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Gravitational scattering of electromagnetic field by
Schwarzschild black-hole
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Departement de Mathematiques Appliquees, CeReMaB,
Université Bordeaux I, 351, Cours de la Liberation, 33405 Cedex, France

Inst. Henri Poincaré,

Vol. 54,n"3,1991, Physique theorique

ABSTRACT. - We study the electromagnetic scattering by a spherical
black-hole. Maxwell’s equations are written in Schwarzschild coordinates:
the electromagnetic tensor is replaced with electric and magnetic fields in
a three dimensional absolute space. We introduce a set of wave operators,

yielding an electromagnetic field given an asymptotic behavior
far from the black-hole, and near the Schwarzschild radius, as

universal time ~-~ ±00. The long range interactions are eliminated by
identifying the radial coordinate in the asymptotic Minkowski space with
the Regge-Wheeler parameter. After a separation of variables thanks to
the generalised vector spherical harmonics of Gel’fand and !§apiro, the
existence of the scattering operator is proved by using a Birman-Kato
method, in particular, the asymptotic completeness of wt implies the
Damour-Znajeck condition: near the horizon, the fields of finite redshifted
energy are described by ingoing plane waves. The Membrane Paradigm is
justified: the scattering operator can be approximated by putting the
impedence condition on the stretched horizon. We interpret these results
on the Kruskal universe: the existence ofWj, Wi assures the characteristic
Cauchy problem with data on the past horizons is well posed in the
Schwarzschild submanifold, and the asymptotic completeness of W+0, W i
allows to define the solution on the future horizons.

RESUME. - On etudie la diffraction du champ electromagnetique par
un trou noir spherique. Les equations de Maxwell sont exprimees dans Ie
systeme de coordonnees de Schwarzschild : Ie tenseur electromagnetique
est decompose sur un espace absolu tridimensionnel, en champs vectoriels
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262 A. BACHELOT

electriques et magnetiques dont on etudie 1’evolution au cours d’un temps
universel t.

On introduit un ensemble d’operateurs d’onde, associant un

champ electromagnetique a un comportement asymptotique donne, quand
~~ respectivement loin du trou noir, et pres du rayon de
Schwarszchild, Les interactions a longue portee sont eliminees en
identifiant la coordonnee radiale de l’espace de Minkowski asymptotique
avec Ie parametre de Regge-Wheeler. Apres une separation des variables
a 1’aide des harmoniques spheriques vectorielles generalisees de Gel’fand
et 0160apiro, 1’existence de I’operateur de diffraction est prouvee par une
methode de Birman-Kato, en particulier, la completude asymptotique de
W i exprime la condition de Damour-Znajeck : pres de 1’horizon, les

champs d’energie (decalee vers Ie rouge) finie, sont decrits par des ondes
planes rentrantes. On justifie Ie paradigme de la membrane : l’opérateur
de diffraction est approche en imposant la condition d’impedance sur un
horizon elargi. On interprete ces resultats sur l’univers de Kruskal : 1’exist-
ence de WJ, Wi assure que Ie probleme de Cauchy caracteristique a
donnees sur les horizons passes est bien pose dans la sous-variete de

Schwarzschild, et la completude de W i permet de définir la trace de
la solution sur les horizons futurs.

1. INTRODUCTION

This paper develops the mathematical foundations of the scattering
theory of electromagnetic field by a spherical black-hole, that is, we study
Maxwell’s equations in Schwarzschild Universe (~, ds~). 

’

f/ is a four-dimensional globaly hyperbolic pseudoriemannian manifold,
that admits a split into an universal time t E R, and an absolute riemannian
space (V, ds):

V can be described by the spherical coordinates

where S2 is the euclidian two-sphere
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263GRAVITATIONAL SCATTERING

and I is an open real interval.
The Schwarzschild coordinates are (8, rEI and

where is the black-hole radius. Then the lapse function a and
riemannian metric ds~ are respectively defined by

and the Schwarzschild metric has the form

In fact there is no canonical choice of radial parameter, we could take
the proper radial distance R with

Another nice choice is the tortoise coordinate of A. Wheeler r*, for which

A very important property of r * is that the radial null geodesics are
described by the same formula of their flat analogs:

The splitting of the Schwarzschild Universe with Galilean type universal
time t and absolute space V, is very fit for the study of the Cauchy
problem and the scattering theory, where we consider the black-hole as a
perturbation living in a three dimensional space, it is the "3 + 1 view

point" of the Caltech Paradigm Society (to see e. g. [14]). Following this
formalism, the electric and magnetic fields, E, B, are vector fields on V,
defined physically by measurements made by fiducial observers (Fido’s of
[ 14]), at rest in V, and Maxwell’s equations are:

Vol. 54, n° 3-1991.



