
ANNALES DE L’I. H. P., SECTION A

ALAIN JOYE
An adiabatic theorem for singularly perturbed
hamiltonians
Annales de l’I. H. P., section A, tome 63, no 2 (1995), p. 231-250
<http://www.numdam.org/item?id=AIHPA_1995__63_2_231_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1995__63_2_231_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


231
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ABSTRACT. - The adiabatic approximation in quantum mechanics is
considered in the case where the self-adjoint hamiltonian Ho (t), satisfying
the usual spectral gap assumption in this context, is perturbed by a term
of the form ~ H1 (t). Here c ~ 0 is the adiabaticity parameter and HI (t)
is a self-adjoint operator defined on a smaller domain than the domain of
Ho (t). Thus the total hamiltonian Ho (t) (t) does not necessarily
satisfy the gap assumption, V e &#x3E; 0. It is shown that an adiabatic theorem
can be proven in this situation under reasonable hypotheses. The problem
considered can also be viewed as the study of a time-dependent system
coupled to a time-dependent perturbation, in the limit of large coupling
constant.

On considere 1’ approximation adiabatique en mecanique
quantique dans Ie cas ou l’hamiltonien auto-adjoint H0 (t), satisfaisant

l’hypothèse habituelle de lacune spectrale dans ce contexte, est perturbe par
un terme de la forme ~ H1 (t) . Ici ~ ~ 0 est Ie parametre d’ adiabaticite et
HI (t) est un operateur auto-adjoint deiini sur un domaine plus petit que
celui de Ho (t). Ainsi 1’hamiltonien total Ho (t) satisfait pas
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232 A. JOYE

necessairement l’hypothèse de lacune spectrale, V c &#x3E; 0. On montre qu’ un
theoreme adiabatique peut etre demontre dans cette situation moyennant
des hypotheses raisonnables. Le probleme considere peut aussi etre vu
comme l’étude d’ un systeme dependant du temps couple a une perturbation
dependante du temps, dans la limite de grande constante de couplage.

1. INTRODUCTION

Due to its central role in Quantum Mechanics, the time-dependent
Schrodinger equation has been the object of numerous studies. Since exact
solutions to that equation are rather scarce, several asymptotic regimes
governed by a set of suitable parameters were considered. Among these
asymptotic conditions, the so-called adiabatic regime is a widely used limit
in physics. The adiabatic limit describes the evolution in time of a system
when the governing hamiltonian is a slowly varying function of time. A
typical example is the slow, with respect to the time scale of the system,
switching on and off of time dependent exterior perturbations. This regime
also plays an important role in the study of models involving slow and fast
variables, like molecular systems. Mathematically speaking, the adiabatic
limit is a singular limit, as is the semi-classical limit. It corresponds to the
limit c -4 0 of the equation

where the prime denotes the time derivative, ~ (t) is a vector valued

function in a separable Hilbert space 7-~ and Ho (t) is a smooth enough
family of self adjoint operators, bounded from below and defined on some
time independent dense domain Do. We denote by !7~ (t) the associated
unitary evolution operator that !7~ (0) = F. Let us further assume that there
is a gap in the spectrum of Ho (t) for any t E [0, 1] and denote by Po (t)
the spectral projector corresponding to the bounded part of the spectrum.
Then, the adiabatic theorem of quantum mechanics asserts that there exists
a unitary operator V (t) satisfying the intertwining property

which approximates UE (t) in the limit é 2014~ 0
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233AN ADIABATIC THEOREM FOR SINGULARLY PERTURBED

This means in particular that a solution of ( 1.1 ) such that

will satisfy

for any t ~ [0, 1]. In other words, such a solution follows the spectral
subspace Po up to negligible corrections in the limit c 2014~ 0. This
formulation is a generalization of the early works [BF] and [Kal ] and
can be found in [Nl], [ASY]. Recently, several refinements and further
generalisations of this result were proven on a rigourous basis, see [N2],
[JP 1 ] and the references therein. Most of these works deal with the

construction of higher and higher order approximate solutions to ( 1.1 )
in the limit 6- ~ 0, even up to exponential order, under hypotheses similar
to those loosely given above. In particular, the spectral gap hypothesis
is crucial for these results to hold. Another generalisation of the adiabatic
theorem consists in trying to get rid of the gap hypothesis. Such a result was
obtained by Avron, Howland and Simon [AHS] who considered the case
of hamiltonians with dense pure point spectrum. Under certain conditions
on the mismatch of resonnances they could prove similar results to ( 1.5)
for two kinds of hamiltonians, with Po (t) the corresponding, either finite
or infinite dimensional, spectral projector.

