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Semi-classical eigenstates at the
bottom of a multidimensional well

T. F. PANKRATOVA

Saint-Petersburg Institute of Precise Mechanics and Optics,
Sablinskaya 14, Saint-Petersburg, 197101 Russia.

Ann. Inst. Henri Poincaré,

Vol. 62 n° 4 1995, Physique theorique

ABSTRACT. - The Schrodinger operator in Rd with an analytic potential,
having a nondegenerated minimum (well) at the origin, is considered.

Under a Diophantine condition on the frequencies, the full asymptotic
series (the Plank constant ~ tending to zero) for a set of eigenfunctions and
eigenvalues in some zone above the minimum is constructed; the Gaussian-
like asymptotics being valid in a neighbourhood of the origin which is
independent of ~.

On considere l’opérateur de Schrodinger dans avec un

potentiel analytique possedant un minimum (puits) non-degenere a l’origine.
Moyennant une condition diophantienne sur les frequences, on construit une
serie asymptotique complete en h (h tendant vers zero) pour les fonctions
et les nombres propres concentres au fond du puits (de vecteurs quantiques

I~d donnes); les estimations asymptotiques de type gaussien etant
valables dans un voisinage de l’origine qui est independant de h.

This work was done in 1993 while staying at the universities of Nice, Como, Barcelona,
Warwick and IHES (Paris). The author is grateful to professors F. and M. Diener, A. Giorgilli,
C. Simo, R. MacKay, M. Gromov, M. Berger for hospitality and for the opportunity to make
this work and to professors C. Baesens, R. MacKay, J. Meiss, F. Pham for useful discussions.
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362 T. F. PANKRATOVA

1. INTRODUCTION

We consider the Schrodinger equation

where A = 03A3d a2 2 is the Laplace operator, V is a real valued 

’ 

function

.=1 ax2
defined on I~d having a nondegenerated minimum at the origin.
We are interested in the semiclassical (~ ---+ 0) asymptotics of the discrete

spectrum of the Schrodinger operator defined by the left hand side of

the equation ( 1.1 ) in the case when the potential V has one or several
nondegenerated minima, "wells".

If V has a finite number of identical wells which differ only by space
translations and V (x) &#x3E; C beyond the region of the wells where C exceeds
the value of V at minimum, lower part of the spectrum of the corresponding
Schrodinger operator is organized in the following way. There is a set of
finite groups of eigenvalues (each of them connected with some quantum
vector n the distance between the groups being of the order ~,
and the distance between eigenvalues in each group, the splitting, being
exponentially small with respect to ~.

It is possible to find explicit formulae for the widths of these splittings
semiclassical asymptotics for each well. The problem was considered in
different ways by different authors and almost completely solved in one
dimensional case ([ 1 ]-[ 11 ]). The case d &#x3E; 1 seems much more complicated.
There are many results obtained in this area up to now (see [ 11 ]-[20] and the
list is far not full). Still the picture is not so complete as when d = 1. The
semiclassical asymptotics of the descrete spectrum and strict estimates of the

splittings are described in [ 11 ]-[ 13] and other works of these authors (using
the theory of pseudo differential operators). The semiclassical expansion
for the eigenfunctions and the rigourous asymptotics for the splitting widths
in the lowest levels (n = 0) were obtained in [ 18]-[20] (with the use of
a tunnel canonical operator). Still there are no effictive (as when d = 1)

splitting asymptotic formulae in terms of potential for a set of arbitrary
levels = 1, 2, 3, ... ) . The mentioned methods do not allow to obtain
them.