264 A. BACHELOT

where Vy x and Vy- are respectively the curl and divergence in (V, ds).
Now we emphasize some significant properties of the Schwarzschild

metric, relevant for the scattering problem, by discussing about the null
geodesics y (t) _ (t, r (t), 8 (t), 

1. It is tempting to introduce a boundary of V, or "horizon" of black-
hole :

In Schwarzschild coordinates, no null geodesic y reaches r at finite time
t: ~ Yo along y, then |t| ~ oo . This fact has important consequences:

(i ) r is not a time-like submanifold and no boundary condition on r
is necessary to solve ( 16): we are concerned by a true Cauchy problem
and no a mixed problem.

(ii ) We know that the solutions of hyperbolic systems with constant
coefficients in admit an asymptotic profile satisfying an outgoing
radiation condition, so we may expect such an asymptotic polarization,
ingoing with respect to the black-hole, as r (t)  ro along y.

In fact, the electromagnetic field satisfies the famous "Damour-Znajeck
condition" ([4], [5], [6], [24]): for any radial null geodesic y, we have

where n is the unit s p atial vector (x2014.
ar

( 18) is formally analogous at the impedence condition for a membrane
r’ with a surface resistivity 377 Q in the euclidian space:

n being the outward normal. But we emphasize that, unlike ( 19), Damour-
Znajeck property ( 18) is a consequence of Maxwell’s equations ( 16). In
fact, horizon r defined by ( 17) is more a matter of mental or verbal

picture, imposed by our euclidian intuition and by the choice of the
Schwarzschild coordinates which yields a fictitious singularity at r = r o.
The Kruskal coordinates allow to define a meaningful concept of horizon,
as null submanifold of Kruskal Universe. We shall establish a natural
connection with the scattering theory: this horizon is the domain in which
live the asymptotic profiles.

2. There exists closed null geodesics: all the great circles of photons-

s p here } x S2. There exists so null geodesies asymptotic to the
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265GRAVITATIONAL SCATTERING

photons-sphere. Then some singularities of the fields are trapped inside
these null characteristics and cannot escape as t ~ I ~ oo . Such a situation
is well-known in the classical scattering theory by obstacle in the euclidian
space and yields some difficulties in the study of: the decay of local energy,
the spectral properties of the hamiltonian... We prove that, despite the
Schwarzschild metric is trapping, the only time periodic electric or mag-
netic fields are stationnary and their set is one dimensional like the second
cohomological space associated with a connected obstacle in the euclidian
space.

3. The Schwarzschild metric is asymptotically flat and the spatial projec-
tion of null geodesics tends to a straigh-line as r ~ oo , then we expect the
field is asymptotic to a free electromagnetic field in the Minkowski-space
far from the black-hole. A subtle problem is to choose coordinates in the
Minkowski space. It is natural to identify Schwarzschild coordinates (8, p)
with the usual angular coordinates of euclidian space, and Schwarzschild
universal time t with the Minkowski cosmic time. The choice is much less

clear as regards the radial parameter, between e. g. r, R, or r*. It follows
from ( 10) ( 13) ( 15) that the radial null geodesics are asymptotically straight
as r ~ oo in (t, r*) coordinates but no in (t, R) or (t, r) coordinates. So,
long range interactions between the gravitationnal and electromagnetic
fields appear if we identify the radial coordinate in euclidian space with r
or R and we let as an open problem the existence of Dollard-modified
wave operators in these both cases. In opposite we shall prove the existence
of classical wave-operator related to the flat infinity by comparing the
electromagnetism dynamics in the Schwarzschild Universe and the Min-
kowski space-time with the metric

Therefore there are two ways to study the scattering by a Black-Hole:
(i) The conformal approach with the Kruskal coordinates;
(ii) The quantum scattering approach with the Schwarzschild coordina-

tes.

In the conformal approach we take advantage of the conformal invari-
ance of the Maxwell equations to pose the Cauchy problem in the Kruskal
manifold which is a globally hyperbolic curved spacetime. Since Maxwell’s
equations are an hyperbolic system and posses a well posed initial value
formulation, given smooth initial data on a Cauchy surface in Schwarzsch-
ild space time, the resulting solution exists and is smooth on the horizons;
hence we obtain easily the existence of the Sommerfeld condition at the
flat infinity and the Damour-Znajeck condition at the black-hole horizon.
Nevertheless this method presents some disadvantages: it is necessary to

make some technical assumptions of smoothness of the data to define the
limit of the field at each horizons; since the timelike and spacelike infinity

Vol. 54, n° 3-1991.



