
ANNALES DE L’I. H. P., SECTION A

IVAN T. TODOROV
Arithmetic features of rational conformal field theory
Annales de l’I. H. P., section A, tome 63, no 4 (1995), p. 427-453
<http://www.numdam.org/item?id=AIHPA_1995__63_4_427_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1995__63_4_427_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


427

Arithmetic features of rational
conformal field theory*

Ivan T. TODOROV

Institut des Hautes Etudes Scientifiques,
91440 Bures-sur-Yvette, France.

Institute for Nuclear Research, Bulgarian Academy of Sciences,
Tsarigradsko Chausee 72, BG-1784 Sofia, Bulgaria. * *

A la memoire de Claude Itzykson

Ann. Inst. Henri Poincare,

Vol. 63, n° 4, 1995, Physique theorique

ABSTRACT. - The paper differs from the Paris lecture by being shorter on
the general introduction to the subject (a version of which can be found in
another recent expose [Tod94] ), and by expanding and updating instead the
review of the result of [ST94] concerning the Schwarz finite monodromy
problem for the Knizhnik-Zamolodchikov equation. I also briefly review
the first part of a joint work with Rehren and Stanev [RST94] on ratios of
structure constants that characterize conformal embeddings referring for its
second part to the original paper.

RESUME. - Cet article differe de la conference donnee a Paris par une
introduction au sujet (voir un expose plus complet dans [Tod94]) et par
une revue reactualisee et developpee des resultats de [ST94] concernant Ie
probleme de monodromie finie de Schwarz pour 1’ equation de Knizhnik-
Zamolodchikov. Nous reexaminons aussi brievement la premiere partie d’un
travail en collaboration avec Rehren et Stanev [RST94] sur les rapports des
constantes de structure caracterisant les plongements conformes, tout en
renvoyant Ie lecteur a 1’ article original quant a la deuxieme partie.

* Based on a lecture presented at the Conference on "New Problems in the General Theory of
Fields and Particles", Paris, July 1994. Subject of a seminar talk at I.H.E.S. (November 1994).

* * Permanent address.
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428 I. T. TODOROV

INTRODUCTION

Rational conformal field theory (RCFT) gradually opened the way to an
intrusion of number theoretic methods into mathematical physics. Intriguing
parallels between V. Jones theory of subfactors [Jones83] and patterns of 2-
dimensional (2D) critical behaviour led to the introduction of lattice models
labelled by Dynkin diagrams [Pas87] and to the A-D-E classification of

current algebra and minimal conformal models [CIZ87]. This work
used number theoretic tools and triggered an interaction between the two
fields (a stage of which was recorded in a subsequent Les Houches
meeting - see [Wald92]). The trend continues in recent work on the

role of Galois symmetry in the search for modular invariants ([deBG91],
[RTW93], [CG94], [FG-RSS94], [FSS94], [Gan94]) and in applying the
representation theory of affine superalgebras to number theoretic problems
[KW94].
The present paper displays (and makes use of) some number theoretic

features of braid matrices and structure constants in RCFT models (that
have remained unnoticed in otherwise comprehensive studies in the past
- see, e.g., [FFK89]).

After summarizing in Section 1 the basic ingredients of 2D CFT I

shall present in Sections 2 and 3 an updated account of the solution

[ST94] of the Schwarz problem [Sch1873] for the Knizhnik-Zamolodchikov
(KS) equation [KZ84]. It exploits the fact that the associated monodromy
representation of the mapping class group has entries in a cyclotomic field.
We conclude in Section 4 with an observation about the invariance under

Galois automorphisms of some ratios of (squares of) structure constants
in an theory (whenever an extended chiral algebra appears at a

given level ~ - see [RST94], [PZ94]). The interest in the exceptional
conformal embeddings ([BN87], [SW86], [BB87], [AG087]) involved in
these computations stems from the fact that they are not of the Doplicher-
Haag-Roberts [DHR69]) type: unlike the case of a G/Z theory ([Ber87],
[FGK88], [SY89]) there is no gauge group (of the first kind) acting on the
extended local chiral algebra, which would leave invariant the elements of
the original current algebra.