1.1. The problem

In that paper we consider a related natural generalisation of the adiabatic
theorem which consists in adding to the hamiltonian a perturbation of order
c. We simply replace the hamiltonian Ho (t) satisfying a gap hypothesis
by the perturbed hamiltonian + c~i(~), where the self-adjoint
perturbation Hl (t) is defined on some time independent dense domain
D1. This corresponds to the first order correction steming from a formal
hamiltonian H (t, ~) - H (t) + c Hl (t) -I- ~~ + " ’~ for example.
If D1 ~ Do, regular perturbation theory shows that the total hamiltonian
satisfies the gap assumption for ~ small enough, so that the usual adiabatic
theorem applies. However, if Dl c Do, the term ~ H1 (t) becomes very
singular eventhough e 2014~ 0 in the adiabatic limit. In particular, if the gap
hypothesis holds for Ho (t), it doesn’t hold in general for the (suitable
extension of the) operator Ho (t) -f- ~ Hl (t), no matter how small c is. We
are thus in another case where the driving hamiltonian has no gap in its
spectrum. We consider the equation
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234 A. JOYE

on the suitable domain for the hamiltonian in the limit ê 2014~ 0, under
the main assumption that No (t) satisfies the gap hypothesis. Our main
result, see Proposition 2.1, is the construction of an approximate evolution
operator V (t) satisfying (1.2) and (1.3), provided some regularity conditions
are satisfied. This result shows that the adiabatic theorem survives some

singular perturbations or it can be viewed as providing another situation
where the adiabatic theorem holds although the driving hamiltonian does
not satisfy the gap assumption. If the hamiltonians Ho (t) and HI (t) are
both time-independent, a very complete discussion of this problem can be
found in [N3].

It should also be noticed that the equation (1.6) rewritten as

can be viewed as describing the evolution of a system driven by the
hamiltonian .Hi (t) coupled to the perturbation in the limit of infinite

coupling constant. We give below an application of our result in this setting.

1.2. Heuristics

We want to give here a formal argument explaining why this result

should hold and what the approximate evolution V (t) should be. Let !7i (t)
be defined by

and let us consider the corresponding interaction picture. The operator
U (t) == then satisfies

The new hamiltonian H (t) is ~-independent and satisfies a gap hypothesis
if Ho (t) does with corresponding spectral projector given by

In consequence, we can apply the standard adiabatic theorem to !7 (t). Thus
there exists an approximate evolution up to order e, V (t), of 7 (t) such that

Coming back to the actual evolution this implies that
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235AN ADIABATIC THEOREM FOR SINGULARLY PERTURBED

where the approximation V (t) == !7i (t) V (t) is such that

It is known [Nl], [ASY] that the approximate evolution V (t) is given
by the solution of

Now, we compute

so that, V (t) should satify

This equation is to be compared with (2.17). Of course, the main problem
to turn this sketch into a proof is the question of domains. We want to stress
the fact that our goal is to give here reasonable hypotheses under which
the adiabatic theorem holds, although it should be possible to obtain higher
order approximations in this case too, provided additional assumptions are
made.

In the next section we provide a precise statement of our main result
in Proposition 2.1 and give a proof of it. Further remarks on V (t) and
a simple application are given at the end of the section. The appendix
contains the proofs of technical lemmas.
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2. MAIN RESULTS

2.1. Hypotheses

We start by expressing here the hypotheses we need in order to prove
our main Proposition 2.1.

HYPOTHESIS D. - Let Ho (t) and HI (t) be two time-dependent self-

adjoint operators in a separable Hilbert space 7-l which are densely defined
on their respective domains Do and DI for all t E [0, 1]. These domains
are assumed to be independent of t. We introduce the operator

and we further assume that there exists a dense domain D ç Do n Dl
on which H (t, ê) is essentially self-adjoint. Thus there exists a dense
domain Do n D1 ~ D on which the closure H (t, ê) of H (t, ê) is
self-adjoint. This domain D’ is also supposed to be independent of t.