266 A. BACHELOT

are singular in the Penrose conformal spacetime the Characteristic Cauchy
Problem does not follow from standard previous results; moreover we
obtain directly the asymptotic behaviour of the field only along a fixed
null geodesic, but no information on uniform decay; at last this method
cannot be applied for massive field.
The quantum scattering approach has been used by Dimock [7] and

Dimock and Kay ([8], [9]) to study the scattering for the scalar wave
equation on the Schwarzschild metric. In this paper we adopt this approach
to study Maxwell’s equations, and in section 7 we establish the connection
between the Characteristic Cauchy problem in the Penrose conformal

spacetime and the existence of wave operators. This method presents
plenty of advantages: we can study the fields with finite (red shifted) energy
without supplementary regularity and we obtain sharp results on decay
and asymptotic behaviour. According to this viewpoint, we study the
behaviour of the field on Cauchy surface {t = Const.} as Schwarzschild
time t tends to infinity, by introducing waves operators and S-matrix and
by using the spectral machinery well known in quantum mechanics. The
difficulties become from the tensor nature of fields: we must choose

carefully the Hilbert spaces to avoid stationnary fields; on the other hand,
there is a very interesting phenomenon: unlike the scalar case, a long range
interaction at infinity appears, and we know that the classical wave

operators do not exist for the scalar equations with such a perturbation;
but we are concerned by a system and the long range terms affect essen-
tially the radial components which decay as t - 2 along the null radial
geodesics; this fundamental consequence of the spherical invariance of
Maxwell’ equations cancels the long range effects and allows to construct
the wave operators. At last, thanks to the theorems of separation of
variables of Carter and Teukolsky, we may expect to generalise this
method to the linear fields, even massive Dirac fields, on the Kerr-Neuman
background (the De Sitter-Schwarzschild space time is investigated in [1]).

This paper is organized as follows:
Section 2 presents the 3 + 1 formulation of Maxwell’s equations, we

prove the self-adjointness of the hamiltonian in the finite red shifted energy
space, so the global Cauchy problem is solved by Stone’s theorem; we
establish the point spectrum is empty on the subspace of free divergence
fields without stationnary part.

In Section 3 we introduce the wave operator related to the flat infinity,
which yields solutions with given asymptotic behaviour as r ~ + oo .

In Section 4 the wave operator describing the behavior of field near the
black-hole is constructed and we study the Rindler approximation. We
deduct the existence of infalling fields, similar to disappearing solutions
in dissipative scattering.
The existence of the scattering operator is proved in Section 5. In

particular the asymptotic completeness of the wave operator related to

Annales de l’Institut Henri Poincare - Physique théorique
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the horizon is equivalent to Damour-Znajeck property ( 18). The key of the
proof is a variables separation thanks to the generalised vector spherical
harmonics of Gel’fand and Sapiro [ 11 ], then we apply the results of Birman
to a one dimensional wave equation with a short range potential and the
two Hilbert spaces scattering theory of Kato [22].
The Membrane Paradigm is investigated in Section 6: we consider

Maxwell’s equations outside the stretched on

which we impose the impedence condition. We prove the existence of the
scattering operator Sg associated to this dissipative hyperbolic problem.
As E ~ 0, Sg tends to the operator describing the scattering at infinity by
the true Black-Hole, for an incoming wave.

In Section 7, the whole scattering theory of electromagnetic field by a
Schwarzschild black-hole is interpreted in terms of characteristic Cauchy
problem in the Kruskal Universe.
To end this introduction, we give some bibliographic information. As

regards the Schwarzschild metric and the astrophysical aspects of black-
holes theory, to see e. g. the classical books of S. Chandrasekar [3], S. W.
Hawking and G. F. R. Ellis [13], C. W. Misner, K. S. Thorne and J. A.
Wheeler [18]. The recent book of I. Novikov and V. Frolov [19] treats the
Physics of Black-Hole. The independent works of Th. Damour [4] [5] [6]
and R. L. Znajeck [24] lay the foundations of the black-holes electrody-
namic theory. Here, we use the "3 + 1 formalism" of D. Mac Donald and
Kip S. Thorne ([ 16], [ 17]), to see so ([ 14], [ 15] . The scattering by black-
holes is studied with astrophysical view point in [ 10] . The Bondi type
expansions of fields in powers of r-1 at infinity are investigated by J.

Porril, J. M. Steward [21], B. G. Schmidt and J. M. Stewart [23]. The
scalar wave equation in Schwarzschild space-time is studied by J. Dimock
and B. S. Kay ([7], [8], [9]) who construct the wave operators. As regard
mathematical background in Scattering Theory, to see e. g. V. Petkov [20]
and M. Reed, B. Simon [22].

