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ABSTRACT. - We present a detailed study of some number fields and
Galois groups occurring in two dimensional models built from Wess-

Zumino-Novikov-Witten (WZNW) and theories. The observed

structures may be relevant for the classification of rational conformal

theories (RCFT) and for the understanding of links and three manifolds
invariants.
More precisely we look at M, the number field generated by the modular

matrix elements S2~ [ 1 ], [2] and at L, the subfield generated by the
quotients introduced in ref. [3], following [4] and even, for 
theories [5], at the field generated by Moore and Seiberg data.

MSUM6. - Nous etudions 1’ action galoisienne de certains corps
de nombres apparaissant dans les theories conformes des champs dites
rationelles en approfondissant les theoremes de [3], [4], [5]. Cette etude est
illustree par les exemples des modeles de Wess-Zumino-Novikov-Witten et
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des theories Ces structures presentent un interet pour la classification
des theories conformes bidimensionnelles rationnelles et la comprehension
des invariants topologiques d’ entrelacs et de varietes tridimensionnelles

que 1’ on en deduit.

0. INTRODUCTION

Since the development of Conformal Field Theory the modular aspects
of Rational Conformal Field Theories (RCFT) have become an important
aspect of the subject. For example, Cardy showed in [1] how to use modular
properties of genus one characters to obtain the operator content of the
theory. In particular he noticed the importance of the genus one S and T
matrices which also play a central role in the present paper.

These considerations were systematized by Moore and Seiberg in 1988
([6], [7]) who introduced a finite number of matrices, called Moore and
Seiberg’s data, which satisfy the so-called Moore and Seiberg’s polynomial
equations. These data represent the modular properties of conformal blocks
for the following values of the genus g and number of punctures n:

(0, 3), (0, 4) and (1, 0), (1,1). They also examined the modular invariance
problem and formulated the "naturality argument" which gives the form
of the genus one partition function in terms of characters relative to the
maximal symmetry algebra of the RCFT. This result has also been obtained
independently by R. Dijkgraaf and E. Verlinde [8].

Starting from first principles, A. Cappelli, C. Itzykson and J. B. Zuber
[2], followed by A. Kato [9], T. Gannon and Q. Ho Kim [10], Ph. Ruelle,
E. Thiran, J. Weyers [ 11 ], impressively succeeded in classifying the genus
one physical modular invariants built from Kac Moody algebras associated
with su(2) and su(3) and the corresponding coset models.

Later, the modular aspects of 2D RCFTs were connected to three

dimensional topological field theories by E. Witten in his paper on the Jones
polynomial [ 12] . Various constructions of three dimensional topological field
theories were produced, either from the representation theory of some quasi-
Hopf algebras [ 13], [ 14] or from solutions to Moore and Seiberg’s equations
[ 15], [ 16]. It finally appeared that, from any solution to Moore and Seiberg’s
equations, one can construct a topological field theory in three dimensions.

de l’Institut Henri Poincaré - Physique theorique



43PRECISE STUDY OF SOME NUMBER FIELDS AND GALOIS ACTIONS

An interesting question is then to understand the structure of this set of
invariants. This is a kind of preliminary to the classification of RCFTs. It may
help understanding how powerful the invariants are for solving problems in
knot/link or three-manifold theory. A possible strategy is to find some kind
of "symmetry" which relates various invariants.

In fact, a proposal in this direction has been made in [5], [ 17] using the
Galois group Gal(Q/Q). The basic idea dates back to Grothendieck [ 18 ] and
is the following: let us consider the system of all modular multiplicities 
together with a few fundamental operations such as the "sewing of surfaces",
the "forgetting of marked points" and so on. These operations should have
a counter part in the system of all fundamental groupoids (3) in the

sense of algebraic geometry, which we will not define here. Moreover,
there is a natural action of Gal(Q/Q) on this tower of groupoids. Then,
conjecturing that RCFTs provide projective representations of the 
one is naturally led to conjecture the existence of an action of Gal(Q/Q) o
n these representations, or on solutions to Moore and Seiberg’s equations, or
on 3D topological theories. One may also think of reconstructing as much
as possible of a rational theory from some algebraic (collections of number
fields) or geometric data.

In [3], this action was shown to be responsible of the so called "parity
rule" (or "arithmetical symmetry" ) recently discovered among torus partition
functions. In [ 18], it is also conjectured that for a certain class of RCFTs,
this Galois action is nothing but the usual Galois action (Galois acting
on algebraic numbers) on Moore and Seiberg’s matrices (coefficient by
coefficient).