In order to write down the strict asymptotic formulae for the splittings
in the d-dimensional case developing the methods of [9] it is necessary to

find a sufficiently accurate semiclassical approximation to eigenstates for

Annales de l’Institut Henri Poincaré - Physique theorique



363SEMI-CLASSICAL EIGENSTATES AT THE BOTTOM

a single well in some neighbourhood of a minimum, independent of ~.
The main aim of the present paper is to construct such an approximation.
We obtain the formal series on powers of ~. Coefficients in all terms
are found in some domain independent of ~. Terms for eigenfunctions
are analytic for analytic potential. If we truncate the series at the N-th
term the remaining sums satisfy the equation ( 1.1 ) with the error of order

where 9 is a nonnegative function defined later. They give us
so called quasi-modes [21 ]. The possibility to take N as large as we like
and exponential decreasing of all terms beyond some neighbourhood of
a minimum allows one to hope that, with the help of it is

possible to find real eigenfunctions and eigenvalues approximately, with
exponentially small errors, smaller than the widths of splittings, so as to
be able to find these widths with sufficient accuracy. (The program was
realized in [9] for d = 1.) The constructed series allow to investigate the
set of zeros of the eigenfunctions. The latter is interesting by itself and may
be essentially used while finding the splitting asymptotics for 1.

2. ASYMPTOTIC EXPANSIONS FOR THE EIGENSTATES

We look for eigenfunctions un and eigenvalues En of ( 1.1 ) in the form
of the following series

where Eni E R, n = ( nl, n2, ..., nd) E I~d is a quantum vector,
9 = S (x), x = x2, ..., xd) E un~ = (~ ~==01, 2, ... ,

are functions independent of ~.
We look uno in the following form

where P~ (x) is an unknown function (to be found later),

Vol. 62, nO 4-1995.



364 T. F. PANKRATOVA

the functions i = 1, 2, ... , d, and S’ (x) satisfy the following
equations

Symbols V and (’, -) denote a gradient and a scalar product in R~
respectively.
We put the series (2.1 ) and (2.2) into the Schrodinger equation ( 1.1 ) and

equate coefficients of each power of h to zero. The equation for power 0 is
satisfied automatically because of (2.6). The requirement for the coefficient
of first degree in h to be equal to zero gives us the following equation for
the function Pn and the number En1:

The analogous requirement for the coefficient of ~ gives the equation for
1~1 and E~2:

de l’Institut Henri Poincaré - Physique theorique



365SEMI-CLASSICAL EIGENSTATES AT THE BOTTOM

where

So on, for each j &#x3E; 2 we obtain the equation .

In sections 3 and 4 we will formulate and prove an existence theorem for

(2.6); in section 5 we will find all the functions (x), i = 1, 2, ..., d, and
un~ (x), j =0, 1, 2, ..., all the numbers = 1, 2, ..., for some set
of n in some neighbourhood of the origin, independent of ~. In section 6
we will formulate a concluding theorem and make concluding remarks.

3. THE PHASE THEOREM FOR THE ANALYTIC POTENTIAL

Let V be analytic with the following Taylor series

convergent in a polydisk x2  r, i = 1, 2, ..., d with the numbers 03C9i &#x3E; 0,
z=l,2, ... , d.

Vol. 62, n ° 4-1995.



366 T. F. PANKRATOVA

We search solutions of the equation (2.6) in the form of the following
power series

Substituting (3.2) in (2.6) and comparing coefficients of xk we find the

following recurrent formulae for 

where 03C9 = 03C92, ..., Io is a unitary matrix of order d; Ij,
j =1, ..., d, is a diagonal matrix of the order d with -1 standing at the

j-th place of the diagonal and 1 at the others,

and

v~ + terms, depending on (S~)~  Ikl ( for &#x3E; 4.

It is easy to see that for the positive numbers i =1, 2, ... , d, the

denominators in expressions (3.3) for j =1, 2, ..., d, can be equal to
zero. So even to construct these series formally we have to propose some
additional conditions on the potential V.