1. CONFORMAL CURRENT ALGEBRAS: BASIC INGREDIENTS

A CFT invariant under finite conformal transformations lives on a

covering of compactified Minkowski space: the cylinder = 58 

. Annales de l’Institut Henri Poincaré - Physique theorique



429RATIONAL CFT

In a 2D CFT, for s == 1, the basic local fields are conserved chiral currents
depending on a single compactified light cone coordinate, z = ei (r-ç).
(For reviews espousing the present point of view - see [Mack88], [FST89],
[Tod94].) We shall restrict our attention to the case when the (associative)
observable algebra is the tensor product of two isomorphic chiral current
algebras

labelled by a simple (compact) Lie algebra g and a positive number h, the
height (see equation (1.6) below). ah (g) is generated by currents J (z),
where J is a matrix (with a field operator entries) that transforms according
to the adjoint representation of g. J satisfies the local commutation relations
(CR)

where 1~ (= 1, 2, ...) is the (Kac-Moody) level, z12 = z2, C"i2 is
the Casimir operator in the tensor product space of two fundamental
representations,

where

We are using in ( 1.2) and in ( 1.3a) the shorthand tensor product notation

ah (g) contains the Sommerfield-Sugawara stress-energy tensor (see [G088]
or [FST89] and references therein),

where the height h is the shifted ("quantum") level

g~ being the dual Coxeter number (g" = n for g ~ n &#x3E; 2;
g" = n - 2 for g ^_J son, n &#x3E; 5; g" = n -E- 1 for g ^_J sp2n, n &#x3E; 1;

g 
dim - 1 - 12 &#x3E; 18 &#x3E; 30 for r = 6 , 7 , 8, 9 G2 - 4

r

Vol. 63, nO 4-1995.



430 I. T. TODOROV

g~ (F4) = 9). The normal ordering in (1.5) is defined with respect to the
current modes,

(in particular, : J~, J~ :==: J~ J~ :== J~ J~ for m &#x3E; ~).
The current CR (1.2), just as well as the CR for (1.5), can be

deduced from the covariance relations

In the case of the stress energy tensor one recovers a local (world sheet)
version of the Virasoro algebra,

for

c being the Virasoro central charge that takes a fixed (positive) value in a

(unitary) CFT. This is a consequence of Wightman axioms supplemented
by the requirement of dilation invariance and by the condition (1.9) (as
established by Schroer [Sch74] and Lüscher and Mack - see [Mack88] and

[FST89] for a review and further references). A similar argument yields
(1.2) (cf [FST89]). The fact that T is given by (1.5) as a composite field
of J [which can be deduced from the assumption that T belongs to an

appropriate closure of the current algebra ah (g)] allows to express the
Virasoro charge c in terms of the level k, the height h and the dimension

d(g) of g:

The splitting ( 1.1 ) of the observable algebra into chiral parts suggests,
as an (important!) intermediate step in constructing a CFT, the study of
chiral superselection sectors, chiral vertex operators (CVO) and conformal
blocks.

Annales de l’Institut Henri Poincare - Physique theorique



431RATIONAL CFT

The set of admissible chiral superselection sectors coincides with the set
of integrable unitary highest weight modules of the level k Kac-Moody
algebra [Kac85]. They are labelled by weights A == (Ai, ..., (r being
the rank of g) satisfying

where B is the highest root of g and ai are positive integers such that

ai being the simple roots of g. the corresponding coroots.
A CVO Y~ (z), that interpolates between the vacuum Hilbert space ~o

and the space of weight A, has a local transformation law,

but carries, in general, a non-trivial monodromy:

where the conformal dimension ð.A is computed from ( 1.5):

Equation ( 1.15) together with the local reparametrization law

yields ( 1.17) and the operator KZ equation

A CVO is fully characterized by the set of its non-vanishing 3-point
functions

where for each permutation (i, j, 1~) of (1, 2, 3) we have

and CAi As A3 is an invariant tensor in the triple tensor product of irreducible
(finite dimensional) representations of g (assuming there is one). In the case

Vol. 63, nO 4-1995.



432 I. T. TODOROV

of g = su2 in which the dimensionality of the space of 3 point invariants
(for given weights l1i = 2Ii = 0, 1, ...) is 0 or 1 we identify w3 with the
vacuum expectation value of the product of 3 CVO 
The n-point blocks span a finite dimensional space .~n of solutions of

the KZ equations

where Ci~ = Ci~ are the bilinear (in the generators of g) Casimir
invariants in the tensor product of irreducible representations 11i and

A basis of solutions of ( 1.20) can be defined (in terms of integral
representations - see [ZF86], [ChrF87], [TK88], [STH92]) as analytic
functions in (a complex neighbourhood of) the real domain

They admit an analytic continuation to multivalued holomorphic functions
in the product of projective planes PC1 minus the diagonal (i. e. for zi ~ zj
if i ~ j ), thus giving rise to a representation of the monodromy group

For equal weights A (say, in the case of g = su2 and n even) .~n
carries a projective representation of the mapping class group whose

abstract definition we proceed to recall. is a group of n - 1 generators
B1, ..., which satisfy two type of relations:

(i) the condition that they generate the braid group on n strands:

(ii) three additional relations characterizing a projective representation of
the mapping class group of the sphere with n punctures (see, e.g. [Bir74]):

appears as an invariant subgroup of with quotient the permutation
group of n points.

