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On the use of modular groups
in quantum field theory

H. J. BORCHERS
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Vol. 63, n° 4, 1995, Physique theorique

ABSTRACT. - A survey of the use of the Tomita-Takesaki modular

theory in the theory of local observables will be given. This contains,
in particular, the characterization of chiral field theories in terms of the
concept of modular inclusions. Moreover, it contains the reconstruction

of the translation-group fulfilling spectrum condition out of the modular
conjugations of the algebras associated with wedge-domains. Finally we
will discuss the connection of modular transformations of the algebras of
wedge-domains and Poincare transformations in higher dimensions. This
includes problems related to the wedge-duality.

Nous presentons une revue de 1’ utilisation de la theorie

modulaire de Tomita-Takesaki en theorie des observables locales. Elle

contient, en particulier, la caracterisation des theories de champs chiraux par
l’utilisation des inclusions modulaires. Elle contient aussi la reconstruction

du groupe des translations satisfaisant a la condition spectrale a partir de
la conjugaison modulaire des algebres associees aux domaines en forme de
coin. Enfin, nous examinons la relation entre la transformation modulaire
des algebres associees a ces domaines et les transformations de Poincare
en dimensions superieures. Cette partie concerne aussi Ie probleme de la
dualite des coins.
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1. HISTORICAL REMARKS

At the Baton Rouge conference 1967 Tomita [To] distributed a preprint
containing his theory on the standard form of von Neumann algebras.
At the same time Haag, Hugenholtz and Winnink [HHW] published their
paper on the description of thermodynamic equilibrium states using the
KMS-condition. Probably N. Hugenholtz and M. Winnink have been the
first realizing the similarity between certain aspects of their approach
and Tomita’s theory and hence the importance of this new mathematical
theory for theoretical physics. (See e.g. the thesis of M. Winnink [Win].)
But Tomita’s theory became general knowledge only by Takesaki’s [Ta]
treatment published in the Lecture Notes in Mathematics. Since then, this
theory is usually called the Tomita-Takesaki theory.
A central role in this theory is played by faithful normal states of von

Neumann algebras. As a consequence of the Reeh-Schlieder theorem [RS]
we know that the vacuum-state has this property for every local algebra
in quantum field theory. Therefore, several people hoped that the Tomita-
Takesaki theory could be made a useful tool also for quantum field theory.
It seems as if these wishes will become true only nowadays. The long delay
is due to the fact that the modular group has only an abstract definition and
therefore, its geometric meaning (if there is any) is not obvious.
The first application of the Tomita-Takesaki theory has been in

thermodynamics. But we will not discuss this here. We also will not

mention Connes’ classification of factors, and the use of this by Driessler,
Fredenhagen, Wollenberg, Borchers and Wollenberg, and others. Not

mentioned shall be also the sporadic use of the Tomita-Takesaki theory by
Eckmann and Osterwalder, Kraus, and many others. We are interested in the
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333MODULAR GROUPS IN QFT

connection of the modular group with geometric transformation appearing
in quantum field theory. In 1975 Bisognano and Wichmann [BW 1,2]
discovered that in a Lorenz-covariant Wightman theory the modular group
of the algebra connected with a wedge domain coincides with the Lorentz
boosts which leave this wedge invariant. This shows that in certain cases the
modular group has a geometric meaning. Since in a massless field theory
the interaction travels with the speed of light it follows that in such theory
the algebras of two regions, which are timelike separated, commute with
each other also. Therefore, in such theory the vacuum-vector is cyclic and
separating for the algebra associated with the forward light cone. In 1977
Buchholtz [Bu] computed the modular group of this algebra. He found that
in this situation the modular group acts as dilations. The conformal group is

also the invariance group of the forward tube (Cartan group). Therefore, in a
conformal covariant field theory one can obtain the algebra of a double cone
by applying a certain conformal transformation to the algebra of a wedge.
This transformation transforms also the corresponding modular groups. This
computation has been done by Hislop and Longo [HL] and they found that
also in this case the modular group acts as a geometric transformation.
Knowing the geometric structure of the modular group usually leads to
the possibility of answering questions of physical interest. In the case of
Bisognano and Wichmann it was the wedge duality which could be proved
by using the new techniques.

If the modular group acts geometrically on the algebras associated with
the double cones then one can use the modular groups (after proper
rescaling) as local dynamics. This means the following: We fix a double
cone centered at the origin and look at the increasing family of double
cones obtained by scaling. In this case the modular groups of the large
double cones (after proper rescaling) approximate the time translation on
the small double cone. Therefore, one hopes to be able to approximate
the time translations also for general local nets and to obtain by this a
"local dynamic".

If one has a local dynamic then it might be possible to define also local
Gibbs states and to look at thermodynamical limits of such states. This
would serve as the missing link between the abstractly defined KMS states
and the local dynamics defined in the vacuum representation. This program
has been carried through by Buchholz and Junglas [BJ] but with some extra
condition and different local dynamics. The new input they need is the
nuclearity condition which allows to define local dynamics in a different
way. However, that the hamiltonian dynamics and the modular dynamics
cannot be too different is implied by the coincidence of the nuclearity

Vol. 63, n ° 4-1995.



334 H. J. BORCHERS

condition for the hamiltonian and the local modular operator. This has been
discovered by Buchholz, D’ Antoni and Longo [BDL 1,2] .

My interest in the modular group originates in the observation that the
modular group 0394it, applied to expressions of the form where A

is an element of the algebra (or its commutant), permits some analytic
continuation. This, together with the spectrum condition leads to matrix
elements of products of operators analytic not only in the translations but
also in the modular action. It is known from many experiences in field theory
that such analyticity properties can give rise to drastic restrictions. The first
result was the observation that looking at functions in space and modular
variables one finds expressions which have some periodicity property in a
complex direction, [Bch1] 1990. Mostly this is of little use since in general
the domain of holomorphy does not contain any line in the direction of
periodicity. If there is enough analyticity then interesting conclusions can
be drawn. Such a case has been found by the author in 1992 [Bch2]. It

implies that in two-dimensional quantum field theory the modular group of
the wedge can be interpreted as a Lorentz transformation. This means the
translations together with the modular group of the wedge give rise to a
representation of the two-dimensional Poincare group. In addition there is
a localization which implies that a Poincare covariant local net has been
constructed. One can start from the right or the left wedge. In general the
answer will be different. Only in a theory satisfying wedge-duality the two
group representations coincide. If the two representations are different then
also the localizations are different. This means if an algebra is localized in
one scheme it is not localized in the other scheme.

The use of the modular theory for two-dimensional field theory has been
further developped in 1992 by Wiesbrock [Wiel,2,3]. He observed that there
are sub algebras of the wedge-algebra which are mapped into themselves
by a part of the modular group of the wedge. Using this information he
was able to reconstruct the translation group which necessarily fulfills the
spectrum condition. Moreover, this information can be used to give an
algebraic characterization of chiral field theories. Parts of these results are
based on ideas of Schroer. Many of these results are based on the fact that
one is dealing with conformal field theory and some of the results stay
true also for higher dimensional conformal fields as it has been shown by
Hislop and Longo [HL], Brunetti, Guido and Longo [BGL 1 ], Gabbiani and
Frohlich [GF], and others.

Together with the modular structure there is a modular conjugation. It

acts like a reflection but only in two dimensions. In higher dimensions
we only know this for the Bisognano-Wichmann situation. On the other
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335MODULAR GROUPS IN QFT

hand every Poincare transformation can be composed out of reflections.
Buchholz and Summers [BSul] used this to reconstruct the translations out
of these reflections. This can be done if certain additional requirements are
fulfilled. These translations will fulfill the spectrum condition. The original
requirements of Buchholz and Summers can be weakened as shown in a
recent paper [Bch3]. Recently this method has been generalized in order
to incorporate the whole Poincare group [BSu2]. This program is not in a
satisfying state since there appear some unsolved cohomological problems.
A similar method is due to Brunetti, Guido and Longo [BGL2]. Instead
of requiring geometric action of the modular conjugations of the wedge
algebras they assumed geometric action of the modular groups (of the

wedge algebras) themselves. In this situation the covering of the Poincare
group can be constructed. In both these cases one knows that the modular

groups and modular conjugations of the wedges act geometrically in the
two-plane defining the wedge. Therefore, the new requirement is about the
behaviour of these transformations in the directions perpendicular to the
defining two-plane.

Another problem which seems to be solvable with help of the modular
group of the wedge algebra is the CPT-theorem in the theory of local
observables. One knows from a result of Oksak and Todorov [OT] that for
a Wightman field with an infinite number of components the CPT-theorem
does not hold. Therefore, it is clear that not every Araki-Haag-Kastler
theory is CPT-invariant. The covariance under Poincare transformations

is not sufficient to prove the CPT-theorem. From the investigation of
Bisognano and Wichmann [BW1.2] we know that the theory must fulfill
at least wedge duality. This means that the commutant of the algebra of a
wedge W is the algebra of the opposite wedge W’, i.e.

Whether or not this condition suffices to show the CPT-theorem is not

known. A necessary and sufficient condition for the wedge duality of a
Poincare covariant theory of local observables has been given by the author
[Bch4].

2. PRELIMINARIES

In this section we want to collect the notations and the necessary

background for understanding what is presented below. All results will

be cited without proofs.

Vol. 63, n 4-1995.
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A. Tomita-Takesaki theory

Let ?-C be a Hilbert space and be a von Neumann algebra acting on
this space with commutant .A/f. A vector H is cyclic and separating for
M if 0 and S2 are dense in 7~. If these conditions are fulfilled then

a modular operator A and a modular conjugation J are associated with
the pair (.M, H) such that

(i) ð. is self-adjoint, positive and invertible

(ii) The unitary group 0394it defines a group of automorphisms of M

(iii) For every A E the vector A H belongs to the domain of 0394 2 .

