \frac{c}{R_n}.$$

Integrating (6.45), we obtain from (6.39)

$$\left| y_n(t_n - t'_n) - y_n(0) \right| \leq \left| t_n - t'_n \right| \frac{c}{R_n} \to 0 \quad \text{as } n \to +\infty$$

which is a contradiction with (6.43)-(6.44). This concludes the proofs of (6.31) and of Lemma 6.2.

Remark. – In the case where

$$-\varepsilon_n = 0,$$

and the fact that there is no minimal blow-up solutions, the solution of Eq. (1.1) with initial data ϕ, $u(t)$ is globally defined for all $t \in \mathbb{R}$ (using conjugation for $t > 0$ and for $t < 0$). Moreover, there is a $c > 0$ such that

$$\int |x|^2 |\phi_n(x)|^2 dx \leq c,$$

there is a simpler proof of (6.31).

Step 3. – Conclusion of the proof.

We have then the existence of $\phi \in H^1$ such that

$$u_n(t_n) \to \phi \quad \text{in } L^2 \quad \text{as } n \to +\infty.$$

Since $\|\phi\|_{L^2} = \|Q_{k_2}\|_{L^2}$ and the fact that there is no minimal blow-up solutions, the solution of Eq. (1.1) with initial data ϕ, $u(t)$ is globally defined for all $t \in \mathbb{R}$ (using conjugation for $t > 0$ and for $t < 0$). Moreover, there is a $c > 0$ such that

$$\|\nabla u(t)\|_{L^2} \leq c,$$

(where c_0 is defined in (6.18)).

Continuity arguments with respect to the initial data in L^2 implies in fact that

$$u_n(t_n + t) \to u(t) \quad \text{in } C\left([-c_0, 0], L^2\right) \quad \text{as } n \to +\infty.$$

In the case $\varepsilon_n = 0$ it follows from a result of Cazenave and Weissler (Theorem 1.2 of [1′]). In the general case, we can see from Kato [6] that

$$u_n(t_n) \to \phi$$

in standard Cauchy space where continuity with respect initial data is true from (6.19) and $\phi \in H^1$.

Vol. 64, n° 1-1996.
Since \(|t_n| \leq c_0\), from (6.45) we have
\[
\int |u_n(t_n - t_n) - u(-t_n)|^2 \to 0 \quad \text{as } n \to +\infty
\]
or equivalently
\[
\int |\phi_n(x) - u(-t_n)|^2 \to 0 \quad \text{as } n \to +\infty.
\]
From (6.3), (6.48),
in the distribution sense which is a contradiction with the fact

\[
\|\nabla u(-t_n)\|_{L^2} \leq c.
\]
This concludes the proof of (6.7) and of Theorem 6.1.

REFERENCES

BLOW-UP FOR $iu_t = -\Delta u - k(x)|u|^{4/N} u$ IN \mathbb{R}^N

(Manuscript received June 26, 1995; Revised version received September 26, 1995.)