Annales de l’Institut Henri Poincaré - Physique theorique



433RATIONAL CFT

The locality of 2D correlation functions (or, alternatively, the single
valuedness of Euclidean Green functions) implies the existence of a ,~in
invariant hermitean form (that is positive definite for unitary theories).
The existence of different CFTs associated with the same family of

representations of the underlying Kac-Moody algebra [characterized by
the height h ( 1.6)] is reflected in the existence of different braid invariant
forms (consistent with unitarity and uniqueness of the vacuum). These
forms contain information about operator product expansions and associated
structure constants that is more detailed than (and includes, in particular) the
fusion rules of the theory. It is important to know that such an information
(invariant under rescaling of conformal blocks) can be derived within the
algebraic approach to local quantum physics using recent results of the
theory of subfactors (see [RST94]). We shall demonstrate in Section 4 that
invariant ratios of structure constants can be derived from our preceding
study (in Section 2) of the monodromy representation of ,4.

2. A REGULAR FORM OF THE MONODROMY
REPRESENTATION ~3~h~ I ~ OF THE MAPPING CLASS GROUP ,4

Restricting attention to 4-point functions we gain in simplicity without
losing in generality: the study of ,4 already reduces the problem of
classifying the finite mapping class groups to the study of four non-trivial
cases. On the other hand, all consistency requirements for an RCFT can be
formulated in terms of 4-point blocks [MS89] to that their study is a key
step in constructing the full theory.
Symmetry under su ( 1, 1 ) world sheet fractional linear transformations

implies that a conformal block involving 4 CVO of equal dimensions ð.
can be written in the form

where yy is the Mobius invariant cross-ratio

We shall also make a more serious restriction - to g = su2 - the study
of higher rank groups being in its infancy. The general solution of the
resulting KZ equation

Vol. 63, n° 4-1995.



434 I. T. TODOROV

(and a similar expression for C23) or, for equal isospins,

is written as a multiple (2I-fold) integral over a polynomial 7~ in rational
powers of the integration variables ti as well as ti~ - 1 - ti,
J= (1] - ti) (see [DF84], [ZF86], [ChrF87], [TK88], [STH92], [ST95]).
Different solutions are obtained by different choices of contours which join
(or surround) the singular points of the integrand. Most often a basis of
solutions is chosen which diagonalizes one of the braid group generators BI
or B2 . This is however an unfortunate choice for ( 2 I  ) ~  4 I, since then
Bi are not diagonalizable (and one has to introduce non-integer levels 1~ or

invent some other artificial device to deal with the arising "singularities").
We shall choose instead, following [STH92], a basis of solutions P{f03BB} of
(2.3) for which B1 and B2 are an upper and a lower triangular matrices,
respectively. The integration contour for f a involves A lines joining 0 and
1] and 2I - ~ lines joining 1] and 1. More precisely, we are dealing with
2I fold integrals of the form

Remarkably, the relevant properties of the corresponding braid matrices
can be deduced from the very existence of such a "triangular basis" - using
the general ,4 relations ( 1.24) and our knowledge of the 3-point functions
( 1.20). All braid group generators are similar and hence have the same
spectrum. A simple analysis of 3-point functions shows that the common
(ordered) spectrum of the commuting matrices Bl and B3 is given by

where

It follows furthermore from ( 1.24) (applied to n = 4) that the corresponding
monodromy elements Bi and B3 coincide; combined with (2.5) this gives

Annales de l’Institut Henri Poincaré - Physique theorique
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Note that ( 1.24b) and (2.7) imply ( 1.24c) (for n = 4) as well as the

involutivity of the s H u duality (also called "fusion" - see [MS89])
matrix F :

F gives rise to a similarity transformation between the two remaining
generators BI and B2 of (which thus obey the same characteristic
equation) :

The normalization of the basis (2.4) can be chosen in such a way that
F becomes a simple permutation matrix:

This still leaves us with a freedom of rescaling of a restricted type:

One can adopt the following realization of BI satisfying these conditions
(see [ST94] ) :

Here 
n 

are the (real, vanishing for n  m) q-binomial coefficients,m 
-~- r~,

(q = q-1). We shall be, however, only interested in properties of Bi that
are invariant under the above rescaling.