(iv) The operator J is a conjugation, i.e. J is antilinear and J2 = 1,
where J commutes with 0394it. This implies the relation

(v) J maps onto its commutant

(vi) The operators ,5’ : :== J03941 2 and 5’* := J0394-1 2 have the property

For the proof see Takesaki [Ta] or textbooks as Bratteli and Robinson
[BR] or Kadison and Ringrose [KR].

B. The theory of local observables

In the theory of local observables one associates to every bounded open
region 0 in Minkowski space a C*-algebra .4(0). For any unbounded
open set G the C*-algebra ,A ( G) Ïs defined as the C* inductive limit of the
.A (O) with 0 c G. These algebras are subject to the following conditions:

( 1 ) They fulfill isotony, i.e. if 01 C 02 then C A ( 02 ) .
(2) They fulfill locality, i.e. if 01 and O2 are spacelike separated regions

then the corresponding algebras commute, i.e.

(3) They fulfill translational covariance, the translation group of

IRd acts as automorphisms on For every a E IRd there exists an

automorphism aa E with

Annales de Henri Poincaré - Physique theorique
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A representation 7r of is called a particle representation if

(i) 7r a non-degenerate representation on a Hilbert space 7~.
(ii) There exists a strongly continuous unitary representation of the

translation group

such that

(0152) The spectrum of U (a) is contained in the forward light cone.
(/3) The representation U (a) implements the automorphism aa, which

means that for every A E one has

A representation 7r is called a vacuum representation if

(iii) 7T is a particle representation.
(iv) In 7~, there exists a vector H such that:

In the following we will always deal with vacuum representations and we set

For more details about the theory of local observables see the book of
R. Haag [Ha] .

C. The result of Bisognano and Wichmann

The first calculation of a modular group in quantum field theory is due to
Bisognano and Wichmann [BWI,2]. This is done in Wightman field theory
where one makes the usual assumptions of this theory. In particular they
assume that the fields have only a finite number of components, so that the
CPT-theorem is valid. Moreover, they assume that they can pass from the
algebra of unbounded operators to the algebra of bounded operators. (For
details on the last problem see e.g. [BY].) .

The domain which is of special importance is the wedge. Such a domain
can be characterized in two ways:

(i) First characterization: Let t, s be two perpendicular vectors in ~d . i.e.

(t, 8) = 0, such that t2 == 1 and t belongs to the forward light cone and
82 = -1 is spacelike. In this situation one defines

If, for instance, t is the time direction and s is the 1-direction then this

becomes WR = {a; |a0|  

Vol. 63, nO 4-1995.
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(ii) Second characterization: Every two-plane containing a timelike

direction must cut the boundary of the forward light cone in two light
rays. Let these light rays be described by the two lightlike vectors ~i, ~2
belonging to the forward light cone. These vectors are different. Now define:

It is easy to see that the two definitions results in the same set of wedges.
The two definitions coincide if {~ 8} and {~i, ~2} span the same two-plane
and if s = Ai £1 - ~2 ~2 with positive coefficients.
The opposite wedge of a wedge W is the negative of H~ and it is usually

denoted by W’. It is obtained by replacing 8 by -8 in the first description
and by interchanging the two lightlike vectors in the second description.
Given a wedge W there is exactly a one-parametric subgroup of the

Lorentz boosts which maps this wedge onto itself. In the above example
of the zero- and one-direction the Lorentz transformations are the boosts

in the (0, 1 )-plane. We will write these transformations (in case the wedge
is the right wedge Wr in the (0, 1 )-plane) as

Bisognano and Wichmann showed the following results:

(i) One denotes by [ the linear combination of products of test functions

and the field operator by

We say _f has its support in G if every has its support in G. If
the support of f is contained in Wr then

allows in t an analytic continuation into the 

(ii) Let R be the proper rotation such that RP is the reflection in the
(0, 1 )-plane where P is the reflection defined by the CPT-operator. Define
J = then

Annales de Poincare - Physique theorique
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(iii) If the algebras generated by the field operators are affiliated with
a local net of von Neumann algebras .M (0) then one has wedge-duality
which means

We learn from these results that one can interprete U (A (t) ) as the modular
group of the wedge algebra and that J can be interpreted as its modular
conjugation.

For the modular group of the forward lightcone or the double cone in
conformal field theory consult the original papers ([Bu], [HL]).

D. Remarks on the edge of the wedge problem

The theory of several complex variables is an important tool in quantum
field theory and we assume familiarity with these methods. The situation
appearing here (and often in other physical problems) is the edge of the
wedge problem. One deals with two analytic functions f + ( z ) and ,~ - ( z ) ,
z E ~n defined in tubes T+ and T- = -T+ respectively. The tube T+ is
based on a convex cone C C f~n with apex at the origin and defined by:

One assumes that f + ( z ) and / ( z ) both have boundary values f + ( x ) ,
/’ (x) respectively (in the sense of distributions) and that these boundary
values coincide on some open set G c In this situation one knows

from the edge of the wedge theorem [BÖT] that both functions are

analytic continuations of each other and are analytic also in a complex
neighbourhood of G. Therefore, the common function can be analytically
continued into the envelope of holomorphy of T + U T - where

denotes the complex neighbourhood of G obtained by the edge of
the wedge theorem.
Here we need only the special case of two dimensions where T+ is the

tube based on the first quadrant. The coincidence domain in our case is
also the first quadrant. In this case the envelope of holomorphy is easy to
compute and the result can be found in [BEGS].

This calculation implies the following property about real lines: If one
has a linear manifold which is real for real values of Zl, z2 and if this real

line intersects the first quadrant then all its non-real points belong to the
envelope of holomorphy computed before.

If the coincidence domain is the half-space axl + bx2 &#x3E; 0, a, b &#x3E; 0 then

the envelope of holomorphy consists of (:2, except for a cut in the variable
azl + bz2 ~2~~az1 + bz2 E 
Vol. 63, n 4-1995.
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3. THE FUNDAMENTAL RELATIONS

Large parts of modern investigations concerning modular groups are
based on the following results:

THEOREM A. - Let .JUi, .J~ be two von Neumann algebras with the common

cyclic and separating vector 0 and denote the modular operators and

conjugations by 0~, ~I~ and ON, JN, respectively. Let Y E ~3 (~l) be
a unitary operator with

then the function Tl (t) .- O~t Tl has the properties
(a) Tl (t) is *-strong continuous in t E I~.

(b) V (t) possesses an analytic extension into the strip ,S’ (0, 2 =
t ’ 0  sm t  1 2 as holomorphic function with values in the

normed space ,~ (~‘~C)
(c) In this strip we have the estimate

(J) V (r) ~~ ~~ 3m r = 0 1 ’ 3m r == _ ~ ~~

~-~~r9~ ~9/~y.
(~) (9~ ~~ ~~ v~/M~ ’ M ~~~~ ~y

hence ’ by (a) also , this function is *-strong $ continuous in t.

3.1 Remark. - The functions Y (t) fulfill the following £ chain rule: If

UPU* and , then W = V!7 maps P into o and 0

one 
" finds

Moreover, with .l~’ D V* V one obtains

Notice that the function V (2)* is again an analytic function holomorphic

in S ( -~, 0) = , -1  t  0 }. Therefore, the last relation
reads in the complex

V* (z) _ ~ (-z)*.
Annales de l’Institut Henri Poincare - Physique theorique
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THEOREM B. - Let .l~ be two von Neumann algebras with the common
cyclic and separating vector O. Let W (s) E ,t3 (~-~C) be an operator family
fulfilling the following requirements with respect to the triple ,J~, S2).

(i) For (s) the operators W (s) are unitary and strongly continuous
and fulfill W ( s ) 0 = o.

(ii) The function W ( s ) possesses an analytic continuation into the strip
S 0 1 and has continuous boundary values.

(iii) The operators W 2 2 + t are again unitary.
(iv) The function W (03C3) is bounded, hence ~W(03C3)~ ::; 1.

(v) For t E ~ one has

In this situation the modular operator and the transformation W ( s )
fulfill the following . transformation rules:

This result as well as that of Theorem A can easily be generalized
to the situation where the boundary values are taken in the sense of
distributions. We later use Theorem B in the case where the boundary
value has eventually one discontinuity.

Special versions of Theorem A can be found in [Bch2] and in [BDL1] ]
and of Theorem B in [Bch2] and [Wie2].

Proof of Theorem. A. - The continuity properties are shown by standard
methods. The interesting parts are the analyticity properties. Take A’ E A/B
We consider the vector

and look at possible analytic continuations. We shall use the following
abbreviations: = and = Since Aj~.
is the modular group for .JU we can analytically continue 03C8 (t, s) in

the variable s into the strip ,5’ B 0, _ ~/ ). This continuation has continuous
boundary values and we find

Vol. 63, n 4-1995.
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The operator jN (~N (A’* ) ) belongs to the algebra .1~. Therefore,

belongs to .J1~I . Now we can continue the vector

s + i ~) in the variable t into the stri p ,S’ ( 0, _ ). Again we obtain
continuous boundary values and find

Notice that the operator JN ON is unitary, so that we obtain

Now using the Malgrange-Zerner-Theorem (see e.g. Epstein [Ep] we see
that ~ (t, s) has an analytic continuation into the tube based on the triangle
defined by the points

The strip S 0, - ) of the complex manifold t = s belongs to the

boundary of the above tube. Therefore, we have to prove that the

function stays analytic in the remaining variable. To this end we define

~ (~ ~ := ~ (~ + y, x - y). In these variables we have analyticity in the
tube based on the triangle with the corners

The functions 03C6(x, y) are for fixed y analytic in the strip

S ( -3m y, 1 2+ 3m . We choose !Re = 0 and with 3m ?/ we want to
reach 0. For fixed  0 the z?7) has continuous boundary
values. Since the strip can be transformed bi-holomorphically onto the unit
circle it follows that 03C6 (x, z ~) can be expressed with a transformed Cauchy
kernel as an integral over the boundary values. This kernel is ,C1 on the

boundary and depends real-analytically on ~ in a neighbourhood of zero.
On the boundary we are only dealing with one modular group so that we
know that the boundary values are continuous also for ~ ~ 0. Hence the

"Cauchy" integral converges to a function which is analytic in the variable t.