These reasons motivated the study of some particular examples. It also

appeared that the analysis was simpler on the "genus one data", that is to say
the ,5‘ matrix, the phases (exp and exp (27rzc/8). In the case of the
S matrix, one can show that all matrix elements belong to some cyclotomic
extension of Q [4] and that the Galois action transforms one matrix element
of S into another one, up to a sign [3]. The aim of this paper is to illustrate
these facts on a few examples.

In the first section, we recall the general facts concerning the Galois action
on S. We also discuss the structure of and compare it

with where ’ s are the fusion eigenvalues.
In section 2, we shall consider the case of WZW models and give a

(3 ) With respect to suitable families of base points.

Vol. 63, n° 1-1995.
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complete list of the number fields generated by S’s matrix elements in
the case of su(2) and sv(3) models at any level as well as some deep
relationship between these number fields and the polynomial presentations
of the Pasquier-Verlinde algebra.
We shall also discuss the Z/NZ theories. The genus one data have been

computed in [19] and we shall explicitly compute the Galois action on
them. Since the partition function of any boundaryless compact oriented
three-manifold without any decoration (4) can be computed in terms of
these data, we will discuss the Galois effect on these invariants (see sections
3 and 4). Let us mention that they can be computed using some Gauss sums.

1. GALOIS ACTION ON RATIONAL THEORIES

For convenience of the reader, let us recall in this first section some

notations and results of ref. [3], [4].
The Hilbert space H of a RCFT admits a decomposition into a finite

number of blocks:

Let us denote by a = p the index of the identity block, corresponding to the
unit of the fusion ring. We exclude here the heterotic case and assume Tlb and
Va are irreducible representations of isomorphic algebras A, A; (®I means
that central extension parts of A and A are identified). B is the finite set
of such representations occuring in (1). is the non negative integral
matrix encoding multiplicities of isotypic blocks. The partition function on
modulus T torus reads:

The SL(2, 7L) modular invariance of Z(T) requires commutation of N
with the unitary symmetric S and T matrices satisfying

(4 ) No graph embedded in it.

Henri Poincaré - Physique theorique



45PRECISE STUDY OF SOME NUMBER FIELDS AND GALOIS ACTIONS

where C is called the conjugation involution.
In [4], De Boer and Goeree have discovered a lot of deep properties

satisfied by RCFT’s. In their Appendix B they consider the Galois group
[20] of the number field L generated by the quotients of S matrix elements

They proved that this group is abelian and these quotients
are sums of roots of unity with integer coefficients. Furthermore, for a fixed,
these quotients are the eigenvalues of the left regular representation of the
fusion ring, i.e. roots of the characteristic polynomial Na), where
Na is the fusion matrix between A-primary fields:

A striking result stemming out of [4] and pointed out in [3], is that one has
a group morphism from Galois automorphisms 03C3 of the number field M
generated by the modular matrix elements SZ~ to permutations j 2014~ ~ of B
and for each such 03C3 a collection of signs such that

Commutativity of has also been proved. Equation (5)
immediately implies the cocycle relation:

1.1. Galois symmetry of torus matrix

Since N has integer elements, applying any automorphism 03C3 to

= (N S)ik leads to

Invertibility of S brings the conclusion:

which is a very powerful selection rule, recently discovered and exploited
in([10L[ll]).

Vol. 63, n° 1-1995.
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1.2. Symmetry of fusion rules

As a start, apply any 03C3 to Verlinde’ s formula:

Image of the l.h.s. is:

whereas image of the r.h.s. is:

Equating these two images gives

Contract finally with in order to obtain the interesting rule:

Setting

we get:

which tells us that we have a representation of Gal(M/Q) defined over Q.
Setting a one sees that is invertible (and its inverse has integral
matrix elements). Furthermore if one sets

Annales de l’ Institut Henri Poincaré - Physique theorique
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Equation ( 10) is equivalent to

so that &#x26;a 2014~ Mu,a is a set of Q-representations of the fusion algebra
equivalent to the regular representation.
When p~ = p,

is an algebraic automorphism of the fusion algebra.

1.3. Lines of study

Let us describe some tracks one may follow if one were to study any
rational conformal field theory where the Verlinde formula holds :

1. Start for instance from the fusion ring Fus generated by the matrices
look at their characteristic and minimal polynomials (over Q). As

shown by Di Francesco and Zuber [21], if one of the Na , say N1, is non

degenerate, the fusion algebra (that is to say Fus considered as a vector
space over the field Q) is generated by ~Vi.

2. The arithmetic field L = Q((A~)) is then the splitting field of these
minimal polynomials.
One may determine its Galois group Gal(L/Q) (which is abelian ) and

its faithful image into the permutation group Perm (B) determined by

where the )...~ ’s are the eigenvalues of Na, adequately ordered.