Notations

Throughout this paper we use the conventions of [18]: we denote vectors
and tensors by bold-face letters, e. g. E, B, F, their components multiplet
in some local basis eJl is noted ... :

and we use the Einstein summation convention: any index that is repeated
in a produit is automatically summed on. The caret or "hat" is used to
indicate the components of a vector or tensor in a local Lorentz frame

Vol. 54, n° 3-1991.
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for which

2. MAXWELL’S EQUATIONS IN THE SCHWARZSCHILD
UNIVERSE

The electromagnetic tensor field F on (~ satisfies Maxwell’s equa-
tions

where * notes the Hodge operator for the metric 
Given a vector field u on ~, we split F into electric field E and magnetic

field B by putting

Obviously, the definition of E and B is independent of choice of local
coordinates, moreover, they completely determine tensor F at any point
at which u is no null for the Schwarzschild metric. This is seen by using a
local Lorentz frame from the formula

where E is the four-rank completely antisymetric tensor.
Of physical view point, E and B are the electric and magnetic fields

measured by an observer with four velocity u. Since we are concerned by
the scattering theory, we consider the Black-Hole as a perturbation living
in absolute space V and we choose an observer at rest by respect to the
Black-Hole (Fiducial observer of [14]), and so:

Then, E and B are tangential to V and we consider them as vector fields
on V. In terms of E, B, Maxwell’s equations (22) take familiar form ( 16).
Now, it is convenient to use a local Cartesian coordinate system in

(V, ds~), of fiducial observer’s proper reference frame, by choosing

We put

Annales de Henri Poincaré - Physique " theorique "
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where

After tedious but elementary calculations Maxwell’s equations (16) become

where

and

If there is no Black-Hole, a=l and we find the free dynamic in the
Minkowski space time with spherical coordinates.
Now, we choose our Hilbert space of finite energy fields. The locally

measured energy density is given by

where

is the volume element in V and .  notes the euclidian norm in ([6. But
the corresponding energy integral is not conserved. So, we consider the
energy at infinity, or redshifted energy, that is conserved; its density is

Therefore we introduce the Hilbert space of finite redshifted energy:

and the subspace of free divergence:

Vol. 54, n° 3-1991.
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Like the case of an obstacle ’ in Euclidian space 
’ where ’ the second 0 cohomo-

logical space is non trivial, there " exists so stationnary fields with data in

We shall see that

and the scattering theory involves naturally the orthogonal of H2 in (0):

We consider H as a differential operator defined o in distributions sense ’

on ’ we note again H its restriction at, ~~°~ or ~f. The natural domain
~~°~ or Yf is

THEOREM 2 . 1. - Jf, H is a ’ selfadjoint operator on
~, with dense ’ domain D .

Therefore we can solve ’ easily the Cauchy problem for Maxwell’s equa-
tions thanks to Stone’s theorem: the solution U (t) of (30) with initial data e

U (0) in Jt is given by

where e-itH is the unitary group on  generated by H, and if U (0) is in
~f, the solution of (30) and (31) in ~f) is given by (43) again.
The hyperbolicity of system (30) implies a classical result of finite

velocity dependence, that is nice to express by using Wheeler coordinate
r* ( 13)

THEOREM 2. 2. - Let U be in ~f such that

then we have

Despite the fact the Schwarzschild metric is trapping, there does not
exist time periodic non stationary solutions:

THEOREM 2 . 3. - The point spectrum o, f ’ H on .1«0) and 1H]2 is

given by (40); the point spectrum of H on ~ is empty.
An useful consequence is that we may approximate any field of free

divergence and without stationary part by a field derivated from regular

Annales de l’Institut Henri Poincare - Physique theorique
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potential:

COROLLARY 2.4. - the set:

is dense in ~ .

Proof of Theorem 2.1. - An easy calculation with integrations by parts
shows that H is symmetric on (C~ (V))6. Then to prove H is selfadjoint
on it is sufficient to verify that (C~ (V))6 is dense in for the

graph norm. Let x* be an element of C~ (M) such that

For j~N we define (V) by putting

Given f in the sequence

tends obvious to f in ~ + oo .

Now we have

where M j is a 6 x 6 matrix satisfying

We conclude that tends to H f in Jf as j  + oo and then
D (HI;;) n 8’ (V) is dense in D (HI;;) where 8’ (V) is the space of compact
supported distributions.
Now, we consider ~) ~ ~’(V); there exists ye IR such that

We introduce the radial parameter s*

The map L defined by

is an isometry from ~f onto 

We verify easily that

where

Vol. 54, n° 3-1991.
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We have

The restriction of V * x at R+s* x Sw is the standard curl in euclidian space
~3 in spherical coordinates; it is well known that if u (x) is in L2 (IR~) and

then there exists u" E C~ (~) such that

So it follows from (57) that we can approximate f in graph norm of H
with a sequence in (Co (V))6. Hence this space is dense in 

Q.E.D.
A direct calculation shows that

Therefore, if e-itH is the unitary group on Jf associated with H by Stone’s
theorem, its restriction at or ~f is a unitary group on ~; its

generator is H’8 with domain D (H’8); thus is selfadjoint on ~.
Q.E.D.