The function 03C8 (03C4, r) is analytic in the strip 6’ 0 1 . On the lower and
upper boundary we find ~03C8(t, t)~ = 03C8(t+i1 2, t+i1 2)~ = 

Annales de Henri Poincaré - Physique théorique
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This implies by the maximum modulus 
This shows that V (T) is bounded in norm by 1 on J1~I’ H. Since this set
of vectors is dense in 7~ it can be continuously extended to a bounded
operator with the same norm. The value of V (T) at the upper boundary

follows from the above remark. If T is an interior point of ,5’ { 0, - ) with
distance d from the boundary and if we make a power series expansion
around this point then we find that the n-th coefficient is a bounded operator
with norm at most d-n . Therefore, the power series is converging in the
norm topology. D

The proof of Theorem B will be split into two parts. We start with the
following result:

3. 2. PROPOSITION. - Let W the requirements listed in Theorem B.
Then the operator function

has an analytic continuation into the tube domain based on the quadrangle
with the four corners

In this domain we have the estimate

At the our corners it takes the values

Proof. - This result is a consequence of the last theorem together
with the Malgrange-Zerner theorem. First we can continue for real s

in the variable t into the strip 6’ 0 ’2 1 and for real t in the variable
s into the strip 5t / 0, - 1B ). For r == - z -f- t we have the expression

W s 2 2 + t) = J-itM W (s)JN 0394itN which, because JM, JN are

Vol. 63, n" 4-1995.
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antiunitary, has an analytic continuation in s into the strip 5 2014 -, 0 ).
Since one has to take into consideration that J is an antilinear operator
it follows that the function (~) JN is analytic. The values at the
corners are obtained by simple computations. D

Proof of Theorem. B. - Since the function W (s, t) is defined and

bounded it suffices to look at its matrix-elements for studying its properties.
We choose two operators A E N and B E and introduce two functions

It is clear that the operator function W ( s, t) * is analytic in the conjugate
complex of the domain of analyticity for W (s, t). Now we look at the
points where the two functions coincide. We have the following identities:

Since A one has W (s, t)* E This implies the first

statement. Next the operator

belongs again to since J interchanges the algebra and its commutant

and W ( ~ + ~ ) maps the commutant of into the commutant of M.

From this follows the second statement. As a consequence of this result we

see that the two functions are two different representations of one function
F (s, t) which is periodic, i.e.

Moreover, by the edge of the wedge theorem and the tube theorem we find
that this function is analytic in the tube-domain

Since the operator W ( 8, t) is bounded in norm by 1 we see that the function
F (.s, t) is bounded by 
the function F is entire and bounded in the direction of periodicity which
implies that the function T) depends only on one variable, i. e.

Annales de Poincaré - Physique theorique
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In the above equation for F T) we choose real arguments and for z the
value of t. Then we get F (s, t) = F (s + t, 0). Inserting the expression
for F we find O~t W (s) H) == (H , BW (s + t) A H). This
is the first statement in matrix elements. Since S2 is cyclic and separating
the equation for the matrix elements becomes an equation for the operators.
This yields the first relation. The second relation is obtained by choosing
the value - for T. D

2

4. ONE-DIMENSIONAL SITUATION

In the two-dimensional theories the structure of quantum fields is much
more transparent than in the general theory because of the product structure
of the forward light cone. This simplification has its counterpart also in the
structure of the modular groups. Therefore, we start with this subject. But
we will simplify the situation even more by looking at theories depending
only on one variable. Remember that in classical physics the solutions of the
free wave equations in two dimensions split into the sum of two solutions
depending only on one of the light cone coordinates The same is

true for certain quantum fields. First we shall look at theories depending
only on one light cone variable. For the sake of definiteness we will deal
with "right movers". First we want to show the following general result:

4.1. THEOREM. - Let M be a von Neumann algebra with cyclic and
separating vector H and J~( be the modular operator and conjugation
of the pair H). Then

(a) the following statements are equivalent:
(i) There exists a unitary group U (s) with positive generator fulfilling

(ii) There exists a proper subalgebra .J~ c with H as cyclic vector,
such that

(b) If the conditions (a) are fulfilled then the modular group of and

the translations U (a) fulfill the relations

Vol. 63, n 4-1995.
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If equation ( ~ ) is fulfilled then the group U (A) can be normalized such that
the following , equation holds:

(c) If (a) or (b) is fulfilled and if the generator of U (a) is bounded then

U (a) is identical to 11.

The implication (a, i) -t (b) and hence -t (a, ii) can be found in [Bch2].
The implication (a, ii) -t (a, i) is due to Wiesbrock [Wie2]. The situation
described in (ii) of Theorem 4.1 is called half-sided modular inclusion.
If the sign is of some importance we speak about ± half-sided modular
inclusion. The second result deals with the uniqueness of the interpolating
family of von Neumann algebras. It is generally believed and proved under
additional assumptions that all local von Neumann algebras are the same.
Therefore, the theory is not defined by one algebra only but one needs at
least two of them. In this situation we have

4. 2. THEOREM. - Let and a E IR be two families ofvon Neumann
algebras on the Hilbert spaces with the cyclic and separating
vector SZ~.,.L, SZn, respectively, which are introduced as follows. Assume there
are continuous unitary one-parametric groups U~ (a) UN (a) both fulfilling
spectrum condition and define

Assume , that:

Ifwe ’ moreover assume ’ that there exists a , unitary map W with W 7~~ ~ 
and !1m and in addition

then it follows that:

The same is true ifwe require that and M1 as well as and N1 both
fulfzll modular inclusion for negative arguments of the modular groups.
The uniqueness of the interpolating families is taken from [Bch3].

Proof of Theorem. 4.1. - (a, i)-t(b). If U(a) fulfills the assumptions of
(a, i) then it has an analytic continuation into the upper half plane. For
positive arguments U (a) maps into itself by assumption and hence
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U (a) maps .M’ into itself for negative arguments. Hence we can apply
Theorem B to the family W (s) = !7(e~) and obtain together with the
analyticity of U ( a )

(b) ~ (a, ii). If we set .l~ = !7(1)A~(-1) then we obtain
= This is contained in .J~ for

negative values of t.

(a, ii) 2014~ (a, i). Assume this to the true and assume .J~ = U ( 1 ) .J1~1 U ( -1 )
then one has 0394-jtM 0394itN = 0394-itM U (1) DiM U (-1) = U (e27rt -1). Therefore,
one has to show that the product 0394-itM 0394itN =: D (t) commutes for different
values of the arguments. For this one uses Theorem B again. In the situation
.N C one can apply Theorem A with V = ]1 and will find that D (t)
has an analytic continuation into the strip 5’ ( 0, - ). On both boundaries
the expression is unitary. By assumption of the modular inclusion one
obtains:

The last statements follow from D C ~ -f- t,J = D (t) J,V maps .lV’

onto N, D (t) maps this into .M and finally maps this into .A/~ 

Consequently one can apply Theorem B to the expression

which leads to the relation
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Multiplying this equation from the left with 0394-itM and from the right with
then we get with e27rx == e203C0s + 1

Since this expression is symmetric in x and t we obtain the commutativity
of the operator family D (~). If we set U (e27rt - 1) = D (t) then the above
equation reads

This shows that U (a) is additive for positive arguments and by analytic
continuation it follows that it is an additive unitary group with positive
generator. It remains to show that N is of the form U (1) .M U (-1). To
this end we introduce:

4. 3. DEFINITION. - If the modular inclusion stated in Theorem 4.1 is

fulfilled then we put

Next we will show that this is a good definition.

4. 4. LEMMA. - The von Neumann algebras jV(~), defined above, fulfill
the following j relations:

Proof - Because of modular inclusion we have .J1~(t) 
Since unitary transformations preserve order we obtain the first statement
for positive arguments. Moreover, .J~ c implies C for positive
t. For negative t we obtain the corresponding statements by the properties
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of JM. Finally the algebra N (0) is a subalgebra of .M which is invariant
under the modular group of .M and hence coincides with .A/t. D

4.1, continuation. - From the observation that 
is a continuous group it follows that the family N (t) is also continuous at
zero. (In this context we understand that the relations .N (0) = { N N (t)}"

c&#x3E;o

and .IV (0) = n N (t) hold.) Hence we obtain

(c) If U (a) has a bounded generator then U (a) is entire analytic and
hence the equation [B, U (a) AU (-a)] = 0 for B E .J~l’ and A E J~l is

true for arbitrary a if it is true for positive a. This shows that U (a) defines
an automorphism of Since the generator is bounded it defines an inner

automorphism ([Ka], [Sak]) and since the state defined by H is left this

automorphism is the identity. Hence also U (a) is the identity.
This proves Theorem 4.1. D

It remains to show the statements concerning the uniqueness. Also the
proof of Theorem 4.2 needs some preparation. We start with

4. 5. LEMMA. - Let and be two families with the same cyclic and
separating vector S2. Assume they fulfill the condition of Theorem 4.1. 7/’w
assume = and = N1 then follows

Proof. - From Theorem 4.1 (b) we know that the modular conjugation of
the algebra maps the algebra onto the commutant of the algebra

Therefore, if i = and then one has also
== by the identity of the modular conjugations. The smallest

set containing 1 and 0, which is invariant under the above map, is the set
of positive and negative integers. D

Proof of Theorem. 4.2. - From Lemma 4.5 we know that the two families
of algebras coincide for all entire values of a. Let U (a) be the unitary
of the family and that of the family Take A E and

B E and consider the two functions
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F+ is the boundary value of an analytic function holomorphic in the tube

F- has an analytic extension into the tube T* = 2014T~. By the assumption
of isotony it follows that the two functions coincide for a &#x3E; 0, b &#x3E; 0.