3. Of course the existence and unicity (up to a global permutation) of
this ordering comes from the existence of the invertible modular S matrix,
such that

so that when one explicitly knows S one may as well start from ( 17).

4. S03C103C1 is then the real positive constant such that the symmetric matrix

Vol. 63, n° 1-1995.
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is unitary. Or, taking into account the symmetry of 9:

valid for any a E B.

5. In view of (18) and (19) M = = is at most a

quadratic extension of L.

6. The signs E Gal(M/Q) are determined by

7. From which all the can be obtained by

More generally, for any j

8. When M is a quadratic extension of L one has the group isomorphism

with the group law

In order to study this extension, one can ask whether it is split, i. e. does
there exists a group morphism

which is a right inverse of the restriction, i.e. = g for all

7 E 

de l’Institut Henri Poincaré - Physique theorique
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Since M = and [M : L] = 2, o- = ~y(g) is uniquely determined
by a choice of sign = defining = (we
will use notation g(p) instead of p9, which will be more pleasant when
iterating). Therefore Gal(M/Q) is split if one can choose consistently the
signs for all g E Gal(L/Q).
But this abelian Galois group is isomorphic to a direct product of cyclic

groups:

Let be a choice of generators corresponding to this factorization.
Since

commutativity is satisfied and we can consider each cyclic factor

independently. For such a factor the only condition is to insure that

the image 03C3i of gi satisfies = This is equivalent to :

Since

it is also equivalent to :

Therefore this extension is not a direct product if and only if there exists
such an even m2 with

On the contrary, when such a splitting holds, we can define r =

0’ Gal(M/L) so that since the groups are abelian one has
the direct product factorization

and the cocycle (25) is a coboundary.

Vol. 63, n° 1-1995.
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A more efficient criterion is

(31) is split if and only if there exists a such that

If this holds, any element of M is uniquely written x with ELand

so that

is a group isomorphism. Conversely, if there exists a section 1 : :

Gal(L/Q) -&#x3E; Gal(M/Q) set

Then Galois fundamental theorem gives

which implies [M : M’~ _ [L : Q] and

insuring the existence of Q E M’ such that

But a does not belong to L , because otherwise if one had M’ included
into L, the restrictions to L of elements of Gal(M/M’) would cover only
Gal(L/M’), which contradicts (34) ; this ends the proof of (31).

This criterion can even be expressed in terms of Write S~e =
r + a8 with E L. Since De Boer and Goeree have proved that

= r2 + 03B12s2 + 2ars E L and since a and S do not belong to L,
one has necessarily r == 0, i.e.

(37) Gal(M/Q) is split if and only if there exists .9 E L and an integer a
such that a is not a square and S~e = va 8

9. One may also think of using this Galois structure at best for building
modular invariants of the form (2), for instance by using [G + 9] = 0

Annales de l’Institut Henri Poincaré - Physique theorique
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(G defined in ( 11 )), as noticed independently in [24]. We will rather here,
as a first step, try to get some insights into classical situations.

10. One may even look at bigger number fields, such as the one generated
by diagonal elements Ty of the modular T matrix. Their Galois action
may bring us outside the category of usually considered rational theories.
Nevertheless the transformed data can still be used to define topological
invariants. We will adopt this broader point of view when presenting the
examples of topological three dimensional theories. Following [17],
the relevant field in this context is the extension K generated by the 5~
elements, the )j and We will call such data

(38) exp(203C0ic/8)) solution of (,S’T)3 = C, ,S4 = I

"Moore and Seiberg" data and will consider in section 3 the orbits of Galois
action on such collections of algebraic numbers.

2. KAC MOODY SITUATION

Let us consider the case of a WZNW model based on a compact simple
Lie algebra ~ .

2.1. General case

As pointed out by Gepner [25], the formal Weyl character formula [26]
allows one to express the S matrix elements (which we index by shifted
weights p = A + p) in terms of values of characters for the related compact
Lie group:

where A+ is the set of positive roots, ~ p = ~ ~~ , r is the rank, &#x3E;

0152E~+
is the determinant of the coroot lattice, n = 1~ + h v, h v

dual Coxeter number. HP~ is the matrix in the Cartan subalgebra of 9 such

Vol. 63, n° 1-1995.
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that A - p’ _ ~(HP~ ) for any weight A. We normalize the scalar product as
in Bourbaki and Humphreys [26].