Remark 2.1. - It is worth noticing that the above basis and the resulting
(regular for 4I &#x3E; k albeit non-unitary) realization of the braid matrices
has a quantum group origin. It has in fact been realized (see [HPT91]
and references therein) that the algebraic realizations of the braid group
,~n starting from the universal R-matrix for !7g (~2) ( qh = -1 ) is inverse
transposed to the monodromy representations of acting on n-point blocks
of cxh (primary) CVO. Using a realization of the ( 2 I + 1 ) -dimensional

Vol. 63, n° 4-1995.
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irreducible representation of Uq (s.~2) (for isospins I satisfying 2I  1~) in
a space of polynomials of degree 2I in a formal variable u (that can be
viewed as a coordinate in a quantum homogeneous space - see [SST94])
one can construct a canonical basis of n-point Uq invariants [FST91] given
by appropriate products of "q-differences" The basis (2.4)
of solutions of the ah KZ equation is dual to such a monomial basis
of Uq invariants for n = 4.
The representation admits at least one invariant hermitean form

M such that

Noting that the inverse of the matrix BI (2.12), and hence also that of B2
(2.9), both coincide with their complex conjugate,

we deduce that in the above basis the form M can be taken as real

symmetric and satisfying

where the superscript t to the left of a matrix stands for transposition. In
physical terms, the form M allows to write down a (real) monodromy free
euclidean Green function:

The (always existing) standard form M is degenerate for 4I &#x3E; 1~ and

is diagonalized in the s-channel basis [characterized by the factorization
property (2.27a) below]. We have

where S is an upper triangular matrix with elements

and

Annales de l’Institut Henri Poincaré - Physique theorique
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The diagonal matrix D is degenerate iff 4I &#x3E; 1~, its eigenvalues being

The eigenvalues of D are thus positive for a  m, hence there is, in

general, an ( m + 1 ) -dimensional unitarizable subfactor ,l3 ( h, 27~+1)
of ,t3 ~ h ~ I ~ . Let

where has the following block matrix form for 4I &#x3E; 1~

with

then the matrix jBi ( h, 2 I ~ m + 1) (with the first m + 1 rows and columns
of is diagonal and its eigenvalues are given by (2.5) for A  m.

The kernel of the form M, on the other hand, span (for 4 I &#x3E; l~) a (4 I - 1~)
dimensional invariant submodule (whose factor module is unitarizable). In

particular, for h even and I == - the 2 x 2 bottom square of is an

indecomposable Jordan cell of the form

The generators of t3~h~ 1&#x3E; and 13 (h, k; - 2 7 ! 2 7 + 1) for 2 7 ~ ~ differ
by just a phase factor:

Hence the corresponding commutator subgroups coincide. The (common)
commutator subgroup C (h, m) of

Vol. 63, n° 4-1995.
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&#x26;
for m :S 2" IS generated by

The factor group of either 13 m) or 13 (h,, k - m + 1) by C (h, m)
is a finite cyclic group:

The form M is, in general, not unique. Whenever a second form M
exists we shall also write it as M = t S D S with the same S (2.19) but
with a different (non-diagonal) D ~ D. This is motivated by the fact that
the s- and u-channel bases

are distinguished by their simple factorization properties:

where the 3-point function is given by ( 1.20) (with the weights 11i replaced
by isospins) and indices of the structure constants C are lowered (and
raised) by the 2-point "metric tensor" = Caao ~~~ (and its inverse).
We then refer to a theory with diagonal [of type (2.18), (2.21 )] as a
"diagonal theory". Originally, this term has been associated with diagonal
partition functions in the A-D-E classification [CIZ87], which, in fact,
implies that the 2D 4-point function G4 has a diagonal form

For unitary theories M is admissible if it is positive semi-definite [in the
m + 1 dimensional space where M (2.18) is positive] and

Annales de l’Institut Poincaré - Physique theorique
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3. GALOIS AUTOMORPHISMS AND ALGEBRAIC
SOLUTIONS OF THE KZ EQUATION

We now address the question when is the unitarizable subfactor 13 m)
of the preceding section, a finite matrix group. This is equivalent to

asking when does the su2 KZ equation have an algebraic solution. The
classification of polynomial solutions of equation (2.3) (corresponding to the
special case in which 13 (h, m) has a trivial irreducible subrepresentation)
was worked out in (MST92]. It allows to find the local extensions of the
chiral current albegra. Algebraic solutions with non-trivial monodromy can
be viewed as a generalization of the parafermions of (ZF85]. A classical 19
century paper by H. A. Schwarz [Sch1873] solves a similar problem for the
Gauss hypergeometric equation. Much closer to our times the monodromy
of higher hypergeometric functions [BH89] and the algebraic Appell-
Lauricella functions [CW92] were studied. Algebraic 4-point functions
for step operators in minimial conformal models have been found in