Proof of Theorem 2 . 2. - This result of propagation with finite velocity
follows immediately from the estimate of local energy:

PROPOSITION 2.5. - Let U be a solution af (30) with initial data in .
Then, for any time T&#x3E;0 and !?, we have

Proof. - By a classical argument of density we consider only the case
where U(0) is in ~). Then we have in strong sense

l’Institut Henri Poincare - Physique théorique
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where U is the transposate complex conjugate of U. By using (32) we
obtain

where X~ is the complex conjugate of X~. We integrate equation (59) on
the domain

with the measure r2 dr dro dt; we obtain by direct integrations

We conclude by noting these last both integrals are non negative.
Q.E.D

Proof of Theorem 2 . 3. - Let U = t(E, B) be in eit such that

For X = E or B we put

(62) and (63) imply

By a direct calculation, we express equation (65) in terms of A 0, A + , A
by using constraint of free divergence (66): 

.

Vol. 54, n° 3-1991.
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where AS2 is the Laplace-Beltrami operator on S2:

and equation (66) becomes

Because U is in ~ we have

Following J. M. Gel’fand and Z. Ya. Sapiro [11] we expand AO, A + , A -
in series of generalised spherical functions 

where (T, is an orthogonal basis of L 2 and

We recall that

Anna/es de l’Institut Henri Poincaré - Physique ’ théorique ’
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and um, n satisfies the differential equations:

By using these relations we find, after elementary and tedious calculations,
that avl, n are solution of

and for simplicity we have put

First we consider the case ~0. Because a2 r- 2 is in L1 (fR, dr*), it is well
known that any solution of

is a linear combination of particular solutions u+, u_ satisfying

Therefore (87) admits no nonnull solution such that

Following (84) and (86), in in L2(~, then we deduct from (81)
a° is null. Now (82) and (83) imply that a+, a- are solutions of (87) in

dr *) and therefore a+, a- are so null. We conclude that ~0 is
not eigenvalue of H on 

Vol. 54, n° 3-1991.
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Now we consider the case ~=0. If l ~ 0 we investigate the differential
equation

We write

By putting 03C8 (r*) = t ( f (r*), g (r*)) (91 ) becomes

where

We recall that ex2 is exponentially decreasing as r * -~ ~ oo, then
VEL 1 ( ] - oo, r*]r*, dr *) for any r1* and for any complex c, c’ the integral
equation

admits a unique solution W = t ( f, g) in L 00 ( ] - oo, ~]); moreover

g (r*) - c’ ~ tends exponentially to 0 as r * ~ - 00. Taking
c =1, c’ = 0 we obtain a solution u 1 of (91 ) with

and by choosing c=0, c’== 1 we find a solution ~c2 of (91) with

Obviously the Wronskian W (r*) = Mi u2 - u2 Mi 1 is constant and thanks to

(96) (97) we have

Therefore, any solution u of (91 ) can be written

and

We see that if u’ is in a~), then ~=0. So, we deduct from (81 )
(84) (86) that

Now, we have

Annales de l’Institut Henri Poincare - Physique theorique
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and

Let R* be defined by

If R* is finite, ( 102) gives

that is in contradiction with (103). Therefore u1 is strictly positive and ui
is strictly creasing and positive and so

We conclude that a° is null.
Now a+ and a - are solutions of (91 ) again:

and

Then (86) implies a +, a - are null.
At last we consider the case ~==0, /=0. By (82) and (83) we have

and by (86) a+, a~ are null again. On the other hand, (84) shows that

We conclude that any such that HU=0, has the form

that ends the proof.

Proof of Corollary 2.4. - We remark Hk f is in H for any and f

Let U be in orthogonal to for the graph norm of H-

Then we have

where the last bracket is taken in distributions sense on V. We deduct

that

Vol. 54,n’3-1991.
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Therefore

Hence Hk U is null and we conclude thanks to Theorem 2 . 3 that U is
null and ~k is dense in D (Hf.7(?) which is dense in H.

Q.E.D.