If we express any root in terms of the simple roots 0152i as

we have

For these algebras the matrices corresponding to the fundamental weights
are

where 8m is the diagonal matrix with only 1 at element m x m. Furthermore
n = k + N , = N(N - 1)/2. Rather than writing
redundant formulae, let us look directly at the lowest rank algebras :

Horizontal parts of integrable su(2)~ integrable highest weights are

A = where Al = 2j E {0,1,’ " , k} is the number of boxes in the
corresponding Young tableau (AI = 0 being the trivial su(2) representation),
j is the spin of the representation, ~cl is the fundamental weight. Let us
set p = Al + 1.
The relevant finite Fourier transform matrix is

It satisfies S2 = 

Annales de l’Institut Henri Poincaré - Physique " theorique "
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Identification of the number fields L, M

This is due to the fact that cos(7r/n) = S2 1/2S11 E L and these quotients
can be expressed in terms of Chebyshev polynomials T and U which have
integer coefficients:

This field is well known, its Galois group consists of the cp(2n) /2
automorphisms gl for 1 ~ l ~ n - 1 and l coprime with 2n such that

Notice that cp(2n)~2 equals when n is even and when

n is odd, cp(n) being the number of integers between 1 and n, coprime
with n (1 being coprime with anything !). This group is isomorphic to
( x) / ({1, 20141}, x). It is clearly cyclic when n is prime.

It is straightforward to check directly that L is normal: since

has rational coefficients, any Q-automorphism sends into a

= E L.

Let us now study

In fact, let us prove that

n = 2m is even implies M = L

In this case,

Vol. 63, n° 1-1995.
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So that in this case equation (50) simplifies into

Let p be a prime divisor of m :

~ If p = 2, n is a multiple of 4 and

(mod 4) we have the following Gauss sum formula [28]:

where ( p ) is the Legendre symbol, equal to ±1. 

(mod 8), and =-lifp=5 (mod 8). Equation (53) implies that

v If p - 3 (mod 4) one has similarly (5)

Annales de l’Institut Henri Poincaré - Physique - theorique -
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, . /27r?B /7r(p20144)7B 
and sin( 203C0j p) = cos( 03C0(p-4)j 2p) belongs to which is included

into

This ends the proof of proposition (51).
The converse is true, L~.

To prove this, let us use some results on cyclotomic fields detailed in

Appendix B : For n odd, we have:

Using [Q~ : Q ] = one shows that for n odd i doesn’t belong to Q~
and V2 doesn’t belong to On the other hand Gauss’ sum formulae

seen above show that either i/~ or i ~ E Therefore ~ and sin -
do belong to 

n /

Now, if we had M = L, i.e. ~/ - E L C Qn, this would imply
V2 E Q4n. This ends the proof of (55).
As seen above, our Galois group can, for n odd, be identified with the

extension

with group law

(5 ) For practical use, let us also mention

Vol. 63, n° 1-1995.
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The splitting criterion (37) reads here for n odd:

with s E = ~ R and a a positive integer
which is not a square. This condition is equivalent to the existence of a
positive integer m such that 2nm is not a square and

But since i E for su(2) one has the equivalent
criterion:

(59) Gal(M/Q) is split if and only if there exists a positive integer m
such that 2nm is not a square and im E 

As a consequence

(60) When n has at least one prime factor p - 3 (mod 4),

As a counter example, note that in the case n = 5, studied in details in [3],
Gal( M / Q)  ~c4 is not split, in agreement with (29) !
One can sum up some of these facts in the following table.

Fusion rules for ~(2)~. - The fusion rules are:

where p,q,r E B = {1,’’’ ~ 2014 1}, ~ = l~ + 2, the sum is only on
r - p 2014 g + 1 mod 2 and

Annales de l’Institut Henri Poincare - Physique " theohque "
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TABLE 1. - Fields L, M, Galois group of M, some ’ cyclotomic field K
containing j M. denotes the multiplicative ’ cyclic group of order m.

As shown in [21], the fusion algebra is isomorphic to 
being a Chebyshev polynomial. For completeness, let us give the

factorized form of these polynomials = for 

The interpretation will be discussed after deriving similar expressions for
.5~(3)~3.

The diagonal matrix corresponding to a shifted weight

Vol. 63, n° 1-1995.
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TABLE 2. - The characteristic polynomials of the fundamental
generator x = P2 of the fusion algebra.

One also has

The character of the fundamental representation p = ~c~ being simply the
trace, the eigenvalues of N fare:

Since

Annales de l’Institut Henri Poincaré - Physique theorique
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we have :

Furthermore,

because if we set p3 = n - p1 - p2, we have

In particular exp ( 2i03C0 3) = 03BB(n-2,1)f/03BB(1,1)f. Thus, if we set c = cos( 203C0 n)
and s = sin ( 2014 ,(68) is equivalent to

But for n ~ 6 , we can consider (6)

which shows that is E L. We have thus proved: 3 = c + is E L and

Fusion rules for su(3) ~ . - In a very dense paper [25], Gepner has shown
that Fus is isomorphic to the polynomial algebra in two variables x, y
which satisfy relations

where

(6) The idea of this proof is due to T. Gannon, whom we warmly thank.