[RS89].
Our study is based on the key observation that both 13 (ja, m) and M

have entries in a cyclotomic field. More precisely, the matrices q2I2 Bi and,
as a consequence, the elements of C (h; m) have entries in Q (q). In fact,
they are polynomials in q of integer coefficients. M on the other hand has
elements in the real subfield Q ([2]) of Q (q) ([2] = ~ + g). The point is that
the algebraic properties of the group 13 (h, m), including the number of its
elements - in fact, all properties except for the positivity of the invariant
form M - do not depend on which primitive h-th root of -1 q is chosen
to be. In other words, the algebraic properties of the mapping class group
only depend on the fact that

More precisely, q is any root of an irreducible polynomial equation defined
as follows. Ph belongs to the ring of polynomials of integer coefficients,
uniquely determined by the property of being an irreducible element of
this ring such that P~ (e2 h ) == 0 (requiring further that the coefficient to
the leading power of q is positive, we find that it is 1). Then q is any
root of Ph (q) = 0.

The Galois group Galh of Q (q) is the group of all substitutions of the

form

Vol. 63, n° 4-1995.
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(.~, 2 h) standing for the greatest common divisor of f and 2 h. The

substitutions q 2014~ ~ and q ----+ q~+2 h are identical and should be counted
once. Thus, Galh can be defined alternatively as the multiplicative group
(mod 2 h) of integers coprime with 2 h,

It permutes the roots of Ph and the degree n (h) of P~ is equal to the
number of elements of Galh. In fact, we can write

We display, as an example, the multiplication table for Gal6 using the
realization (3.2b). Gal6 has 4 elements which can be taken as £ = 1, 5, 7, 11
satisfying £2 = 1 (mod 12), and i j = l~ (mod 12) for any permutation
(i, j, I~) of (5, 7, 11). This is, clearly, the multplication table for Z2 x ~2.
The eigenvalues Da (2.21 ) of the ,13~h~ I ~ invariant form M (2.18)

are positive for A = 0, 1, ... , m, provided this is true for the

corresponding quantum dimensions: [2 ~ + 1] &#x3E; 0. These "odd quantum
dimensions" are, on the other hand, polynomials with integer coefficients
in [3] == q2 + 1 -~ q2 (as a consequence of the recurrence relation

[2~+3] = ([3] - 1 ) [2 n + 1] + [2 n - 1] and of [1] = 1). We are thus
led to consider the stability subgroup Gal[3]h of [3] and the factor group

G~ acts effectively on the (real) ~-number [3] which also obeys an

irreducible polynomial equation R~([3])=0. The number of elements
of Gh is equal to the degree of Rh which is 1 2 n(h) for odd h(~ 3)
and 1 4 n (h) for even h ~ 4. We present for readers’ convenience a

Annales de l’Institut Henri Poincaré - Physique théorique
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table exhibiting Ph (q), Galh, G h, and Rh ([3]) for a few small values
of h:

([3])

q2 - q + 1 ~2
4 q4 + 1 Z2  Z2 {1} [3]-1
5 q4 - q3 + q2 - q + 1 ~4 ~2 [3]2 - [3] - 1
6 q4 - q2 + 1 Z2  Z2 {1} [3]-2
10 q8 - q6 + q4 - q2 + 1 7L4 X 7L2 7L2 [3]2 - 3 [3] + 1
12 q8 - q4 + 1 Z2  Z2  Z2 7L2 [3]2 - 2[3] - 2
18 q12 - q6 + 1 Z6  Z2 Zs [3]3 - 3[3]2 + 1
30 q16 + q14 - q10 - q8 Z4  Z2  Z2 Z2  Z2 [3]4 - 3[3]3 - [3]2

-q6 + q2 + 1 
L J 

+3[3]+1

(Note that the subgroup Gal[3]h = Z2 x Z2 of Galh for even h ~ 4 involves
the nontrivial substitutions (q ----+) qh+1 - -q~ and their product
q ----+ q h -1 = _ q . For h odd 1 are even and hence not coprime with
2 h; we are left in this case with Gal[3]h = Z2 with nontrivial element
q ----+ q2 h-1.)
A form M with entries in an algebraic field ~" is said to be totally positive

if it is positive for all embeddings of :F into C. Applied to a form M with
entries in Q (q) where q is a particular root of Ph (q) = 0 it is equivalent to
the requirement that M is positive together with all its Galois transforms.
Our solution to the Schwarz problem is based on the following crucial

lemma. _ - .. _ 
- _ , . _ ___ _ .. _

PROPOSITION 3.1. - If the restriction M (h, m) of the form M (2.18) to
the (m + 1 ) -dimensional space where it is non-degenerate,

OY

is totally positive then the matrix group 13 (h, m) is finite. Conversely, if
13 (lz, m) is a finite matrix group and the 13 (h, m) invariant hermitean
form is unique, then it is totally positive.