HYPOTHESIS Ro. - The operator Ho (t) is strongly C2 on Do and its

spectrum To (t) is divided into two parts 03C3a0 (t) and 03C3b0 (t) separated by
a finite gap for all t E [0, 1] such that ~o (t) is bounded. Let Po (t) be
the spectral projector associated with the part Q~ (t) constructed by means
of the Riesz formula

where Ro (t, ~) _ (Ho (t) - ~)-1 and r is a path in the resolvent set of
Ho (t) which encircles o~o (t). Note that both Ro (t, A), A E r and Po (t)
are strongly C2 on 7~. Moreover, for any t E [0, 1~,

HYPOTHESIS Rl. - The operator is strongly C1 on D1 and

Hl (0) Po (t) is strongly C° on 7-l. Moreover, for all (A, t) E r x [0, 1~,

Almales de Hefari Poincaré - Physique theorique



237AN ADIABATIC THEOREM FOR SINGULARLY PERTURBED

HYPOTHESIS R. - We finally require the self-adjoint H (t, ê) to be strongly
~’1 on D’ and bounded from below for all t E [0, 1].

- It follows from hypothesis D that H (t, c) converges strongly to

No (t) as ~ ~ 0 in the generalized sense so that the spectrum of H (t, c)
is asymptotically concentrated on any neighbourhood of the spectrum of
Ho (t) ([Ka2], p. 475).

Hypothesis D is of course also satisfied in the trivial case D1  Do.
- To check assumption (2.4), it is enough to show that

due to the identity

- It is also actually enough in R to require the existence for all t E [0, 1]
of a real number in the resolvent set of H (t, e) instead of asking (t, E)
to be bounded from below.

2.2. Preliminaries

As a consequence of hypothesis R, we have a well defined unitary
evolution U~. (t) which together with its inverse, is strongly differentiable
on D’, maps D’ into D’ and U~. (t) satisfies the Schrodinger equation

(see [RS]). Another direct consequence ’ of our hypotheses is the following £
technical lemma, the proof of which is given in appendix.

LEMMA 2.1. - Under conditions D, Ro and R1, we have

a) ~h (t) Po bounded and ’

We actually don’t need conditions (2.5) to (2.8) to prove
this result.

We set

where Qo ? == (F - Po (t)). We have the immediate

Vol. 63, n° 2-1995.
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COROLLARY 2.1. - The operator self adjoint, bounded and
strongly C1 on ~C.

We also introduce ’

which is bounded, self-adjoint and strongly C1 as well. Hence the perturbed
operator

is self-adjoint, bounded from below and strongly C1 on D’ (see [Ka2]).
Thus there exists a unitary V (t) which together with its inverse maps D’
to D’, is strongly differentiable on D’ and V (t) satisfies

Let us check that

consider ~ D C Since 0 E D0~D1 as well, we can write

using Qo ? = 11 - Po (t). Hence, (2.18) holds as D is dense. It follows
from classical results (see [Kr]) that

LEMMA 2.2. - Let V (t) be defined by (2.17). Then

for E [o, 1~.
This Lemma shows that V (t) follows the decomposition of the Hilbert

space ~-l into x = Po Qo (t) 7~. Our goal is now to show that this
evolution is an approximation of the actual evolution as e 2014~ 0:

PROPOSITION 2.1 (Adiabatic Theorem). - Assume D, Ro, Rl and R and
let U~ (t) be defined by (2.11). The unitary V (t) defined by (2.17) enjoying
the intertwining property (2.20) is such that

Poincaré - Physique théorique
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2.3. Proof of Proposition 2.1

In order to compare UE (t) and V (t), we introduce the unitary operator
A (t) = V-1 (t) UE (t). It maps D’ to D’ and it satisfies for any cp E D’

We have used the unitary of V-1 (t) and the property UE (t) cp E D’ to
derive (2.22). We want to perform an integration by parts on the Volterra

equation corresponding to (2.22), as in [ASY] and [AHS]. Let B (t) be a
bounded, strongly C1 operator and R (B) (t) be defined by

where ’ the path 0393 is as in (2.2).

LEMMA 2.3. - If hypothesis Ro holds, the operator 7Z (B) (t) is bounded,
strongly C1 and ’ maps ~C into Do. Moreover,

The first identity is proven in [ASY] and the second, the proof of which
is given in appendix, is mentioned in [JP2]. The proof of the last assertion
is straightforward and will be omitted. Hypothesis (2.3) and (2.4) are of
course not required to get this Lemma.
We need to control the range of R (B) (t) when B (t) (t) - Ko (t).