Bbl.63,n° 1-1995.
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is reexpressed in terms of the characters

Another theorem, due to Di Francesco, Zuber and Bauer [21], asserts

that Fus is isomorphic to where Pn(x) is the characteristic

polynomial of Nf, of degree (n - 1) (n - 2)/2, whose roots are the A~ ’s.
We have checked for n  12 using the Grobner bases package available

on Maple algebraic system (see the program below) that the ideal y]

generated by 20142014’- and 2014’- is equal to the ideal generated by and

an element of the form y - V(x) , which form a "Grobner basis" [27] of
it. For instance at n = 7 the following polynomial lies in this ideal:

This seems to us a striking property of these polynomial algebras !
One can even prove:

This is because multiplication in SU(3) by the center element jld
( j = corresponds to the transformation x ~ x’ = jx,
y ~ y’ = j2y, and = 

Therefore ~Vn ~x = = 0 implies

and

Similarly

Writing = P~°~ (x3) + + xzP~2~ (x3) , linear combinations
of Pn = 0 , (78) and (79) give

Annales de l’Institut Henri Poincaré - Physique theorique
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But if two of these three polynomials were non zero their greatest common
divisor would be a generator of degree smaller than which ends
the proof of (77).

Example : ~(8)2. - The characteristic polynomial of Nf is

For ( = it is a funny exercise to check by use of the
cyclotomic polynomials ~15(0 = ~ - ~ + (5 - (4 + ~3 - ~ ~- 1 = 0

and ~5(t) (t = (3 here ), that ~f2’1~ _ (-5 + ( + ~4 (and therefore its
Galois conjugates), are roots of ~4 + x3 + 2~2 - x + 1. Since the roots
of 4~c~ 2014 1 are

one can identify easily L = Q(~/5, ~~/3), and

For the lowest values of n, let us list the characteristic polynomials
of ~.

These polynomials have been obtained with help of the following Maple
program:

There is a one to one correspondence between the irreducible factors of
these polynomials and the orbits of B under Let 0 be such

Vol. 63, n° 1-1995.
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TABLE 3. - For the lowest values characteristic polynomials 
with their decomposition into irreducible polynomials over the

rationals.

Annales de l’ Institut Henri Poincaré - Physique theorique
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TABLE 3 (continued).

an orbit and jo E O. By definition j E 0 if and only if there exists a
~ E Gal(L/Q) such that j in the sense of (16).

Consider the polynomials

For --~ j ~ induces a permutation of 0 , so that

which implies that has rational coefficients.

Using the non degeneracy of its let us showthat is

irreducible: a factorization p(2&#x3E; in would correspond
to a splitting of its complex roots into two disjoint subsets, 0 = O1 ~ O2
separately stable under Galois morphisms. For any ~ and  E 
determined = 03BB(j03C3)f would belong to O 1 i.e. O1 would be an
orbit in itself, which is absurd.

Furthermore one can consider the subfield corresponding to any orbit 0

Since any ~~’~ is a polynomial in A~ , they generate L. By the chinese
remainder theorem, the direct product of these fields is isomorphic to the

1-1995.
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fusion algebra (alternatively Fus is isomorphic to a block diagonal matrix
algebra, each block being isomorphic to the corresponding field Lo ) :

The stabilizer of the orbit 0 clearly equals the relative Galois group:

(note that since Gal(L/Q) is abelian, if j = ja holds for one j E 0, it

holds for all of them).
The order [L : Q] is a multiple of the greatest common multipleof the

degrees [Lo : Q] = 
To our knowledge the idea to consider the factorization of these

polynomials first appeared in [29].

3. Z/NZ THEORIES

We shall now compute the Galois action on S, 
exp (27rzc/8) of RCFTs with fusion rules of Z/NZ type. These data have
been determined in [19] and we recall here the results (7). Primary fields
are labelled by an element of Z/NZ and the S matrix is determined by the
residue mod N of an integer a coprime with N and we have:

This matrix is denoted by 9(~). In the case of and

exp (27rzc/8), two cases must be distinguished according to N’s parity:
. When N is even, a is odd. In this case, we should fix a modulo

2N and we have:

(7) In fact, in [19], the equations solved were S2 = C and o (,ST)3 = 1. It is easy to infer

from that the solution to S2 = ( ST ) 3 = C.

Annales de l’Institut Henri Poincare - Physique theorique .
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TABLE 4. - Fields L, M, Galois group I of M, some ’ cyclotomic field K containing i
M for su(3)k. m denotes the ’ multiplicative ’ cyclic group of order m.