Simultaneously we will construct a change of variables

which transforms the vector field (V S~, V-) into the normal form

We search the functions CP{ (y), i = 1, 2, ..., d in the following form

Annales de l’Institut Henri Poincaré - Physique théorique



367SEMI-CLASSICAL EIGENSTATES AT THE BOTTOM

In order to find the coefficients (~Z )~ we replace x2, i = 1, 2, ... , d,
in ~ Sj, V’} by 03A6ji(yi) of the form (3.6) and equate the obtained series
(in variables ~/) to L. Hence we find the following expressions for the
coefficients

where

= (~Z + 1) + terms, depending on 

ort2 is an element of a standard basis having all components equal
to 0 except of the i-th one which is equal to 1.
We see here that some denominators are equal to zero for some values

of w. We have to exclude these values.

Let us make the following definitions.
We say, that the positive numbers w2, ..., Wd are if

they are linearly independent over integers.
Positive numbers o;i, W2, ... , Wd are said to be Diophantine if there exist

positive numbers a and C such that for any k E ~ 0,

Denote the set of vectors ú.J = (wl, c~2, ... , cvd) with positive components
by 0, the set of ú.J with nonresonant components by 03A9nr, the set of ú.J with
Diophantine components by OD.

THEOREM A. - Let the potential Tl be analytic, represented by a series of
the form (3.1 ) convergent in a neighbourhood of the origin.

( 1 ) If ú.J E Onr then there exists a pair : a unique positive analytic function
S’° which can be represented by convergent series of the form (3.2) for
j = 0 in some neighbourhood of the origin and satisfies the equation (2.6);
and a unique analytic diffeomorphism q&#x3E;o which transforms the vector field
(V ,S’° , V.) to the normal form Lo given by (3.5).

(2) If ú.J E OD thenfor each j E ( 1, 2, ... , d}there exists a pair : a unique
analytic function which can be represented by convergent series of the
form (3.2) in some neighbourhood of the origin and satisfies the equation

Vol. 62, nO 4-1995.



368 T. F. PANKRATOVA

(2.6); unique analytic diffeomorphism q&#x3E;j which transforms the vector
~ ~ ) to the normal form L~ given by (3.5).

This theorem will be proven in the next section.

Remark 3.1. - Normal forms of the vector fields (i. e. of hamiltonian
systems of differential equations) are described in literature on classical
mechanics e.g. [22]-[25]. A typical situation there is that given a vector
field one has to find the simpliest form for it in suitable variables. Here
we have no given vector fields. We are looking for vector fields which are
solutions of the nonlinear Eiconal equation (2.6). The normal forms (3.5)
are used as an auxiliary tool.

Remark 3.2. - In case ( 1 ) the nonresonance condition is necessary to
construct q&#x3E;o (not There are no small denominators in (3.3) for j = 0.
The existence of analytic SO was established in [26] in more general
situation.

Remark 3.3. - One can give the following geometrical interpretation to
the results of the theorem A. The functions Sj are the generating functions
for Lagrangian manifolds which are invariant with respect to the classical
dynamical system with the potential - V (x). The potential - V (x) has
a "hunch" at the origin (instead of a "well" of V (x)). So our quantum
mechanical problem "at the bottom of a well" is equivalent to a classical
problem "near the top of a hill". The origin is a point of singularity
in this problem, a point of the infinite time in classical dynamics, a

point of vanishing energy of the Lagrangian manifolds. The theorem gives
the existence of the generating functions S~ for the invariant Lagrangian
manifolds in a small neighbourhood of that point.
The geometrical aspects of the problem were considered in [27].

4. THE PROOF OF THE THEOREM. NEWTON’S METHOD

To suppress small denominators which appear in the series (3.2) we use
the Newton method (see e.g. [27]). Since the proof goes in a similar way
for all j = 0, 1, 2, ..., d we will omit the index j at a function Sj and a
map q&#x3E;j (and hence at a point ~~ and a variable 
We have to find a function

and a diffeomorphism

Annales de l’Institut Henri Poincaré - Physique theorique



369SEMI-CLASSICAL EIGENSTATES AT THE BOTTOM

where 9 is a neighbourhood of the origin in Cd,

such that:

S is holomorphic, its Taylor series is of the form (3.2) and it satisfies the
equation (2.6); the map 03A6 is holomorphic and conjugates the vector field
Lo defined on B (r) with (V S, B1.) defined on G.
As a starting approximation we take the function

where the coefficients are defined by the recurrent relations (3.3),
and the map

given by the formula

where the coefficients are defined in (3.7). The function 8(0) satisfies
the equation (2.6) with an error 

and the map &#x26;~ conjugates the vector fields Lo and (V S, B7.) also with
an error (defined by /~ in the i-th component):

One can notice that the Taylor expansion for 1(0) contains a power term
with x~ if and only if N + 1, and those for i = 1, 2, ... , d,
contain the terms ~~ only with &#x3E; N.

Vol. 62, n° 4-1995.
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We fix a sufficiently large N &#x3E; 4 (a -~ d -f- 1) and choose r~°~ so that the
error terms in (4.5~) and (4.6~) satisfy the estimate

where

and 6"(0) is a small constant which we will fix later.

Let us describe a typical step of the Newton method. Suppose that on
the n-th step we have a function

and a diffeomorphism

where B (r~~~) is the polydisk of the form (4.1) with the radius

such that they satisfy the equations with the error terms ’Y’ ~n~ 

the latters obeying the estimate

Suppose by induction that the Taylor series for ’r’~n~ contains terms with
x~ only if N + 1, and those for = 1, 2, ..., d, contain the

terms ~ ~ only with N.

To find the function of (n + 1 )-th step we set

Annales de l’Institut Henri Poincaré - Physique théorique
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where

is a holomorphic map close to identity which is a diffeomorphism onto
its image;

We will try to find as solutions of linear problems so that
new error terms become as small as possible. Let us write out formulae for
the new error terms. The equation (4.5~) reads :

It is convenient to pass to the coordinates

We have

where o-~~&#x3E; = o ~~n~ and L~ is given by (3.5).
If the function satisfies the linear equation

then the (n + 1 )-th error term becomes "quadratic" :

Vol. 62, nO 4-1995.
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To find the correction to the transformation !~ we write (4.6~’*’~) which
determines ~c ~n+ 1 ~ , i =1, 2, .... d, in the form

We used the notations i = 1, 2, ... , d, for the normal coordinates on
the ( n + 1 )-th step. It follows from (4. 9) that

Substituting (4.18) into the right hand side of (4.17) and taking into account
(4.6~) one obtains

To write down explicity the connection between ~~n+1~ and ~c~n~, i = 1,
2, ..., d, let us denote

Then the mentioned connection reads, as it follows from (4.19):

Annales de l’Institut Henri Poincare - Physique ’ theorique "
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where

Again we choose so that the "linear" terms in (4.20) cancel. It gives
the equations:

where

L~ defined in (3.5).
. 

If ~B i = 1, 2, ... , d, satisfy (4.22) then the new error terms acquire
the form:

The equations (4.15) and (4.22) are of the similar type having a bit
different operators in the left hand sides. To the similar type belong the
equations (2.9), (2.11 ) for the amplitude coefficients. So now it is convenient
to widen the set of operators LZ to

where J~ is the same matrix as in (3.3), n E and prove some lemma
of solvability for all these equations.
Denote by Br a B anach space of analytic functions in B (r) (see (4.1 ))

with the norm

by ~r, M, n, o the subspace of which is the set of functions having the
Taylor series which contains only the terms with power )~) ( &#x3E; M ~ 0 and
with coefficient at power n equal to zero, by Wo = min 

.~{l,...,d}

Vol. 62, n ° 4-1995.
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LEMMA 1. -  r, there bounded 

which solves the equation

in the following cases

( 1 ) for any c,~ E 0, j = 0, n = (0, ..., 0),
(2) for cv E = 0, n arbitrary,
(3) for w E 03A9D, j = l, ... , d, n arbitrary,

and there exists a positive constant cl = cl (M, d, w, r) such that in both
cases ( 1 ), (2) :

in case (3) there ’ exists a positive constant C2 = C2 (a, M, d, cv, r) such
that