3. WAVE OPERATORS AT INFINITY

The Schwarzschild universe is asymptotically flat and far from the
Black-Hole we compare hamiltonian H with classical electromagnetic
hamiltonian Ho:

in the Minkowski space-time ~ with the metric

For any choice of p = p (r) we can verify the difference H - Ho is a long
range type perturbation, but because the radial null geodesics ( 15) are
straight like their flat analogs, we avoid the long range interaction between
the gravitational and electromagnetic fields by choosing

We introduce the usual finite energy Hilbert spaces

where

Annales de Henri Poincaré - Physique theorique
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In order to compare the dynamics far from the Black-Hole in the Schwarz-
schild and Minkowski space time, we choose a cut-off function 3(0 satis-
fying

We construct identification operators between ~ and ~o by putting

We define the classical wave operators without Dollard’s modification

In this section we prove W~ are well defined on ~o; the key of the
proof is

1. the spherical invariance of Maxwell equations that implies a t-2
decay of radial components of fields,

2. our choice (115) which cancels long range effects, then we can use
Cook’s method to obtain the following

THEOREM 3.1. - Wo are defined from H0 to H, are independent on
xo satisfying (119) and

We deduct from this result, the existence of outgoing fields.

PROPOSITION 3 . 2. - if U~ E satisfy

then we have

In section 5 we will prove the asymptotic completeness of i. e. the

electromagnetic field in the Schwarzschild space-time is asymptotic far
from the Black-Hole, to a free field in the Minkowski space-time. Here
we state only this fundamental result. We introduce wave operator W 0:

THEOREM 3 . 3. - Wo is ’ :Yt 0 is independent on ~o .

satisfying ’ ( 119) and ’

Vol. 54, n° 3-1991.
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Remark 3.4. - Theorems 3.1 and 3.3 are true again for the non
smooth cut off function 3(0 such that

To prove that it is sufficient to approximate xo with smooth functions
satisfying ( 119) and we use the previous results and the decay of the local
energy.

Proof of Theorem 3. 1. - Given Uo in H0 we put

We have

therefore it is sufficient to prove the existence of Wo Uo on a dense
subspace X of We recall a tempered distribution on euclidian space
~3 is a regular wave packet if its Fourier transform is Coo with compact
support and 0 is not in this support. For Uo in ~f~ and E &#x3E; 0 we choose cp,
regular wave packet such that

Then Uo E = -0394-1 curl curl cp is a regular wave packet in H0 which
satisfies

Therefore

is dense in Now given Uo in X, we define

where

and

Given e&#x3E;0, we introduce function ~(~ ~ co) by putting

We have

Annales de Henri Poincaré - Physique - théorique -
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It is well known by a stationary phase argument (to see e. g. [22]) that for

any regular wave packet we have

Since (1 -M)~ is bounded, (133) implies

We verify also that for any 03B4&#x3E;0

and therefore

We conclude from ( 131 ) ( 134) ( 136) that D(t) tends to 0 as t ~ -~ oo and
to prove the existence of W~ Uo, it is sufficient to show that Wo Uo has a
limit in ~’ ~ oo . For that, we apply Cook’s method and we establish
that

We have

and

We note

Vol.54,n"3-1991.
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So we have

On the one hand, xo has a compact support in ] 0, +oof thus ~33~implies ’ 

on the other hand, Curl X is so a regular wave packet, hence (133) gives

where X is defined by ( 130).
Now the spherical invariance of Maxwell’s equations in the Minkowski
space time has an important consequence: the radial components decay
as f t ~ - 2, indeed X (t) satisfies

where Ox is the laplacian in the euclidian space. Hence

r* cu . X is a regular wave packet and thanks to ( 132), ( 133) we have:

We remark that

We deduct from ( 144) and (145) that

Now ( 137) follows from (!42), ( 143), (t46).
It remains to prove

We note
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From (58) we have

Let (I&#x3E;l’ 1&#x3E;2) be " in [C~ (V)]2. We put
(149)

where (,) is the bracket of distribution on V defined o for

Then we have

where

The definition of W~ assures that

with

Because Uo is in ~o, we have

hence

We conclude from ( 148) ( 149) ( 152) ( 153) that

At last we consider

Because t(Ar-2, 0, 0, Br-2, 0, 0) is in H2 we have

We write again

where E:f: satisfies (152). Now (144) implies
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We conclude from (155) ( 156) that wt Uo is in Ye. Now we have

Thanks to (132) (133) the both first integrals tend to 0 as I t -~ oo, hence

At last we show that W5 Uo does not depend on xo, if Xo satisfies (119)and J~, is the associated operator, we evaluate

This q uan ti ty decaies to zero as |t| tends to infinity because has a

compact support and the local energy of e-itH0 U0 tends to zero. Therefore
and Uo admit the same limit and W"5 is

independent on 3(0.
Q.E.D.