However, since we know that Mi and coincide for i we obtain a

larger coincidence-domain namely, all points which are larger than a point
(i, -i), i E 7l with respect to the order given by the first quadrant. The
boundary of the coincidence domain is the sawtooth curve obtained by
taking the boundary of the union of all the translated first quadrants. We
want to enlarge this domain by computing the envelope of holomorphy.
From the Remarks 2.D we know that the complex points of the line

a + b == C &#x3E; 0 belong to the envelope of holomorphy. Using these straight
lines we obtain by the continuity theorem that the coincidence domain
consists of all points a + b &#x3E; 0. Again by the Remarks 2.D we obtain that
the function is entire in the difference-variable a-b. Since it is bounded

we obtain !7(a)V(-~) = 1. Hence U (a) and V(a) coincide. Since Jlilo
and are the same it follows that the two families are the same. If the

two families of von Neumann algebras are in different Hilbert spaces then
we apply the above result to the families and W * and obtain

the Theorem 4.2.

We end this section by looking at the case that we are dealing with a
+ half-sided modular inclusion.

4. 6. THEOREM. - Let .J~ be two von Neumann algebras with cyclic
and separating vector Q, and ð., J be the modular operator and conjugation
of the pair (.J~1, S2). Assume, moreover,

then there exists a unitary group U (s) with negative generator fulfilling

Between the given two algebras one has the relation

Proof. - Let us look at the operator function
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This function has the following transformation properties:

The first two equations follow by assumptions. The third equation is a
consequence of the relation

This implies that for t  0 D (t) maps N into itself and for all other
cases it maps N’ into itself. As in Theorem 4.1 this implies that D (t) is
a commuting family of unitaries. Precisely speaking, the operator W (s)
of Theorem B is

which implies according to the same manipulation as in Theorem 4.1

Inserting == which implies == we find
+ 1 ~_~27r.r

Defining D (t) ==: U (e-2"t - 1) then the same arguments as used in the
proof of Theorem 4.1 show that i7 (t) gives rise to an additive unitary but
this time with a negative generator. Moreover one finds

Hence Theorem B can be applied to this algebra together with the group
U (t) and we obtain

63, n ° 4-1995.



352 H. J. BORCHERS

5. CHIRAL QUANTUM FIELDS

We start again with the assumption that we are dealing with a

half sided modular inclusion, with a triple (.11~1 D A/*, H) such that
C .J~ for t  0. In addition we assume that the vector H is

also cyclic for M ~ N’. First we have to introduce a notation.

5.1. DEFINITION. - By a standard chiral field theory we understand
an association of von Neumann algebras to the open intervals I of the
unit-circle S1 fulfilling:

(i) Isotony, i.e. 7i C I2 implies (h ) C M (~2).
(ii) Duality, i. e., M(5~B7) _ .J~l (7)~, where in this formula the open

complement is meant.

(iii) There exists a vector H cyclic and separating for every algebra
( I ) if S 1 and 7/0.

(iv) This family of algebras is covariant under the action of the Mobius

group Sl (2, R)/Z2. there exist automorphisms 0152g implying

where I9 denotes the interval obtained by acting with the group element
g on the interval I.

(v) There exists a unitary representation W (g) of the Mobius group
implementing the automorphisms a9, i.e.

(vi) The vector 52 is left fixed by the group representation W (g).
(vii) After transforming the circle onto the straight line the representation

of the translations of this W (a) has a positive generator.
The Mobius transformations are the maps of the unit-circle onto itself,

which can be analytically continued into the interior of the circle. All of
them are of the form:

Typical examples are:

(i) Rigid rotations: z ---7 z. These transformations appear for a = 0.
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If 0152 i- 0 then the equation for fixed points is a quadratic equation. If
the solutions are different we obtain:

(ii) Dilatations: If 1 and -1 are the fixed points then with b &#x3E; 0 the
transformation has the form:

If the two fixed points become a double point then we speak of
(iii) Translations: If 1 is the fixed point then the transformation for a E R

is given by the formula:
a

any three of the above mentioned subgroups containing a dilatation generate
the whole Mobius group.

Using the triple (..l~t, N, S2) we can construct a dilatation A~ and
a translation U (a), such that .J~ == With the help of these
operators we introduce an algebra for every interval ( a, b) by the

5 . 2. DEFINITION. - For every pair a, b E R U oo and with -oo = oo we
define two algebras as follows:

From the assumption that H is cyclic for n .J~’ == 1 it follows
that H is cyclic and separating for every b with a ~ b.
By means of the triple H) we obtain the dilatation A~ and

a second "translation" V (t) such that one obtains n = ad V ( 1 ) 
This transformation permits to give a second construction for the algebras
of the intervals.

5. 3 . DEFINITION. - With 1/~ = 0 we define two algebras for every pair
a, b G R U oo as follows:
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(...) If oo  1  1  oo we a,g = ’b,a.
With these notations we get the following characterization of standard

chiral field theories.

5.4. PROPOSITION. - Let .J~ C be a pair of von Neumann algebras
with the following restrictions:

(i) There exists a vector 0 which is cyclic and separating for .11~1, .J~,
and .J~’ n 

(ii) The triple N, 0) fulfills the condition of - half sided modular
inclusion.

Then these data define a standard chiral field theory iff the algebras
band .Jlil a, b coincide.

This result is essentially due to H. W. Wiesbrock [Wie4], although our
formulation differs from his. Also our proof is not identical with his proof.
Later we will give equivalent conditions implying the assumption of the
theorem. This will coincide with the formulation of Wiesbrock.

Proof. - We transform the real line onto the circle by the transformation

The inverse transformation is (w = 

By this map the algebra M becomes the algebra of the upper half circle,
the algebra .J~ is mapped onto the algebra of the second quadrant and
N’ n M onto the algebra of the first quadrant.
The three groups, the modular automorphism of At the translations of

the two triples (At .1~,-SZ) and .J~’ n At H) are transformed into

geometric actions of the circle. The adjoint action of these groups operate
by assumption in the correct geometric manner on the algebras of the
intervals. In particular 0394it and U (a) transform the algebras b and
Dit and Y ( b) the algebras Since coincide and

since the three groups generate the whole Mobius group we obtain a map
from the Mobius group into the automorphisms of the family ~./1~I (7)}.
It remains to show that the three groups 0~ , U (a), Y (b) generate a

representation of the Mobius group (after the correct change of variables).
Different representants can only differ by a local gauge because of the
correct action on the set of algebras. Consequently one obtains a group r
with a normal subgroup of local gauges such that r/N is the Mobius group.
Hence one must show that N is trivial. This is due to the following: Take
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an interval of the circle. Then we can represent the modular operator
of b) in two different ways as function of namely using the
algebras or the algebras for the calculation. From the fact that

these algebras coincide we obtain relations between the groups U (a) and
V (b). Together with the known relations between the modular group of 
and U (a) and V (b) respectively one shows that different representations
of elements of the Mobius group coincide. This implies that N is trivial
and shows the theorem. D

It might be instructive to start only from the -half-sided modular inclusion
(./~l, .J~, H) and to require that H is also cyclic for n .J~’ and to look
for different conditions in order to guarantee that we are dealing with a
standard chiral field theory. Using Definition 5.2 we are able to construct
every algebra b. But instead of looking at the second translation V (t)
we look at the algebra 1 and in particular at its modular conjugation
J-i,i.

5.5. PROPOSITION. - Let 03A9 be cyclic and separating for .JU, n N’
and assume that the triple (M, 03A9) fulfills the condition of -half-sided
modular inclusion. Define as in Definition 5.2. Then this setting

standard chiral field theory iff the following two conditions are
fulfilled:

where ~T_ 1, 1 is the modular conjugation of .I1~1 _ 1, 1.

(ii) The algebra .J~ coincides with the relative commutant of 
in .Jlil, i.e.:

Proof. - From the relation ad 1 = and the fact that J_ 1, 1

is antiunitary we obtain the relations

where J and A are the modular conjugation and modular operator of the
algebra .M. This implies in particular (A E R):

Taking the intersection with or with ./1~1’ we obtain:
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This is the relation where it is necessary that .J~ coincides with its second
relative commutant in .M. Since J_1, 1 maps 1 onto oo we also

obtain a relation between the corresponding translations:

Together with the invariance of M under ad J-1, 1 we find by this equation
that the conditions of Proposition 5.4 are fulfilled. D

Sometimes the conditions for a standard chiral field theory are formulated
in such a way that the difficulties are hidden. The result is the following:

5. 6. THEOREM. - Let ./lill, J1~12 be two von Neumann algebras and n be a
vector, then these data define a standard chiral field theory iff the following
conditions are fulfilled.