The Gauss sum is defined by equation (122) in Appendix A.
 When N is odd, a must be taken even and we write a = 2b where

b n N = 1, b being taken modulo N and we have:

As advocated in [ 17], and as we will recall in section, these numbers

completely determine partition functions of boundaryless three-manifolds
without any decoration in the topological theory deduced from a solution
to Moore and Seiberg’s equations.
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3.1. Determination of the number fields

In this section, we shall determine the number field generated by all

matrix elements of S, the (exp and exp (27rzc/8). Let us denote
by K the field generated by S’s matrix elements, the and

exp We have the following table:

3.2. Explicit Galois action

The aim of this section is to prove the following result:

In order to prove it, we shall examine both cases by giving explicit
formulae for the Galois action on all these numbers. As we have seen

before, the S matrix, and exp(203C0ic/8) are determined by
the a or b parameter appearing in formulae (88) and (89). In all cases, the
Galois action on S~ o is determined through the cyclotomic character

(Z/~VZ)*. There exists a sign such

that, for all a E Gal(Q/Q) one has

In all cases the (exp are N-th or 2N-th roots of unity. The Galois
action on them is therefore defined by For exp (27ric/8) we will use
explicit expressions of Gauss’ sums. Let us go into the details of each case:

~V = 0 (mod 4). - The Galois action on the is

completely determined by the cyclotomic character The central charge
c(a) (mod 8) depends on a mod 2N and therefore using the fact that
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(5T)~ = C has integer coefficients, we show that exp (27rzc/8) transforms
as

Of course, is such that:

Let us introduce the following notation: N = 2v2 ~N~ 1V’’ where N’ is odd as
well defined in ( 128) in Appendix A. Then, one has:

The explicit expression for can be found using formulae (93), (131)
and

Here, 2N = 0 (mod 8) and therefore, specifies x8(Q) by reduction
modulo 8. Henceforth, the sign eN(~) is completely determined. Therefore,
there are two orbits through the Galois action on Moore-Seiberg data.

Representatives of each orbit are found by fixing a and simultaneously
changing So o and exp (27rzc/8) into their opposite.

Case TV = 1 (mod 4). - This is the simplest case since

In this case, we immediately get:

where

63, n° 1-1995.



68 E. BUFFENOIR, A. COSTE, J. LASCOUX, P. DEGIOVANNI AND A. BUHOT

According to this equation, there are exactly two orbits for the Galois action.
Representatives of each orbit are easily found by fixing b and simultaneously
changing So o and exp (27rzc/8) into their opposite.

Case TV = 3 (mod 4). - This case is as simple as the 1 (mod 4)
case since

and therefore:

with

Let us show that there is only one Galois orbit: let (6,!/) be two invertible
elements of the ring Z/NZ and (0152, 0152’) E {::I::l}2, there exists a unique
xN E and a unique x4 E (Z/4Z)* such that

Bezout’s theorem shows that (xN, x4) arises from a unique x4N E

by reduction modulo Nand 4 respectively. Moreover, there
exists a unique 03C3 E satisfying ~4N(03C3) = X4N and this proves
that we have only one orbit under the Galois action.

Case ~V = 2 (mod 4). - In this case, since E the Galois action

is defined through the cyclotomic character or equivalently xzN and
x8. The transformation laws are:

where ~N (~) is given by formula (99) with v2 (N) = 1. The method used
in the previous case - TV = 3 (mod 4) - shows that there is exactly one
orbit under the Galois action: since TV = 2 (mod 4), 8 does not divide
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2N. Henceforth, fixing x2N (~) does not fix This concludes our

proof of (91 ).

4. ON Z/NZ TOPOLOGICAL INVARIANTS

In this section, we shall see how the Galois action on S and T matrices
deduced from fusion rules enables us to relate various topological
invariants of a boundaryless three-manifold M without any decoration. We
shall compare them to the ones described by Kohno in [34]. We shall see
that these invariants only depend on the a (or b parameter) introduced in
section 3 and of a sign. Such an invariant will be denoted by (or

As explained by theorem 91, at fixed a (or b) parameter, the sign
distinguishes between the two orbits under the Galois action.
We shall show the following relation between Z+,a and 

which shows that the quotient is a Galois invariant and is also
related to the "classical" topological invariant 

Notations. - Here, we follow the notations of [ 15]. Let M be an oriented
boundaryless compact oriented three-manifold without any decoration. In
this paragraph, we shall use surgery presentations for computing Z[M], a
complex valued topological invariant of M. Let L be a framed oriented link
in S3, j}(L) denotes the number of components of L. The Gauss linking
number of two components LZ and L~ of L is denoted by (Li, L~):

The framing of the i-th component is noted ni. Let AL be the intersection
matrix of L, i.e.:

It is a symmetric matrix and QL is the signature (number of positive minus
number of negative eigenvalues) of the associated quadratic form. It can be
degenerated and we call its kernel.
A coloring of L is completely specified by J = (jl, ... j~~L~) E

Lj denotes the link L colored by J.
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Explicit expressions for Z[M]. - Here, we shall give explicit expressions
for Z[M] using the 9 matrix, the (exp and exp (27rzc/8) computed
in [19]. In particular, we have Soo &#x3E; 0. As we have recalled in section, these
matrices depend on one parameter denoted by a.