LEMMA 2.4. - Ifhypotheses D, Ro and Rl hold, then the bounded operator
R (Hi - Ko) (t) into Do n D1. Moreover

Proof. - Consider the first statement. It follows from the first assertion
of Lemma 2.3 that it is sufficient to show that Ran R (Hl - Dl
and it follows from the part b) of it that it is actually enough to look at

Ran Qo ~t~ R ~Hi - Ko~ ~t~ Po ~t~ == Ran R ((Hl - Ko) Po~ ~t~. (2.28)

Vol. 63, n° 2-1995.
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Consider now the operator

This operator is well defined because, see (2.10),

maps ~l into D1 by hypothesis R1. Moreover, (2.29) is uniformly bounded
in (A, t) E r x [0, 1]. Indeed,

where ~fi (t) (0) + i)-1 is bounded due to the closed graph theorem
and strongly Cl and

(sinceH1 (0) Po (t) is CB see (A.5).) This implies that both strong integrals

Annates de l’Institut Henri Poincaré - Physique ’ theorique ’
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exist for any 03C8 E H. Hence, since .Hi (t) is closed, the vector (2.33) belongs
to Dl and (2.34) equals HI (t) applied on (2.33). The second statement
follows the fact that (2.34) is uniformly bounded in t E [0, 1]. -
We can now construct a modified integration by parts formula which is

the main tool to prove the adiabatic theorem:

LEMMA 2.5. - For any 03C8 E ?-l, we can write

where , C (-s) is bounded and satisfies

Proof. -- On the one hand, using the definition of jH~ ( s ) and the property
(2.10), we can write using lemmas 2.2 and 2.3

On the other hand, for any 03C6 E 

Vol. 63, n° 2-1995.
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Note that Ko) (s) maps 7~ into Do n DI (Lemma 2.4), so that
differentiation of the operator V-1 (s) on the left of (2.38) is justified.
Replacing cp by Po (0) ~ and using the property

we can expand the commutator

By Lemma 2.3, part b) again, it is easily checked that

so that the formula of Lemma 2.5 follows. The commutator

is uniformly bounded in s, as seen from Lemma 2.4 and the identity

which is proven as part a) of Lemma 2.1. Indeed, it is readily checked from
Lemmas 2.3 c) and 2.4 that R (Hl - Ko) (s) has the required properties.
The uniform boundedness in s and ~ of C (s) then follows from the strong
continuity of 7Z’ (Hl - (s) and from the unitary of V (~). ~
Remark. - It is essential to consider Po (0) ~ instead of cp E D in (2.40)

to expand the operator Ho + ~ H1 because V (s ) cp does not necessarily
belong to Do n D1.

Let us consider the projection in Qo (0) 7~ of the integral equation
corresponding to (2.22).

Annales de l’Institut Henri Poincare - Physique " theorique "
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We can apply Lemma 2.5 and make use of (2.22) to write

Since the only ~-dependent operators A (s) and V (s) are unitary and the
above operators are all uniformly bounded in s E [0, 1~, we have arrived to

Similarly,

Taking (2.46) into account we get

Vol. 63, n° 2-1995.
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hence

Finally, since the projector Po (0) is self-adjoint and A (t) is unitary we
can write

uniformly in t E [0, 1]. This last equation and (2.46) imply A (t) :;=

II + (9 (e), uniformly in t E [0, 1]. The definition of A (t) eventually yields

2.4. Factorization of V (t)
We can now decompose the approximate evolution V (t) as in the usual

adiabatic theorem. Let W (t) be defined by

and consider the unitary operator ~ (t) = W-1 (t) V (t). Since
W (t) Po (0) = Po (t) W (t) for all t, we have

The ~-independent operator W (t) has a geometrical meaning and describes
a parallel transport of Po (t) ?~ and  (t) is the analog of a dynamical
phase which is singular in the limit ~ -+ 0. When restricted to Po (0) 1-(" the
operator 03A6 (tj satisfies a simple linear differential equation with bounded
generator.