(i) n is cyclic for .M 1 n ./1~l 2 and for n 

(ii) Let JZ denote the modular conjugation of i then one has

(iii) Let A denote the modular operator of then

Proof. - This setting allows many different interpretations namely 
corresponds to the algebra of the upper half circle and .J1~12 to the algebra
of the left half circle. If we apply a rigid rotation of the circle to this

scheme then we obtain the other possible interpretation. We will use the
first interpretation. It is clear from the assumptions that the triple 

n ~(2. H) fulfills the condition of + half sided modular inclusion.

Therefore, the triple (M1, n [2) fulfills the condition of -half-
sided modular inclusion. Since J2 maps onto itself if follows that

n A~2 coincides with its second relative commutant with respect to
and hence the conditions of Proposition 5.5 are fulfilled. D

There are other means of constructing standard chiral field theories from
a local theory on a line. For details see Fredenhagen [Fre] or Buchholz
and Schulz-Mirbach [BSM].

6. TWO-DIMENSIONAL THEORIES

In this section we deal with a two-dimensional quantum field theory. But,
most of the results will be valid also for higher dimensional theories in
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the situation where we fix one time- and one space-coordinate and assume
that all sets are cylindrical in the other directions. As distinguished set we
use the right wedge. The algebra associated to this set will be denoted

by (W). It has the property that the translations in the direction of
this wedge map the algebra into itself. Two of these directions lie in the
boundary of the forward or in the backward lightcone respectively. The
translations in the directions of the lightcone coordinates fulfill the spectrum
condition. This yields the connection with the investigations of section 4.

6.1. THEOREM. - Assume M is a von Neumann algebra on H with
cyclic and separating vector H. Assume U representation of the
two-dimensional translation group which fulfills the spectrum condition and
which has H as fixed point.

If for every a in the closed right wedge one has

then the following relations exist between the group representation and the
modular group:

This means that we have a unitary representation of the two-dimensional
Poincaré group. If we define ,

provided one has b - a E W, then this net transforms under
the Poincaré group.

This result is taken from (Bch2].

Proof. - Introducing lightcone coordinates a+, a- we can use the results
obtained in the last two sections. One should notice that the group U (a- )
used here and the corresponding group used in the proof of Theorem 4.2
differ by the sign. This leads to

This shows the first statement. The second statement follows from this by
the definition and the commutation relations between the translations and
the modular group. D
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Also 0 this situation can be charactized by using the modular group 0 instead
of the translations.

6.2. THEOREM. - Let C M and A/2 C M be three von Neumann
algebras with common cyclic and separating £ vector 0 and assume

Denote by !7i (t), U2 (t) the translations which exist according to
Theorem 4.1 and fulfill the spectrum condition and the relations

then the following conditions are equivalent:
(a) Ul (t) and U2 (s) commute for arbitrary t, s E IR.

(b) ad Ul (t) .J~2 C .J~2 for t &#x3E; 0.

(c) ad U2 (t) .J~1 C .J~1 for t :S 0.

(d) One of the two products ~h J~, J~ ~T1 commutes with one of the
products ~I~ ~I2, J2 Here ~Ti stands for 

If these equivalent conditions are fulfilled then there exists a two-

parametric family .Jlila, a E 1R2 ofvon Neumann algebras. All of them have
n as cyclic and separating vector. This family fulfills isotony, covariance
under translations with a positive generator and hence also covariance
under the Poincare group. This family is connected to the given algebras by

Originally the algebras have been constructed by the author. The
construction of these algebras with help of the modular inclusion is due
to H.-W. Wiesbrock [Wie3 ] .

Proof - If (a) is equivalent to (b) then it is also equivalent to (c) by
symmetry. Assume (a) then one finds for t &#x3E; 0:

and hence (b) is fulfilled. Next assume (b) then fulfills the

condition of Theorem B with respect to the sulbalgebra J~2. Hence we
obtain
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and consequently

From this follows (a) because of

Since we have Jl = ad U1 (1) JM it follows Jl = Ul (2). We get
JM Jl = Ul (-2) and J2 JM = U2 (-2), JM J2 = U2 (2) accordingly.
Hence (a) implies (J). It is sufficient to show the converse for one of
the combinations. For the other combination the result follows in the
same manner. So we choose the commutator of the first products. From
Jl (2) and J2 = U2 (-2) we know that !7i (2) and U2 (-2)
commute. Applying the modular automorphism of the algebra .M to this
commutator we obtain the commutation of !7i 2) and U2 2).
Since with two commuting operators also their powers commute we find
that !7i 2 m) and U2 ( -e-27rt 2 ~z) commute for n, m E 71. Let EM be
the spectral projection of !7i (a) for the interval [0, M]. Then the expression

is in z an entire analytic function of order M and bounded on the reals with
zeros at e’~2m. But the density of zeros of a function of exponential
type cannot be too high. (Carlsons Theorem, see Boas [Boa] 9.2.1) Hence
this function vanishes if e-27rt 2  {27rM}~. Now both unitary groups
are boundary values of analytic functions, which implies that

vanishes. Since the value M was arbitrary we ascertain that !7i (x)
commutes with U2 (~/). D

7. HIGHER DIMENSIONAL THEORIES

As we have seen in the last sections the modular groups give some
insight into the structure of quantum field theory in one or two dimensions.
In higher dimensions the situation is more complicated. This is mainly due
to the structure of the light cone. However, there is one exception, i.e., the
theory covariant under the conformal group. This result is due to Brunetti,
Guido, and Longo [BGL 1 ] . Moreover, we will discuss the procedure of
Buchholz and Summers [BuSu1] which gives a characterization of the
vacuum state.
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It is an important problem to find conditions in order that the modular
groups of different wedge domains fit together and give a representation
of the Lorentz group. Recently there have been two different attempts to
solve this problem. One is due to Brunetti, Guido and Longo [BGL2] and
the other is proposed by Buchholz and Summers [BuSu2]. The first case
is solved by showing that the modular groups of different wedge domains
fit together and give a representation of the covering group of the Poincare
group. In the second case the problem is solved modulo a cohomological
question. Up to now it is not clear whether or not this leads to a real

obstruction. At the end of this section we will indicate the starting points
and discuss the appearing problems.

7.1. THEOREM. - Let J’C be the family of sets consisting of double cones,
wedges, and forward or backward translated light cones. Assume that for
every O E 1C we have a von Neumann algebra M (O) on a Hilbert space
1{ fulfzlling isotony and locality. Moreover, assume that there exists a vector
Q E 1{ which is cyclic and separating for every .Jli! (0). Assume that this
family is covariant under conformal transformations. Assume, in particular,
that there exists a continuous unitary representation of the conformal group
U (g) with U (g) Q = Q such that the translations fulfzll the spectrum
condition and U (g) (O) U* (g) _ (O9) whenever O and O9 belong
to IC.

If this is fulfilled then the modular group acts as geometric transformation
I.e. :

as Lorentz boosts for wedge domains,

as dilatations for light cones,

as the transformations described by Hislop and Longo [HL] for double
cones.

In particular one has

when the geometric transformations are properly defined, Uo (t) denoting
the image of the Lorentz transformations of the wedge under the map which
sends the wedge onto O.

This is the result of Brunetti, Guido and Longo [BGL1]. Notice that we
have absorbed the factor 2 7f which appears in the previous section when
defining the geometric transformations. This simplifies the calculations.
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Proof - For the dimension equal to one we have seen in section 5 that
the result is true, so we have to consider the case d &#x3E; 2. First we want to
show that for any 0 E J’C the one-parametric group

commutes with the representation of the conformal group and does not
depend on the domain o. Since all these sets are the image of a wedge let
us fix a wedge W and look at the equation

This is true for all transformations g which map the wedge onto itself as
the Lorentz transformations of this wedge, the translations in the directions
in the wedge, and the transformations

These transformations belong to the connected component of the identity
in the conformal group. Moreover, we known from the last section that
this relation is also true for the translations in the two lightlike directions
defining the wedge. But it is known [TMP] that these transformations

together generate the connected component of the conformal group. Hence
W (t) commutes with the representation of the conformal group. Since
W (t) of one domain is mapped onto W (t) of another domain by means
of conformal transformations we get the independence of the domain. It

remains to show that W (t,) is the identity. If d &#x3E; 2 then we know that

there is a rotation which maps the wedge onto the opposite wedge. The
adjoint action of this rotation maps Lorentz boosts and the modular group
onto their inverse. Hence we obtain

In two dimensions we have to use the modular conjugaison and obtain

the same result. D

Next we turn to the result of Buchholz and Summers [BuSu1] concerning
a characterization of the vacuum state. The main idea is the following: It

is well known that every translation can be decomposed into reflections. In
the vacuum sector of local quantum field theory the modular conjugations
of the algebras belonging to wedges are reflections in the two-plane,
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spanned by the two light rays defining the wedge. Therefore, if these

conjugations act locally on every local algebra it should be possible to
construct a representation of the translation group. If this representation of
the translation group is continuous then it will have the correct properties
in configuration space and therefore, by a result of Wiesbrock [Wie 1 ], this

representation must necessarily fulfill the spectrum condition. So we obtain:

7.2. THEOREM. - Assume that we are dealing with a representation of
the theory of local observables on a Hilbert space ~C such that there is

a vector n E ~C which is cyclic and separating for all wedge algebras
(W (.~1, £2 a) ) . (All our lightlike vectors belong to the closed forward

lightcone.) Denote by J (£1, £2, a) the corresponding modular conjugations
and assume that these induce a geometric action on all wedge algebras i.e.
like a reflection in the two-plane spanned by £1 and £2 with fixed point a.