Let L be a framed link in 6’s such that [63, L] is a surgery presentation
for M, the partition function of M can be computed using the algorithm
given in [15]. First of all, using

one brings the computation of Z[M] to the computation of Z~S3, which

is the topological invariant (g) associated with the sphere S3 decorated by
a framed link L.

Then, let L be colored by J E (Z/7VZ)~B we have

This result is obvious = 0 and for the unknotted circle with

framing n. It can be proved by induction on ~(L). Let us assume that it
has been proved for any L such that Ta where n E N. Now, let L
be a link with n + 1 components. In order to compute Z[?3,L] we shall
choose a regular projection plane. We assume the framing of the link to be
normal to this projection plane (9). The basic idea is to use a kind of "skein
relation" and a formula due to Kauffman for computing in a combinatorial
way the linking number of two oriented knots.

Let us consider two oriented knots Land L’ in 5g and a regular projection
with respect to the link (L, L’). Let us denote by a (L) and o;(J7) the
projections of Land L’ on the projection plane. In the neighbourhood of
each intersection point p E n a(L’), the situation looks like 

(8). In the framework of Chern-Simons theory, this is nothing but the expectation value of
regularized Wilson loops.

(9 ) This can always be achieved.
(1°) Up to, a rotation.
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where the arrows indicate the orientations of each curve. We now associate
with each intersection a weight:

Passing from a type + intersection to a type - one will be called a 
Then, the intersection number (L, L’~ is given by [30], p. 14:

Following Witten, we have obtained in [ 15] :

This is a kind of skein relation without any right hand side ! Let us now
consider the n + 1-th component of L. By a finite sequence of

elementary shifts and isotopy deformations, we can pass from L to L’, the
n + 1-th component of which can be isolated from all others components by
cutting along a two-sphere 82. In particular, this component is not linked
to the other ones. We call ~+ ( 1~ ) the variations in the number

of type + (respectively type -) crossings between components n + 1 and
I~ in this operation. Formula ( 112) shows that

Cutting along 62 gives

Using (111), we have
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and in the end, applying the recurrence hypothesis to L’ B we obtain
formula ( 109).

The partition function for a boundaryless oriented three-manifold without
any decoration is therefore:

It is an interesting exercise to prove invariance under Kirby’s moves
directly. Let us recall Kirby’s theorem ([31], [32]):

THEOREM 1. - Let Land L’ be two oriented framed links in 83, the

three-manifolds ML and ML~ obtained by surgery along Land L’ are
isomorphic if and only if, one can pass from L to L’ by a finite number
of the following moves:

~ Isotopy in ,S’3.
~ Retiring an unknotted and unlinked component of framing ~ 1 to L.

This is called an C~1 move.
~ For some i ~ j, replace Li by Li which is a band-connected sum of

Li and a parallel curve to L~. The framing of Li is ~L1 + Li + 
This is called an O2 move.

Let us now check the invariance of expression ( 115) under these moves.
As we shall see, invariance under O2 moves is obvious whereas in the
general framework of [ 15 ] it was not ( 11 ) .

. Since the intersection matrix AL is an isotopy invariant, the r.h.s. of
equation ( 115) is an isotopy invariant of L.

. Let us check the invariance under the O1 moves. Let L be an n-
component oriented framed link and Cé be an unknotted oriented framed
knot of framing ~ _ ~ 1 which can be isolated from L by a two sphere
in 83. We have

(11) One had to use the Fenn and Rourke moves.
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and therefore = crL + ~ and (t(L, C) = (j(L) + 1. Henceforth,

factorizes as

The main point is that the change of r~ compensates the second term in
this product. Henceforth, the r.h.s of equation (115) is O1-invariant.

~ Invariance under the 02 moves is obvious. Let us asume that in

such a move, component Li is transformed into L1#Lj and has framing
(Li + Lj, Li + Let QL be a quadratic formin represented by AL
in the canonical basis of Let also be be represented
by AL~ and u E be defined by

then one trivially has :

The key point is that u is invertible as a ring homomorphism of Z-modules.
Henceforth

Since ~L~ = o~L and jj(L~) = the O2 invariance of the r.h.s of

equation (115) follows.
Let us identify these invariants with Kohno’s ones:

N odd. In this case, a = 2b where b E Using equation (89),
one immediately recovers Kohno’s invariant (see Theorem 3.6 of [34]).