Proof. - Consider the equation (4.28) with f having the following
convergent series in B (r)

and let us search the solution of this equation as a power series

From the equation (4.28) we find the following formulae for the coeffi-
cients u~

Annales de l’Institut Henri Poincaré - Physique theorique
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Hence we find the following estimate 

in the cases ( 1 ), (2) and

in the cases (3). The last inequalities in (4.34) and (4.35) come from the
Cauchy formula. Therefore we get the estimate

in cases ( 1 ), (2), and

in case (3) which ends the proof of lemma 1. D

Remark. - It is clear that the estimates for the norms of the first derivatives

of u differ from (4.36), (4.37) by a multiplier (r 2014 r’)-1.
We apply Lemma to the equation (4.15) taking M = N + 1 and to the

equation (4.22) with M = N. In both cases we take

The estimates (4.36) and (4.37) give us

62, n° 4-1995.
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To be sure that is defined on it is sufficient to subject
the norms of = 1, 2, ..., d, to the inequality

Finally, the explicit formulae (4.16) and (4.24) give us the new error
estimate:

Then our error estimate is reproduced on the (n + 1 )-th step if

Our choice of N ensures the validity of (4.42) at n = 0, provided reO)
is chosen sufficiently small. The estimates (4.39) and (4.42) imply (4.40)
agam if is sufficiently small. So we can prolong our process to infinity.
The estimates (4.38) and (4.39) give us the convergence of the process.

5. CONSTRUCTING THE SERIES (2.1), (2.2)

In order to construct the whole series (2.1 ), (2.2) we have to find at first

(after solving (2.6)) all the functions ~ (x) which satisfy the following
equations

LEMMA 2. - Let S~ (x), j = 0, 1, ... , d, be taken from the theorem.
Then the right hand sides in the formulae (5.1 ) are the full squares, i.e.

there exist d unique analytic functions = l, 2, ... , d, which satisfy
the equations (5.1 ) and have the following convergent series

in some neighbourhood of the origin.

Annales de l’Institut Henri Poincare - Physique théorique
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Proof. - From (3.3) and (4.3) one can easily find that

Let us note by a point in the (d - 1)-dimensional space orthogonal
to ortj. According to the Weierstra03B2 preparation theorem for each j =1,
2, ..., d, in a neighbourhood of (0, ..., 0) there exist analytic
functions fj(xj) and gj(xj) such that

where Fj (x) is an analytic function in some neighbourhood of the origin
satisfying the condition F3 (0, ..., 0) 1= 0.
(From (5.3) one can see that F~ (0, ..., 0) = 
It is easy to see that the equation (2.6) for S~ is equivalent to the

following system of equations

and it is possible to construct a solution of (5.5) formally in the form (5.2).
Indeed, just putting (5.2) into (5.5) and equating the coefficients of each
x ~ to zero, we obtain the systems of ordinary equations for with not

vanishing determinants for w E So we can find recursively coefficients
and construct the functions as formal series. That means that
Sj for   =1, 2, ... , d is a full square in the sense of formal

series, and hence the expression in the square brackets of formula (5.4) is a
full square in the same sense. This is sufficient for the proof of Lemma 2,
because of the analyticity and uniqueness of functions in (5.4). D

After the change of variables (3.4) the equation (2.8) satisfies the
conditions of Lemma 1, case (1), M = 1, if we choose Enl in the

following way:

According to Lemma 1 there exists an analytic solution which after returning
back to coordinates x gives us in some polydisk an analytic solution of
(2.8) vanishing at the origin.