Proof of Proposition 3.2. - Let U±0 be in H0 such that

Given ~&#x3E;0, we choose ’t satisfying

We write

By using (158) and proposition II. 5, we obtain

but this last integral is null because
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We conclude Uo is null for ~ 

4. WAVE OPERATORS AT THE HORIZON

Hamiltonian H degenerates as r tends to ro, but admits a
formal limit H 1:

We shall see that H 1 is essentially the dynamic in the Rindler space-
time that approximates the Schwarzschild metric near the horizon. We
introduce the Hilbert space of finite energy data:

(161)
We define the subspaces of data with a left (right) polarization

The fields in behave like a plane wave, falling into the future
(coming out of the past) horizon: obviously H 1 is a densely defined
selfadj oined operator on and

In order to compare the Hand H 1-dynamics near the Black-Hole we
choose a cut-off function xl satisfying

and we construct identification operators between ~ and ~ 1 by putting:

We define classical wave operators

In this section we prove that wt are ’ well-defined o because ’ the
Schwarzschild o potential is exponentially decreasing j as r* -~ 2014 oo and o we
can use Cook’s method.

THEOREM 4 .1. - W i (resp. (resp. , Jf,
is independent on 3(1 satisfying o (164) and ,
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We deduct from this result, the existence of infalling fields, similar to the
disappearing solutions in the classical scattering theory for the dissipative
obstacles [20]:

PROPOSITION 4 . 2. - v satisfies

then we have

In section 5 we shall prove the asymptotic completeness of W i : let W 1
be the wave operator

THEOREM 4 . 3 . - W 1 is defined from ~ to is independent on Xl
satisfying ( 164) and

The physical meaning of this fundamental result of completeness is the
famous "impedence condition" of Damour ([5], [6], [7]) and Znajeck [24].
Moreover, the asymptotic profile of regular fields satisfies a dissipative
condition of infalling left-polarization:

THEOREM 4. 4. - Let U be in ~f such that

We note

Then, for any s E IR, there exist er*, ... , b~ in L2 (S2) such that, as

the following o limits exist in L2 (S2):

Moreover we have

Remark that, following £ corollary 2 . 4, the subspace of data O satisfying £ ( 169)
is dense in ~.
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So, the Black-Hole horizon is rather similar to a dissipative spherical
membrane in the euclidian space with surface resistivity 377 Q (impedence
of vacuum): ( 174) is formally the impedence condition and ( 175) the charge
conservation law, but we emphasize that unlike the euclidian case for
which the dissipative condition is posed at each time and is necessary to
solve the mixed problem, impedence property ( 174) is a consequence of
Maxwell equations satisfied at infinity of infalling null geodesics.
Now, we discuss about the Rindler approximation.
Given we make the change of variables:

Then Schwarschild metric (8) becomes

We recall that the Rindler space time is the flat manifold 

with the induced Minkowski metric:

Hence ( 177) and ( 179) give

and we may approximate a neighborhood of (ro, in the Schwarschild
Universe thanks to the Rindler space time 

Now, an electromagnetic field (E, B) in R03C90 satisfies the usual Maxwell’s
equations (22):

Vol.54,n"3-1991.



288 A. BACHELOT

Obviously the Cauchy problem for ( 181 ) in is well-posed and no
boundary condition is necessary at Z = 0. Particular solutions are the
restrictions at of plane waves in the half Minkowski space time 

satisfying equations ( 181 ) in .Al/2 and on the one hand

and on the other hand, the impedence condition on the boundary { Z = 0 } :

In fact ( 181 ) ( 182) ( 183) imply that the field satisfies everywhere the
polarization condition

We call incoming plane waves in the Rindler space-time, any solution of
( 181 ) in satisfying ( 182) and ( 184) for We see easily that for
such an incoming plane wave, we have in (t, r*) coordinates:

On the horizon {~=~0}’ equation ( 18 5) becomes

which is exactly the H1-dynamic on for and

is solution of ( 186).
Therefore, to compare the electromagnetic field in the Schwarzschild

space-time and in the Rindler approximation, it is sufficient to compare
the solutions of ( 185) and ( 186).
We introduce Hilbert space 

and the subspace of incoming data:

Obviously is a selfadjoint densely defined o operator on 
and o We define ’ an identification operator between ~ and o ~~ by
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putting

We define wave operator 

THEOREM 4. 5. - is well-defined from ~ to ~~ is independent on
x 1 and

Remark 4 . 6. - Theorems 4 .1, 4 . 3 and 4 . 5 are true again for the non
smooth cut off function 3(1 such that

To prove that it is sufficient to approximate ~1 with smooth functions
satisfying ( 164) and we use the previous results and the decay of the local
energy.