N even. In this case, a is odd and considered modulo 2N. We remark

that shifting a into a + N changes the exponential in (115):
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This shift ~ ~ ~ + N explains why Kohno has written down two

invariants when N is even (see p. 348 of [34]). Equation (115) captures
them both.

Of course, instead of using the data of reference [19], we could have
relaxed the 800 &#x3E; 0 condition, and get "new" invariants. Turning ,S(a) into
-S(a) and produces an invariant
denoted by Z~-. Then, equation (105) simply follows from equation (115)
since

and (see [36], Remark 1.8):

equation (105) is proved.

4.1. Explicit evaluation for prime numbers

The case N = 2 has in fact been considered in details by Kirby and
Melvin [33]. The invariant computed by these authors is

where the sum is over all sublinks 8 of Land 8. 8 denotes

y (~,~). It is clear that

This identity is not a surprise since the SU(2),~-1 WZW model, which
should give T3 (M), has fusion rules!

Let us now assume that N is an odd prime number p. In this case, for
a framed oriented link L in 83, let denote the reduction modulo p of

L’s intersection form. Here, L will be a surgery presentation for M. Using
the classification theorem for quadratic forms over finite fields [37], we
can compute explicitely Za,+[M] in terms of data relative to A non

degenerate quadratic form Q on Fp is equivalent to
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where a is not zero and taken modulo squares in Fp. Henceforth, up to
an equivalence, the quadratic form represented by is classified by

and an element a E In this case, let us denote

by 7p(L) and 7L the rank modulo p of AL and the signature of AL. We
can easily show that

A. About Gauss sums

In this paper, we need to evaluate the following Gauss sum

where a n N = 1. We shall only recall the basic results but not their proofs.
The interested reader may consult [35]. First of all, we need to recall some
basic facts about Legendre and Jacobi symbols:

DEFINITION 1. - Let p be an odd prime number, x E we define
the Legendre symbol as:

The Jacobi symbol is defined by:

DEFINITION 2. - Let N an odd E we

p

define the Jacobi symbol as:

It is straightforward to show the following properties of these symbols:

The strategy for computing consists in evaluating 5~(a)/~(l). and
then computing 6~(1). If N is an odd number coprime with a, we have
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When N is even. the result is slightly more complicated: first of all, let us
write N = 2v2 ~N&#x3E; N’ where N’ is odd. Then, we have:

where

This quantity satisfies:

and:

We also recall that for N an odd integer, we have:

The evaluation of has been performed by Gauss:

B. Useful results on cyclotomic fields

In this appendix, we discuss to which number field ~ belongs for n E N.
We shall set Çn = exp (2i7r/n), and denote by ~n the extension Q(çn)’ It
is a finite normal extension of Q. First of all, let us recall a basic lemma:

LEMMA. - Let k and l be two non zero integers, then

( 133) 

where k  l denotes the smallest common multiple of k and l.
This Lemma trivially follows from Bezout’s theorem. It shows that if n

is an odd integer, ~2~ _ ~n since Q2 = Q.
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Let us recall that theaction of any element ~ E is determined

by the cyclotomic character These characters

satisfy the obvious compatibility relations that enable defining the profinite
character ~ : 03C3 ~

In order to determine to which number field Vii belongs, we shall use the
expression ( 132) for the Gauss sum which already shows that Vii belongs
to some cyclotomic extension of Q. The discussion is performed according
to the different values of 4). The results are the following:

In some cases, we can find the minimal a E 1B1 such that E 

where m is odd. More precisely, let us show that the power of 2 given in
the above table is minimal for n - 2, 3 (mod 4).

~ 2 (mod 4): Vii E ~4n. - Let us assume that Vii belongs to
we write n = 2n’ where n’ is odd-henceforth n’ /B 8 = 1-and since

i E Q2n and SZn ( 1 ) = 1 + i, we would get 2n E Q2n and therefore
B/2 E Thus 

.

Using Lemma Band = 1 we would get Ç4n This contradiction

shows that ~ cannot belong to .

~ 3 (mod 4). - Let us assume that i/~ E then since

= i, this would imply that i E which is impossible since 4 does
not divide 2n. Therefore, ~ E Q4n only.
When n ~ 0, 1 (mod 4), the power of two is clearly not minimal since

n can be the square of an integer! For the same reason, the power of

anyother prime divisor is not minimal.
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