Vol. 62, n" 4-1995.
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Each of the equations (2.9) and (2.11 ) has the following form

We look for the solution of (5.7) in the form of the product:

where T~o is a solution of equation (2.8) for n = 0. This means that

After putting (5.8) into (5.7) we obtain the following equation for the
unknown function !7:

where Lo = Lo is a normal form of the operator ~ S0, B7.) in coordinates
y, "tilde" means the change of variables: F (x) = F (y). Now the left hand
side operator is that one of Lemma 1, case (2).
The condition of solvability of the equation (5.10) is the following:

(F)n is noting the Taylor coefficient at yn of the function F.
Hence we obtain the following expressions for all the terms of the

series (2.1 ), 

and find all the functions = 1, 2, ... in the form (5.8).

Annales de l’Institut Henri Poincaré - Physique theorique
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6. MAIN THEOREM AND CONCLUDING REMARKS

Results of the paper can be summarized in the following theorem.

THEOREM B . - Let the potential V in Schrodinger equation ( 1.1 ) be
analytic, represented in a neighbourhood of the origin by Taylor series (3.1 )
with positive Diophantine numbers 03C91, ... , cvd.

Then for any n 0 :::; Inl :::; n*, N E N, one can construct the
following pair : a number

and an analytic function

which satisfies the Schrödinger equation ( 1.1 ) up to terms of the order

some neighbourhood of the origin independent of h. Here:
(x) is the positive analytic solution of (2.6) with Taylor series (3.2) (see

Theorem A), u~~ (x) ( j = 0, 1, ..., ~V 2014 1) and numbers
E~~ ( j = 1, 2, ..., N) have the form given by formulae (2.3), (5.2), (5.8)
and (5.6), (5.12), (5.13).

Remark 6.1. - One can prolong the functions analytically onto a
d

larger domain by the formulae Sj = = 1, 2, ..., d, where
~ i=1

for each j the integral is taken along the trajectory of the corresponding
Hamiltonian system. Hence one can prolong the functions (x), j = 1, 2,
..., d, and = 0, 1, 2, ... in the similar way. Thus one can construct
sufficient quasi-modes in a rather large domain containing the point of a
minimum. Then in the problem with many identical wells, situated so that
the distances between the points of minimum are finite, one can do the
following. Construct quasi-modes for each well in such a domain, that the
two neighbouring domains intersect. Then multiply those quasi-modes on
the cutting functions equal to zero beyond the mentioned domains. The
approximation for the eigenfunctions of the problem can be taken as a
linear combination of these cut-off It is possible then to write
down the rigorous splitting formulae following the ideology of [9] for an
arbitrary n E N in the form as it was obtained in [ 18]-[20] for n = 0. It is
important to note that to find the preexponential coefficient in the splitting
formula for Inl &#x3E; 0 one has to be sure on the trajectory of the corresponding
Vol. 62, n ° 4-1995.
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Hamiltonian system the corresponding eigenfunction is not equal to zero.
Hence one has to investigate the zero-sets of the eigenfunctions.

Remark 6.2. - In order to find the zero-sets of the eigenfunctions one
can use as well expansions of the form (2.2). It is more convenient however
to construct for this purpose an ansatz with Hermite polynomials, namely

where S° and i E (1, ..., d), are the described above functions,

Hni (t) == et2 are Hermite polynomials which satisfy the
following differential equation

If we put series (6.1 ) and (2.1 ) into the Schrodinger equation ( 1.1 ) and

equate coefficients at each power of h to zero (taking into account (6.2))
we will obtain problems for G j quite similar to those described in section 5.
Solving them we will construct all the functions = 1, 2, ... In zero

approximation the eigenfunction un has the form of an exponent multiplied
by a product of Hermite polynomials. Hence in zero approximation we
find a set of zeros of the function un as a net of intersecting surfaces ~i :

(x) i =1, 2, ... , d, tij E Ri, Ri is a set of roots of Hni (t). The
first term of (6.1 ) depends on third and forth derivatives of the potential
V at the origin. It does not vanish if they are not equal to zero. In this
case already in first approximation one can find that ~i do not intersect,
they have quasi-intersections. A more detailed description of this ansatz
and some examples will be published elsewhere.
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