The proof of the first statement is based on the observation that any
discrete compact group is finite (B. Venkov, private communication). The
second uses the fact that any (finite dimensional) representation of a compact
group (in particular, of a finite group) is unitarizable.

Vol. 63, nO 4-1995.
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Remark 3.1. - Using Galois automorphisms one can also decide when
a given element of C (h, m) C 13 (h, m) is of (in)finite order. We shall
illustrate the method on the simplest example of 2 x 2 braid matrices
corresponding to su2 weight 2I = 1, or 2I = k - 1 = h - 3. In both
cases the group commutators b and b (2.24) and the product (2.24) have
the following basis independent characteristic:

Noting that a matrix b is unitarizable if its eigenvalues lie on the unit circle
and that det b = 1 (= det b) we deduce that for h ~ 4 b is unitarizable iff

The validity of (3.6) for all Galois images of [3] is also a necessary
and sufficient condition for b to be of finite order (by the argument of
Proposition 3.1 or, more directly, observing that the order of a cyclotomic
matrix does not change by a Galois transformation). A straightforward
analysis shows that this is only valid for h = 4, 6, 10; in the first 2 cases
[3] is Galois invariant (being an integer - see Table 1), in the third one [3]
and its Galois transform satisfy the equation

both roots obeying (3.6). According to (3.5) tr b-1 b takes the values 0, 0,
1 for h = 4, 6, 10, so that b-1 b is also of finite order. Indeed we have

Thus we reproduce the result of [Jones83] about the cases of a finite matrix
group whose group algebra is a Hecke (Tempereley-Lieb) algebra.

THEOREM 3.2. - The group 13 (h, m) is finite only in one of the following
cases:

(i) for all 1-dimensional representations with m = 0; these incude

(besides the trivial representaiton I = 0) the cases of "simple currents",
2 I = 1~; the resulting 13 (~, I 0) is the cyclic group 7~4 for odd h, it is

Annales de l’Institut Henri Poincare - Physique theorique
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7l2 for h = 4 p and is trivial for h = 4 p + 2 ( p there are trivial

subrepresentations of 13 (h, m) corresponding to (non-zero) integer spin
fields in the D2 P+1 series (for h = 4 p, p &#x3E; 2) and in the Er series (for
h = 12, 18, 30) - cf. [CIZ87];

(ii) in the three cases of 2-dimensional representations corresponding to
(3.8); the commutator subgroups are then

where Un is the (n ! element) double cover of the alternating group Un;
the case (3.9a) is again reproduced for a subrepresentation of C ( 12, 3)
corresponding to the E6 model;

(iii) the group 13 (6, 2) of 3 x 3 matrices whose commutator subgroup
C (6, 2) is isomorphic to the 27 element Heisenberg- Weyl group over Z3.
We shall prove the theorem for the cases in which the invariant form M

is unique postponing the analysis of reducible representations of 13 (h, m)
to the end of this section.

According to Proposition 3.1 ,t3 (h, m) is finite provided M is totally
positive, or, in view of (2.21 ), provided the quantum dimensions [2 ~ + 1]
are positive for A = 1, ..., m. The analysis of Remark 3.1 concerning
A = 1 already selects just the 3 values of h appearing in (3.8). The

corresponding commutator subgroups (3.9) are identified using their

characterization in terms of generators and relations (see [CM57]). The
8 element group Hg is the simplest dicyclic group (2, 2, 2) ([CM57]
Section 1.7) with defining relations

it arises as a representation of the commutator subgroup for ~2014~+1=0.
The binary alternating groups are identified with the same conventions as
follows ([CM57] Section 6.5):

Vol. 63, n 4-1995.
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Proceeding to higher spins 7 &#x3E; 1 which yield a (2 7+1)-dimensional
representation of 13 (h, 2) for h &#x3E; 6 we must have both [3] &#x3E; 0 and [5] &#x3E; 0

(for all Galois images of the q-numbers). This leaves us with a single
new group corresponding to ja = 6 ([5] = 1 being Galois invariant in this
case). The SU3 subgroup C (6, 2) can be identified with the 27 element
Heisenberg-Weyl group H27 characterized by the relations

where c belongs to the centre Z3 of SU3:

Alternatively, H27 can be defined as a group of triangular 3 x 3 matrices
with 7l3 entries

(G. Pinczon, private communication).
We now proceed to summarizing the result of a study of the cases

in which a second braid invariant hermitean form exists, indicating the

reducibility of ,~3 ( h, m). In contrast to the above simple argument this
study is based on the A-D-E classification of su2 current algebra models.