LEMMA 2.6, - Under hypatheses D, Ro, P1 we have

Annales de l’Institut Henri Poincare - Physique " theorique "



245AN ADIABATIC THEOREM FOR SINGULARLY PERTURBED

where ~ (t) Po (0) satisfies

Accordingly, if Po (0) is one dimensional and 03C8 = Po (0) 

where eo (t) is the associated eigenvalues of No (t) and e 1 (t) is obtained

by first order perturbation theory

Proof. - Using (2.53), the intertwining property, and hypothesis Ro, we
have

2.5. Example

We present here a very simple application of Proposition 2.1. Let ~-l be
the Hilbert space LZ and

Here w (~, t) is a smooth real valued function with compact support
in IRn x [0, 1] and Dl is the domain of the self-adjoint extension of

-~- A + úJ (x, t) on Co (R~). The unit vector E ~-l for all t E [0, 1]
and (3 (t) is a real valued function of [0, 1]. We consider the equation

Vol. 63,n" 2-1995.
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on the domain D’ = Dl in the limit e ~ 0. This equation describes
the dynamics of a particule in a potential strongly coupled to a rank one
operator, in the spirit of equation (1.7). We further assume that and

,~ (t) are C2 and that

Thus the spectrum of == {0, ,~ (t)}, is divided into two
disjoint parts. Note that the spectrum of .Hi (t) consists in the positive real
axis plus some negative eigenvalues, depending on w (~, t). Since Ho (t)
is rank one, the spectrum of Ho (t) + eHl (t) is of the same nature, so that
/3 (t) is not isolated, VE &#x3E; 0. Under the additionnal hypotheses

it is readily checked that our hypotheses D, Ro, R1 and R are satisfied with

and

By virtue of Proposition 2.1 and above computations, if 03C8 (0) = cp (0), then

Here

is a real valued 0 function and 0 the last term in the integrant comes from the
parallel transport operator W (t) .

Annales de l’Institut Henri Poincaré - Physique theorique .



247AN ADIABATIC THEOREM FOR SINGULARLY PERTURBED

A. PROOF OF LEMMA 2.1

a) We first show the boundedness of these operators. Since ~fi (t) is self-
adjoint, it is closed, and hypothesis (2.3) on Po (t) implie that .Hi (t) Po (t)
is well defined on  and is closed as well. Hence, by the closed graph
theorem, it is bounded. Since all operators are densely defined, we have
the general relation

where Po (t) Hi (t) = Po (t) Hl (t) and ~fi (t) Po (t) is bounded. As Dl is
dense in ~-l we deduce from the extension principle that

is bounded. Finally,

holds since Po (t) is bounded, [Ka2] p. 168.

b) Because of assumption (2.4) the operator .Hi (0) Po (t) is bounded

(see above) and it is strongly 00 on ~-l by hypothesis. Hence the vector
Hl (0) Po (t) cp, where cp E 7~, is integrable and since Hl (0) is closed

we can write

Thus the bounded operator .Hi (0) Po (t) is strongly 01 and

Consider

where ~fi (t) (0) +i)-1 is also bounded and strongly 01 by hypothesis.
Since ~H1 (t) (0) + is uniformly bounded in t, we get

where all operators are bounded and strongly continuous.

Vol. 63, n ° 2-1995.
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c) Let (~ e Di. The vector

is well defined and continuous since Po (t) is uniformly bounded in t. On
the one hand, it follows from the foregoing that

where Hl (t) Po (t) is bounded and strongly 00. Hence P’0 (t) H1 (t) is

uniformly bounded in t. On the other hand, as ~fi (t) is self adjoint, Hf (t)
is symmetric on D1. Thus we can write

where

Nnw

so this operator is closed and everywhere defined, hence bounded, and it is

strongly 00. The same is true for (0) + i) Po (t) so that applying the
extension principle again we eventually obtain the uniform boundedness in
t of the operator Po (t). It follows that (Po (t) Hl M/ is strongly
continuous on a dense domain and is uniformly bounded. Thus by virtue
of Theorem 3.5, p. 151 in [Ka2], it is strongly continuous on 

B. PROOF OF LEMMA 2.3 b)

By definition

where the paths f, r’ and r" are in the resolvent set of Ho (t); do
not intersect and f surrounds r’ which surrounds T" which surrounds

Annales de l’Institut Henri Poincaré - Physique theorique
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Qo (t). We can write the integrand under the following form, using the first
resolvent equation

Now, integrating each term over the variable that does not appear in the
resolvents, we obtain the result by the Cauchy formula. For the term

(B) (t) Qo (t) we use the definition of Qo (t) and the above result
to obtain

With the same paths as above we compute

and

where the last term in (B.4) and (B .5 ) drops after an integration over A~.
Let us perform the integration over A in the first term of (B.4)

Vol. 63, nO 2-1995.
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by the Cauchy formula. Thus it remains

where the first two terms vanish by the Cauchy formula and the last two
by definition of 7~ (B) (t). 
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