Suppose in addition that for every wedge W (£1, .~2 0) the modular group
of this wedge satisfies the condition of ~ modular inclusion for the wedges
obtained by translation in the direction £1 and -£2 respectively. Then there
exists a continuous unitary representation U (x) of the translation group
fulfilling

This action of the group gives the correct action on algebras of the
double cones provided the of the double cones are identical with the
intersections of the algebra of all the wedges which contain this double cone.

Before proving this theorem we need some explanations:
Given the triple (~i, £2, a) we can decompose the Minkowski space

into the two-plane E (.~ 1, ~2) spanned by the two lightlike vectors and the
complement E (.~l , ~2)~ where the orthogonal complement is computed
with respect to the Minkowski scalar product. Now the vector a has a

unique decomposition a = al ~- a1 where al belongs to E (.~1, ~2). If x
is an arbitrary vector we can also decompose it: x = xl + x1, where xl
belongs again to E(l1, l2). Now we define the reflection r(l1, l2, a)
by the formula

The correct reflection, mentioned in the theorem, is given by the formula
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By the ~ modular inclusion we mean the following: Let 0394 (£1, l2) be the
modular operator of the algebra .M (el, £2, 0) and p &#x3E; 0. Then we require

The original work of Buchholz and Summers contains much more

assumptions. Here we follow the ideas of Borchers [Bch3] reducing the
assumptions to the essential ones. The strategy consists in looking first

in a fixed lightlike direction and constructing the translation group in

this direction. Afterwards one has to show that all these one-dimensional

groups fit together.

7.3. PROPOSITION. - With the assumptions of Theorem 7.2 let £1, £2 be
two fixed lightlike vectors in the boundary of the forward lightcone. Then
there exists a one parametric continuous unitary group U (a .~1 ) fulfzlling
the assumptions of the theorem. This group is given by the formula

Proof - During this proof we denote the algebra .J1 ~I ( W (.~ 1, ~2? 
by and its commutant by A~~. The corresponding modular conjugation
will simply be denoted The requirement concerning the action of
the modular conjugations becomes

Since the algebra and its commutant have the same modular conjugation
we obtain from this relation the equation

As a consequence of this relation we show that the products Jo ~I_ 1 
form

a group for rational values of a. 
-2a

7.4. LEMMA. - Assume equation (*) and let c ~ R be fixed. If a, b E Q c
then

1 ) the products Ja ~Ib depend only on the difference b - a,

2) the unitary operators Vc (a) .- Jo Ja define a unitary representation
of the additive group of Q i.e.
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Proof. - Equation ( * ) leads to the relation Jo J-a Jo . First we

show that equation ( ~ ) implies

We prove this relation by induction with respect to n. The statement

is obviously correct for n = 1. Assume we know the statement for

z = 1 ... n - 1. Then we want to show it for n. Let 0  1~  nand

write (Jo Ja)n == Inserting the induction hypothesis
we obtain

In order to use equation ( * ) we must choose l = m. We obtain

This is the stated formula. We can also choose

(1~ - l) == (n -1~ - m). This again gives the representation J-la a. As

restriction we have == 0, ..., ~ and m = 0, ..., 7z - ~. Since 1~ does not

take the values 0 and n only both constructions together cover the whole of
formula ( * * ) . Now note that the equation Jo J-a ~Io ~a = Ja Jo ~o Ja = 1.
implies == for n, Let now ql, q2 be

two rational numbers. Then we obtain Jo a Jo Jq2 a = Jo Jq2 a no Jql a =
Jo for arbitrary ql, by writing q1 = m , q2 = n r. 0

If we would know the continuity of the expression Jo Ja in the variable
a then we would obtain a continuous unitary representation of the additive

group of the real line. In order to obtain the continuity we start from the

requirement that the algebra M1 fulfills the condition of -modular inclusion
with respect to the algebra Hence by Theorem 4.1 there is a unitary
group Ul (a) of the real line fulfilling the spectrum condition, leaving the
vector H fixed and mapping Mo onto i.e.

We could have started with another subalgebras as Then we would
"2

have obtained another group U1 and, after proper rescaling, the relation
2

We know from Theorem 4.2 that these are the same groups.

For every a &#x3E; 0 we can construct a unitary group !7a (t) fulfilling
spectrum condition and the equation
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by using Theorem 4.1. Moreover, the family

fulfills the condition of isotony. Moreover, we have ,Nla (2 a) _ (2 a).
It follows from Theorem 4.2 that Ua (t) and U2 a (t) coincide. Repeating
the argument for other values with a common multiple we find that

UQ (t) = U (t) does not depend on q for rational values of q. The isotony
implies that the family .Ma is continuous because for every irrational a
.Ma can be approximated from the inside and the outside by algebras with
rational values of the index. On the algebras we have the action of U (t)
which is a continuous group. Hence we obtain continuity for Ma. This
implies the representation Ma = with U (a) fulfilling
the spectrum condition. Moreover, from Theorem 4.1 we obtain

This shows the statements of Proposition 7.2. 0

Next we look at a fixed wedge W (£1, £2, 0) and we find two unitary
groups U (a+) and U (a-) translating in the directions £1 and £2 both
fulfilling spectrum condition. Now we have to show that these groups
commute. For this we need a preparation.

7.5. LEMMA. - Let Ma be a one-parametric family of von Neumann
algebras with a common cyclic and separating vector O. Assume that
this family has the properties of isotony and covariance with respect to
a continuous unitary group of translations fulfilling the spectrum condition.
Let Tl be a unitary operator which has n as fixed point and maps every

into itself. Then Y commutes with the translations.

Proof - Let U (a) be the unitary group defining the covariance and
fulfilling the spectrum condition. Define a family of unitary operators
T ( a ) = U ( a ) Y U ( - a ) . Since Tl maps every Mb into itself, it follows
from the definition that the same is true for T ( a) . Now choose A E M0
and B E .Nlo. Then U (b) BU (-b) and T (a) AT* (a) commute for b :S 0.
Therefore, the two functions
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coincide for negative values of b. Because of U (-b) T (a) = U (a - b)
it follows that F+ (b, a) is the boundary-value of a bounded

analytic function holomorphic in the tube ~m (a - b) &#x3E; 0, sm a  0.

Since we get T* (a) U (b) = U (a) Y* U (b - a) if follows that F- (b, a)
has an analytic extension into the opposite tube. Hence we have to deal with
an edge of the wedge problem. Let us denote the common analytic extension
of both functions by F (b, a) . For solving this edge of the wedge problem
let us introduce the variables z1 = a, z2 = a - b. Then we obtain the two

tubes based on the second and on the fourth quadrants. The coincidence
domain becomes x2 &#x3E; 0. According to II.D F (b, a) is holomorphic
except for the cut in the b-variable along the negative axis. In particular F
is entire analytic in the variable a. Since F is also bounded, it does not

depend on this variable. Because the vector Q is cyclic, as well as for 
as for T (a) does not depend on a. The equation T (a) = T (0) is

equivalent to the statement of the lemma. D

Next we show the commuting of the two groups. Let a+ be the positive
lightcone coordinate. Then U ( a+ ) _ Jo ~I 2 1 a+ fulfills spectrum condition.
Now the operator Jo J - ~ 1 a- fulfills the relation:

From the isotony follows that for negative values of a-the product
Jo J_ 1 - maps every into itself. Hence by 7.5 it commutes with

2 ‘~
U ( a+ ) . Since we have modular inclusion for both lightlike directions also
the group U (a- ) = Jo ~I _ _1 2 a _ fulfills the spectrum condition. Hence by

analytic continuation U ( a+ ) and U (a-) commute for all values of their
arguments.

Proof of Theorem. - We start with two wedges which have a common

lightlike vector £ i.e. the two wedges ~(~ ~i, 0) and ~2, 0 ) .
We can apply the two-dimensional situation to every of these wedges
and obtain two representations of the translations along the direction ~.

Both of these representations fulfill the spectrum condition. We have

to show that these representations coincide. Define U(l, l1)(a+) =

J(l, l2, 0) J (l, l1, -a+ 2l), then the reflection symmetry yields:

This implies that 7(~, ’ .~ 1 ) ( a+ ) maps the family of wedge algebras
M(~, ’ .~2) (b+) onto o itself. Hence, by Lemma e 7.5, the two groups
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U (~, ~1) (a+) and U (~, ~z) (a+) coincide. Therefore, the groups in every
two different lightlike directions commute. Since every vector can be

decomposed into two lightlike vectors we see that the system is covariant
and that it fulfills the spectrum condition, because it is true for every
lightlike direction. D

Now we are coming to the construction of the whole Poincare group
mentioned in the beginning of this section. We start from a theory of local
observables on a Hilbert space ~-l defined by algebras of all wedge regions
M (W) (including translated wedges). One assumes that there exists a
vector S2 cyclic and separating for all these algebras. The algebras of
double cones are defined by the intersection of all algebras belonging to
the wedges containing the given double cone.

There are different startingpoints for the two approaches.

7.6. REQUIREMENT OF BRUNETI, GUIDO AND LoNGO. - We assume that S2
is also cyclic and separating for all M (0) where (0) runs through the set
of double cones and wedges. To every pair (M (W), S2) exists a modular
group 0~, which acts as a Lorentz boost Aw~ (t). It is now required that
all these modular groups act locally:

Starting from these assumptions then for every of these wedges one
finds ibmodular inclusions in the two time like directions defining the

wedge. Hence one obtains, as shown in section 4, translations in these

timelike directions. Using all these transformations one might construct, for
every element in the Poincare group, several representants. But from the

assumption of local action one sees that these different representants can
only differ by a local gauge, i.e. by a transformation which keeps every
M(0) fixed. Hence we obtain a large group 1 and normal subgroup N
of local gauges such that r/7V is isomorphic to the Poincare group. These
authors succeed to show that in their situation the normal subgroup can
consist at most of the elements ( 1, -1 ) so that they obtain a representation
of the covering group. By the arguments of section 4 this representation
must necessarily fulfill the spectrum condition.