The E6 and the Eg models indicate the existence of 1-dimensional

invariant subspaces for the matrix groups B(12, 4), S(12, 6~5) and

S (30, 10). Indeed, they correspond to conformal embeddings of the (level
10 and 28) su2 current algebra into rank 2 levels 1 algebras:

and are characterized by modular invariant partition functions

(the subscript of the Virasoro 0 characters x == x (T) standing £ for the

dimension 27+1 of the associated 0 representation of S’U2). The a12 
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primary field of isospin 3 appears as an a4 current; similarly, the
a3~ primary field of isospin 5 plays the role of an a,, (G2) current,
both having conformal dimension 01 = 1. The additional currents have

polynomial 4-point amplitudes ([Chr87], [MST92]) thus providing local
extensions of the current algebras of heights 12 and 30.
The level 1 so5 model, corresponding to Virasoro central charge

Cl = clo (su2) = 5/2. This can be viewed as a special case of
the odd orthogonal group series with

In particular, it is a close analogue of the level 1 so3 model, a4 (~03) c~
a4 (~~2). with C2 (~2) = 3 / 2, their braid groups being identical. They both
involve a local Fermi field of conformal dimension 1/2 and braid group

B ( h = 27(7+ 1), m = 2 I ) = Z2 (the isospin I = 1, 2 coinciding with

the rank r of so2r+1), and a magnetization CVO of isospin Ir ( = 1 2, 3 2

for r = 1, 2 and conformal dimension multiple of 2014:’ 
/ 

p 
16

which intertwines the Neveu-Schwarz and the Ramond sectors of the theory.
Its 4-point blocks span a 2-dimensional mapping class group isomorphic to
the finite group 0(4, 1) (with commutator subgroup ~4). This is, in fact,
the only additional (compared to Theorem 3.2) case of a finite braid group
of (matrix) dimension bigger than 1 within the A-D-E classification. In

particular, the braid group for the 4-point blocks of I = 3, Ag == - CVO
of the Es model coincides with 13 (5, 2 ~ 2) and is, hence, infinite.

Remark 3.2. - The groups C ( h, 1 ) of equation (3.9) also appear as the
commutator subgroups of the double coverings of the symmetry groups
of the Platonic solids (see (SI083]). These are: (a) the binary tetrahedral
group ~4 whose commutator subgroup is H8; (b) the 48-element binary
octahedral group 64 with commutator subgroup 2t4, and (c) the icosahedral
group ~5 which is simple and coincides with its commutator. We have the
exact sequences of groups and group homomorphisms
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We see, in particular, that N4 appears in two guises: first, in (3.9a), as
the commutator subgroup of B (4, 1 ), and a second time, in (3.18a) as the
subgroup B(6, 1 ) of 13 ( 6, 1 ) of 2 x 2 matrices of determinant 1. B(6, 1 )
is, in fact, generated by the elements

satisfying the defining relations for the group (2, 3, 3):

(Note that for q4 = -1, m = m = b b-2 b = b b-2 b so that 64 does not
appear as a subgroup of S(4, 1). Equations (3.9) and (3.18) reflect our
interpretation of [Jones83] correspondence between (finite group) Hecke
algebras and symmetry groups of Platonic solids.

4. CHARACTERISTIC RATIOS OF STRUCTURE CONSTANTS

We now proceed to evaluate the invariant under rescaling ratios of

structure constants for the two exceptional conformal embeddings (3.14).
As stated at the end of Section 1 they characterize the extended (E-even
type) chiral algebra in its relation to the diagonal (~4/c+i) theory. Indeed,
they provide a quantitative comparison between two inclusions of local field
algebras: the embedding (3.14) and the inclusion of ah into 2D (local)
field algebra of the diagonal theory. Moreover, they can be computed from
these data using subfactor theory [RST94]. We shall demonstrate here that
they can be calculated from the two ,13 (h, m) invariant forms D and D
(Section 2) appearing for h == 12 and 30. (Structure constants have also
been computed by other methods - see [Pet89], [FK89], [FKS90], [PZ94].)
We shall determine the non diagonal s-channel forms by the

requirement that they satisfy

where are the s-channel 0 (h, rn) generators (2.22) [a short hand for
2I ~ rn + 1)].

Commutation with the diagonal matrix implies that a non diagonal
element D ~l~ (A / 0) can only appear if the corresponding eigenvalues of
B(I)1 coincide, i.e., for
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This is satisfied for the "triangular number" heights

The non-diagonal invariant form &#x3E; is then given by

where dI03BB = (I)03BB0, dI0 = 1, and = 1 and CI03BB (03BB ~ 0, 2 p + 1) are

determined from covariance. (The possibility to express the "structure
constants" di in terms of the matrix elements of justifies the name
fusion matrix for F.) The analysis is facilitated by the knowledge of the
operator content of the E theories reflected in (3.15). The fact that some

(integer) isospins ~c are not present among the primary weights implies that
= = 0; hence,

m

F~~~D~~ = 0 (for/~12,~1~~30~-1,2,4,7,...). ( 4.5 )
T=0

Just one of these equations is sufficient to determine the non-diagonal
element provided it is the only non-vanishing di for
A &#x3E; 0. This is indeed the case for the E6 model; we have

In the Eg model there are two A1 primary fields that mix with the identity
for I = 5 (~ ~ 0 for A = 5, 9) and one should take a system of two
equations of type (4.5) (say, for M = 1, 2) to determine them. Alternatively,
we can view the E8 chiral algebra (that involves 4 A1 primary fields

corresponding to isospins 0, 5, 9, 14) as an extension of the Die algebra
(generated by the simple current of I = 14, ~14 = 7). In that case the
CVO VI for I == 5 and 9 (Aj = 1 and 3) are combined into a single Dl6
CVO, the corresponding (I = 5) representation of 134 being 9 dimensional
(rather than 27+1=11 dimensional as it is the case for the A29-theory).
Then we again have a single A &#x3E; 0 (a = 5) for which 0 (D
denoting the second - non-diagonal - braid invariant form in the Dls
theory).
Under a rescaling

of the s-channel blocks [equivalent to (2.11 )] the entries of also change
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The diagonal form D (2.18) rescales under an identical law so that the ratios

remain invariant. Given that D~_i ~1 = (~+1)~ " see (4.4) - we
identify these (positive) quotients as ratios of squares of structure constants.
(For a study of the sign freedom in determining d~ - see [PZ94] . ) To
compute these characteristic ratios for the two conformal embeddings (3.14)
we need [according to (4.5)] the s-channel F-matrix

- cf. (2.22) (note the difference between the range of summation and the
range of indices A, M). Inserting S from (2.19) (2.22b) we find

In evaluating (4.8) we also use q-number identities that depend on the
height,

The outcome of a lengthy but straightforward calculation is
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Remarkably, all these (independent of scale conventions) ratios are rational
numbers and are, hence, invariant under Galois automorphisms. This

observation (also made in [PZ94] for a wider class of examples) still

awaits its explanation.

5. CONCLUDING REMARKS

The intuition that a local quantum field theory is determined by "the germ
of its observable algebra", consisting of local functions of the stress energy
tensor and of the internal symmetry currents, requires some amendment.
Depending on certain number theoretic properties of the height h a 2D
conformal current algebra may give rise to one or several (up to 3 for

RCFT. An individual ah (g) CFT is distinguished by a maximal local
extension of a~ and by a (finite) series of braid invariant hermitean forms
M in the spaces of 4-point blocks of the primary CVOs of the theory.
Number theoretic properties have been gradually unravelled in classifying

modular invariant partition functions ([CIZ87], [CG94], [FSS94]). The
work pursued (and reviewed) in this paper exhibits and exploits some
number theoretic features of the forms M and of the associated monodromy
representations of the mapping class group of the 2-sphere with 4 punctures.
The non-unitary basis of solutions of the KZ equation introduced in [STH92]
(with emphasis on its regularity for 4I &#x3E; l~) gives rise to a representation
,~3~h~ I ~ of 64 with elements in the cyclotomic where q is a

primitive root of qh = -1. The hermitean form M has entries in the real
subfield Q ([2]) of Q ( q) ([2] = q -~- q, q = q-1 ) . It is positive definite (in the
m+1 dimensional "physical subspace" of 4-point blocks) for [2] = 2 
but its image under a Galois automorphism q 2014~ ~, (2 h, l) = 1, in

general, is not. If it is, - i. e. , if for some pair ( h, I ) M is totally positive,
then the corresponding representation 2I|m + 1) of 64 is a finite
(algebraic) group. Ratios of diagonal elements of the s-channel images D
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and D of two hermitean forms M and M, corresponding to the same
pair ( h, 7), characterize (in a normalization independent way) a conformal
embedding that provides a non-trivial extension of the chiral current algebra.
Surprisingly, they are found to be rational numbers (invariant under Galois
automorphisms) for all local extensions of ah (and for a number of
other examples displayed in [PZ94]).
The bulk of this paper reflects a long lasting collaboration with Yassen

Stanev. Section 4 reviews some of the results of a joint work with him
and with Karl-Henning Rehren. It is a pleasure to thank them as well as
P. Cartier, M. Flato, T. Gannon, K. Gawedzki, L. Hadjiivanov, V. Petkova,
G. Pinczon, B. Venkov and J.-B. Zuber for useful discussions.
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