7. 7. THEOREM. - Let the theory of local observables fulfill the requirements
7.6 then there continuous unitary representation of the covering
group of the Poincaré group U (g) fulfilling spectrum condition and having
03A9 as fixed point with

(The equality holds for one of the signs. )
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The approach of Buchholz and Summers is an extension of the method
described in Theorem 7.2, i. e. they only use the modular conjugations of
the wedge algebras for constructing the Poincare group.

7.8. REQUIREMENT OF BUCHHOLZ AND SUMMERS. - The modular conjugation
of every wedge JyY maps the algebra of every wedge onto the algebra of
another wedge:

From this setting one obtains first a map from the set of wedges to the
set of wedges. Since JW is its own inverse this map is onto and one to one.
Since the wedges generate a topology on the Minkowski space these maps
can be identified with bijections of the Minkowski space. Since every light
ray is uniquely characterized by the family of wedges containing half of
the light ray in the boundary one sees that these maps send light rays onto

light rays. Therefore, by Zeeman’s [Ze] theorem the maps are Poincare
transformations followed by dilatations. Again we obtain a large group r

containing a normal subgroup N of local gauges such that r/N coincides
with that part of the conformal group which consists of bijections of the
Minkowski space. The investigation of the group N seems in the moment
not to be in a completely satisfactory state and one has to wait until a

preprint is accessible.

8. LORENTZ GROUP AND WEDGE DUALITY, EXAMPLES

In the last section we have discussed the construction of the Poincare

group from the modular groups of the local algebras. Now we will assume
that we deal with a local theory covariant under the whole Poincare group
and we will look for the CPT-theorem. Jost’s proof of this Theorem [Jo]
in the Wightman frame needed the assumption that one is dealing with a
finite number of fields. As known from examples of Streater [Str] and of
Oksak and Todorov [OT] the CPT-theorem can fail if one is dealing with a
field having an infinity of components. Therefore, the CPT-theorem cannot
hold in general in a Poincare covariant theory of local observables and one
needs conditions replacing the assumptions of finiteness of the components
in Wightman theory. Unfortunately this problem is still open but there is

a first step which shall be discussed here. A necessary condition for the

CPT-theorem is that the wedge duality holds which is the condition that
the commutant of the von Neumann algebra of the right wedge coincides
with the von Neumann algebra of the left wedge. The first attempt to
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this problem is due to Brunetti, Guido and Longo [BGL 1 ] . They used the
nuclearity condition of Buchholz and Wichmann [BuWi] and showed that
in a Lorentz covariant theory the given Lorentz boosts coincide with the
Lorentz boosts constructed with help of the modular theory. In Wightman
theory there are fields with an infinite number of components which fulfill
the CPT-theorem but do not enjoy the nuclearity condition. Therefore, this
result does not give the full answer to the duality problem. The general
problem of the wedge duality has recently been solved [Bch4] with help
of the modular theory. We will give a discussion of the problem and its
solution without going through all the proofs. For details I must refer to

the original paper.
For a long time it was an unsolved problem whether or not the wedge

duality is a consequence of the axioms of the theory of local observables
(not including Lorentz symmetry). This has been solved by Yngvason [Yng]
by constructing counterexamples. He also gave examples showing that the
modular group of the wedge does in general not act locally in directions
perpendicular to the two-plane defining the wedge. These examples will be
discussed at the end of this section.

The result about the wedge duality we are presenting here is essentially
a two-dimensional statement and hence easier to derive than the CPT-

theorem. In the proof we can also think of sets which are cylindrical in
all directions perpendicular to the two directions defining the two wedges.
Hence all the expressions depend only on two variables. In this situation
we have two wedges which we call the right wedge W r and the left wedge

The wedges obtained by applying a shift by a will be denoted by W~
and Wa respectively. If we denote the double-cones by jR" then this can be
characterized by the intersection of two wedges.

Let be the given von Neumann algebra associated with Ka, b fulfilling
the standard assumption. Starting from this we obtain for the wedges the
algebras:

Without loss of generality we can construct a net which might be slightly
larger:
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This net fulfills again all requirements listed in the beginning. Moreover, the
wedge-algebra constructed with M (K) coincides with the wedge-algebra
constructed with the In what follows we will only work with
the algebras ( K ) .

In Wightman field theory one is dealing with quantities ~n (x) localized
at a point. If x belongs to the right wedge one can analytically continue

the expresion U (A 03A6n x H into the strip S -1 0 ). This is due to
the fact that the representation of the Lorentz group in the index-space is
defined for complex Lorentz transformations. The result which one obtains
is an element belonging to the left wedge namely U (A (t)) (for
entire spin). There are two problems if one wants to generalize this:

First our objects are not localized at a point but in bounded domains.
Here we will find a natural generalization of the description.
The second problem consists of understanding the exchange of the left

and the right wedge by the complex Lorentz transformations because of
the following

8.1. Remark. - If we are dealing with a von Neumann algebra and a

strongly continuous, one parametric group of automorphisms 0152t then one

can define analytic elements for which 0152t A has an entire analytic
extension. The set is a *-strong dense sub algebra of and the

elements A E also belong to 

Therefore, it is not easy to understand why for element A localized in

the right wedge, the expression U ( A ( 2014 - ) j A H can be written as Q

with an element localized in the left wedge.
We must start from the assumption that wedge duality is not present.

Therefore, to every wedge there are associated two algebras defined above
and the commutant of the algebra belonging to the opposite wedge. This
leads to three different local algebras. We set 

’

With help of these wedge-algebras we can construct two other local nets

The algebras and are not relatively local to each other, however,
the algebras commute if c 2014 b E 

The modular operator of the algebra will be denoted by ~r and that
of by The modular operators of and are the inverse of

Or and Ol respectively. The corresponding modular conjugations will be

Annales de Henri Poincaré - Physique theorique



371MODULAR GROUPS IN QFT

denoted by JT and J~. Due to the result described in Theorem 6.1 these
operators fulfill the following commutation relations with the representation
T (a) of the translations:

In this formula A (t) denotes the Lorentz transformation appearing in
the modular theory of the wedge algebra. This implies the following
transformation laws for the local algebras (see [Bch2]):

We deal with a Lorentz covariant theory, i. e., we have a continuous
representation of the Lorentz group satisfying

and

Using this and remembering the construction of the algebras Ma,b and
we see that !7(A) transforms these algebras in the same manner.

These equations permit to compare the Lorentz transformations with the
two modular groups. First notice that U (A) maps the four algebras of the
two wedges into themselves and hence U (A) commutes with the modular
groups and the modular conjugations (see e.g. [BrRo]). Therefore, we obtain
the following representations of the Lorentz group:

Since U (A) commutes with the modular groups and acts on the translations
in the same manner as the modular groups we obtain the following
commutation relations:
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Notice that the algebra is contained in Therefore, we can apply
Theorem A to the expression

and get:

8. 2. LEMMA. - As a consequence of the definition of R (t) and L (t)
we obtain:

(a) If A E Z3 (~-C) (the set of bounded linear operators on ~‘~C) and if

L t A n has a bounded analytic continuation into the strip ,S’ (-1 2, 0
then the same is true for R (t) A n. If A E ,t3 (H) is such that R (t) A SZ

has a bounded analytic extension into the strip ,S’ 0 ’2 1 then the same

holds for L (t) A SZ.
(b) Moreover, we obtain the following identities:

where 1) (X~ denotes the domain of definition of the operator X.
As in the proof of the CPT-theorem and in the investigation of Bisognano

and Wichmann one has to look at analytic continuation on the Lorentz group.
But there is a problem. If A (K) is an operator localized in the double
cone K c WT and such that U (A (t) ) A (K) S2 can in t be analytically
continued into the strip S 2014 2 ; 0 ) then we expect that we can write

U (A (K) S2 in the form A (-J~) 52. This operator should be

localized in -K C W~. There is, however, one problem: at the beginning
we do not know wedge-duality. Hence we cannot conclude that there exist
elements A (K) such that the corresponding operator ~4 (-K) is bounded.
Therefore, we must include unbounded operators in our investigation.
We write X (K) for unbounded operators which shall imply that this

operator is closable and affiliated with the algebra .M (K). Without further
mentioning, the domain of definition of X (K) and of its adjoint shall
contain M’ (K) H. We always identify X (K) with the restriction of

X to the domain .A/~ (K) SZ. This has the advantage that we have the
transformation
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The restriction of the adjoint of X (K) to this domain will be denoted
by xt (K). This definition implies that X (K) H belongs for K c Wr to
the domain of the Tomita conjugation SK of the algebra .M (K) which
leads to the relation

Using the relations between the translations T (a) and the Lorentz

transformations U (A) and the local gauges R (t), L (t) and using methods
of the theory of analytic functions in two variables one finds:

8.3. LEMMA. - (1) Let X (K~ be such that K C Wr and the vector
function

has a bounded analytic continuation into the strip ,S’ -1 2’ 0) and

continuous boundary-values at sm t = -1. Then
2

have bounded analytic continuations into the strip ,S’ -1 2’ 0) and

. 
1

continuous boundary values at sm t = - 2 .
(2) If K C W l and if the vector function

has a bounded analytic continuation into the strip S 0 ’2 1 and continuous
boundary-values at sm t = 1 then

2

have bounded analytic continuations into the strip S ( 0, - ) and continuous
1 

’ ’

boundary values at = 

-. 2
The result that has an analytic extension into the

strip 5’ ( 2014-, 0 ) is independant of the situation of K in This is the

consequence of Lemma 8.3. The same statement holds also for the left

wedge. Collecting the results obtained so far one gets:

8. 4. THEOREM. - (i) For every X (K) c with the

property that U (~1 (t)) X (K) SZ has a bounded analytic extension into
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the strip S -1 2’ 0) and continuous boundary-values at sm t = -1 2 and
U (11 (t) ) X~ (K - x) 52, with K -x C W l has a bounded analytic extension
into the strip ,5’ 0 ’ 1 2 and continuous boundary-values at sm t = 2’ 1 there
exists an element X (-K) affiliated with (-K) fulfilling

A corresponding result holds if we interchange W r with 

Since this is the crucial result we will indicate the demonstration:

Indication of the proof. - Let K be the double-cone with a E W’’,
and b - a E Choose an element Br E such that ad R (t) Br is
analytic and an element Bi E such that ad L (t) Bl is analytic. These
elements are *-strongly dense in the respective algebras since I-~ (t) and
L (t) are gauges of the respective algebras. We look at the expression

By Lemma 8.2 ~ (~) Bf Q is analytic in 6’ ( 2014-, 0 . Hence we obtain2 7

The operator Jr xt (K) Jr is affiliated with .Mr (-K). Together with the
Remark 8.1 this implies

The vector B’* n belongs to the domain of R 2 by choice of B’ . Hence
by Lemma 8.2 this vector belongs also to the domain of L 2 . 2 The
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other vector belongs by choice of Bf to the domain of L C- 2 ). Hence
Lemma 8.2 applies and we obtain

By the Remark 8.1 we find

Since the translations commute with L (t) it follows by Lemma 8.3 and by
the properties of X (K) that the vector J~ X (K) 52 belongs to the domain
of definition of and hence the expression becomes

Using that sums of the products of the two B are *-strong dense in

.M (-K)’ we conclude that the two vectors U CA C- 2 J J X (K) S2 and
Jl L C- ~) (K) S2 belong to the domain of definition of the Tomita

conjugation S_K and satisfy

Hence there exists an operator X (-K) affiliated with .M (-K) such that
(see e.g. [BrRo] Prop. 2.5.9)

holds. Now it is easy to show that operator X (-K) has the analytic
properties required for elements belonging to the left wedge. D

By this result one has established a map from a family of operators
affiliated with .M to the corresponding family affiliated with .M (W~)
and conversely. Unfortunately one cannot conclude directly that the modular
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operators of M (W r ) and (W l )’ must coincide. This is due to the fact
that we do not known whether or not there are elements in this family
which are analytic with respect to the modular groups. Therefore one has to
dualize Theorem 8.4 and show the same result for a large family affiliated
with the algebras (Wl)’ and M (Wr)’ respectively. If these families are
now large enough that one can act on them with the corresponding modular
groups and prove the identity of the modular operators of .~( ( W r ) and

(W l )’, this will imply the wedge duality. Large enough means also
that these families applied to the vacuum generate a core for the repective
modular operators. This leads to the following requirement:

8. 5. CONDITION. - Let be the set of operators A (K) with the

properties:
(i) the operator A (K) with K C Wr is such that U (11. (t)) A (I~) 0 has

a bounded analytic continuation into the strip ,S’ -1 2’ 0) with continuous
boundary-values and

(ii) A* (K - x) with C W l is such that U (A (t) ) A* (K - x) 0 has
a bounded analytic continuation into the strip ,S’ 0 ’2 1 with continuous
boundary-values.

The set obtained by interchanging the right and the left wedge will be
denoted by ,,41. It has the corresponding property with respect to 
We require that the sets ,,4r and Al are *-strong dense in and 

respectively.
The result which one now obtains is the following.

8.6. THEOREM. - We consider a Lorentz covariant theory of local
observables in the vacuum-sector. This theory fulfills wedge-duality exactly
if Condition 8.5 is fulfilled.
So far the discussion might give the impression that the wedge duality

is only a question of the number of fields. This is not the case. We want to
present some examples constructed from one free field showing that duality
and wedge-duality do not result from the usual axioms without Lorentz
covariance. From these models we construct examples in higher dimensions
showing that the modular group does not always act locally in the direction
of invariance of the wedge. These results are due to J. Yngvason [Yng].

Suppose 03A6 is a hermitian Wightman field that transforms covariantly
under space-time translations, but not necessarily under Lorentz

transformations, and depends only on one light cone coordinate, say
x+ . Locality implies that the commutator [I&#x3E; (x+ ) , .p ( y+ ) ~ has support
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only for ~+ == y+. Moreover, from the spectrum condition it follows
that the generator for translations in the ~-direction, pl,
is positive semidefinite. This implies that the Fourier transform of the
two point function, W2, defined by (2, ~ (~+) ~ (y+) SZ) == (1/2 7r)

~ exp (ip (x+ - ~/+)] W2 (p) dp has the form

In this formula S2 is the vacuum vector, Q (p2) is a positive, even polynomial
in p E R and 03B8 (s) = 1 for s &#x3E; 0 and zero else, and c = (0, P (x+) S2)z &#x3E; 0
is a constant. Subtracting from 03A6 if necessary, we may drop the 03B4 (p)-
term. For simplicity of notation from now on we write :c, y instead of
x+, y+.
The models we consider are generalized free fields with the two point

function given above (without the 6-term). They are characterized by the
commutation relations

where we have for convenience denoted id/dx by D. Let be the

Hilbert space of functions f (p) such that 100  oo.

Define for f E the unitary Weyl operators as usual by

The Weyl relations are

with

It follows that W ( f ) commutes with W (g) if and only if K ( f, g) = 0, in
particular if f and g have disjoint supports. The Weyl operators are defined
on the Fock space For our future investigations we can restrict our
attention to the one-particle Hilbert space 
We know that the modular group of the half line acts as a dilatation by the

factor This amounts in momentum space to a dilatation by the factor
A == If we denote the restriction of the modular group of the positive
half line A~ to the one-particle Hilbert space ~-l~,1 by V.+. (.~) we must get

Vol. 63, n° 4-1995.



378 H. J. BORCHERS

where the phasefactor e2~ ~P~ has to be determined. If ~ (p) is analytic in
the upper half plane then the same must be true for (A) ~ (p). This
condition can be solved by remembering the structure of Q (p) which
permits us to write

The polynomial L (p) is fixed up to a sign by the requirement that its zeros
lie in the closed upper half plane. Hence we find:

That this is the correct expression for the modular group can be checked

by showing that the KMS-condition is fulfilled. For this one uses the

analyticity property as well in p as in A.
In the same manner we obtain for the left half-line

Since the algebra and its commutant have the same modular group we see
that wedge duality is fulfilled iff L (p) has only real zeros.
The duality conditions for bounded intervals is a little more difficult.

Yngvason has shown that it is violated if L (p) and hence Q (p) is not

a constant.

Finally we consider fields in ra-dimensional Minkowski space. Guided

by the low-dimensional examples considered above we shall compute the
modular groups of the wedge algebras for generalized free fields on R~.
We treat the special case when the two-point function has in Fourier space
the form

where d~c is a positive Lorentz-invariant measure with support in the forward
light cone and M is a polynomial that is positive on the support of ~.
The polynomial M allows a factorization,

where F (p) is a function (in general not a polynomial) with certain

analyticity properties to be specified below.
To describe the properties of F we use the light cone coordinates

x1 for x = ..., E R" and denote (~r~, ..., xn)
by x. The Minkowski scalar product is
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The right wedge, Wr, is characterized by x+ &#x3E; 0, ~-  0; hence the

Fourier transform, /(p) = exp (-i (p, x)) f (x) dn x of a test function
f with support in Wr has for fixed p E an analytic continuation in
p+ and p- into the half planes Im p+ &#x3E; 0, Im p-  0. We require for F
that is analytic and that F (-p) is without zeros in this domain,
with F ( - p) = F ( p) * for p E There is no lack of polynomials M
allowing such a factorization; one example is

with

If d~C (p) = 8 (p°) b ((p, p) - we can replace the polynomial by (p°)2.
Hence the corresponding generalized free field is nothing but the time
derivative &#x26;~ (~c), where Pm is the free field of mass m.

In analogy with the first example we define for A &#x3E; 0 the unitary
operators VR (A) on the Fock space ~-l over the one-particle space
HI = LZ ~~~, 

for cp E and canonical extension to ~-l. Then we define by means of
V~ (A) a one parameter group of automorphisms of the Neumann algebra
.M (Wr) on H generated by the Weyl operators W ( f ) with supp f C WT.
By essentially the same computation that verified the example of the half
line one shows that (*) satisfies the KMS condition and that it is therefore,
the modular group defined by the vacuum state on .M (WT).

For the left wedge WL =  0, .r,- &#x3E; 0} the corresponding
operators are

By comparing the two modular groups we see that the field satisfies the
wedge duality condition M ( Wr )’ == if and only if F ( p) = F ( - p)
on the support of This condition is, e.g., violated in the above mentioned

example.
This example demonstrates also that the modular group of (Wr )

may act nonlocally in the -directions. In fact, let f be a test function
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with compact support in Wr. Under the transformation (7.7) the Fourier
transform f is mapped into

This is no longer the Fourier transform of a function of compact support in
the -directions, because it is not analytic in p. From this lack of analyticity
it is not difficult to deduce that W ( f a ) does not belong to any wedge
algebra generated by the field unless the wedge is a translate of Wr or
Wl, but we refrain from presenting a formal proof. The operator ~(./B)
is still localized in the ~, xl-directions in the sense that it is contained in

( Wr + a) (Wr + b )’ for s ome a, b E Wr .
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