Proof of Theorem 4. 1. - Because

it is sufficient to prove the existence of W i U 1 for

such that U1 (r*, . ) is null for ( r* ~ &#x3E;~R and so, in a neighbourhood of
8=0, 6=7t. We use Cook’s method and evaluate

We obtain easily that

where F, G~L1 (Rr* X Sw, dr * supp F U supp G c [ - R, R]r* x Sw, .
We make the change of variables 
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The last integral is null for |t| large enough and (1-r0 r) I r. = R + - t 
is

exponentially decreasing by respect to t as :i: / -+ + 00. Therefore

and W i U 1 exists in The proof that W i u 1 is in ~f is the same that
for W~ Uo; we use only that

By the same way we prove that W i is independent on x 1 by noting
that the local energy of tends to zero. At last we choose 3(1
satisfying ( 164) and

hence ( 189) gives

Q.E.D.

Proof of Proposition 4.2. - Let Ui be in satisfying

Given E &#x3E; 0, we choose ’t such that

We write

Following ( 196) and Proposition 2 . 5, we have

and the last integral is null because ( 195). We conclude that

Q.E.D.

Proof of Theorem 4.5. - For U given in ~f. Theorem 4. 3 assures
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there exists U 1= U 1 (r*, such that

Therefore, to prove W Bl U is well defined, it is sufficient to verify that
for any

We may consider only the case where

We have

The first integral is null for t &#x3E; R - c and 1- r° is exponentially
r I r*=R-t t

decreasing by respect to t -&#x3E; + ~. We conclude that

and limit (200) exists. If x 1 and ~’1 satisfy ( 164) and define WR and 
we have

and this last limit is null because ( 199). Hence WR is independent on 3(1;
by choosing x 1 with
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we obtain

5. ASYMPTOTIC COMPLETENESS - SCATTERING OPERATOR

This part is devoted to the proof of Theorems 3 . 3, 4 . 3 and 4 . 4.
We can resume our results by defining Scattering Operator S. We

introduce Wave Operators W -, W:

THEOREM 5. 1. - W - is isometric from X onto ~f.
W is isometric from H onto Yti X 
S is isometric from x H0 onto x 

The ideas of the proof of the asymptotic completeness are following:
- because the fields are without stationnary part, we may use a vector

potential and the problem is to investigate a vector wave equation in
Schwarzschild metric,
- thanks to the spherical invariance, we can make a separation of

variables and, roughly speaking, the problem is reduced to the study of
the one dimensional scalar wave equation

- and we adopt the approach of Dimock [7]: because the potential
a2/r2 is short range type, the classical scattering theory of Kato and
Birman assures that

- 

uo and ul are respectively the asymptotic profiles of free fields which
are asymptotic to the given electromagnetic field in Schwarzsxhild space-
time, respectively at the flat infinity, and at the horizon.

Proof of Theorem 4.4. - We start by investigating the vector wave
equation

with the constraint of free divergence
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Following (64), we split X into radial and transverse components A 0,
A + , A - and we expand A 0, A + , A - in series of generalised spherical
functions Tm, n (74) (75):

For simplicity we omit subscript l, n and now 03B1v are solutions of the
scalar one dimensional wave equation

and if

then

We note that for /=0, a~ a +, a - are the free solutions of

Now we consider the case l~0, then a0 and a + - a - are solutions of
the wave equation

where

is self-adjoint on L2 dr *) with dense domain
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We compare 
’ the solutions of (217) and o (218):

LEMMA 5. 2. - Let u be a solution of (218) with initial data

Then there ’ exists u +, H 1 (IR) such that

Now let U be satisfying (169). Then E and B are the solutions of (206)
(207) with X = E or Band

We may apply lemma . 5 . 2 to a° and 0 a + - a - : there " exists
such that

Now thanks to equations (213) (225) (227) there exists so 
such that

We deduct from (298) and (230) there exists in L2 (M) such
that
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Because satisfies so (206) (207) (223) (224) the same proof assures
the existence in H1 (M) such that

In fact (227) and (234) imply

and

Because a r2 2 tends to 0 as r* ~ - oo (227) gives

and thus

We obtain by (213) and (232), (237):

Because the spherical invariance of equations (206) (207) we have the
same results for 0394S2X; the initial data are multiplied by -/(/+!) and in

. particular we have

We conclude by (210) (213) the following improvement of (229):

and finally
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Now we define for v=0, +, 2014

We introduce Sobolev Hilbert space H1 

(225) and (239) prove that

and (227) (238) and the Lebesgue theorem imply that for v=0, +, -,

We recall the classical Sobolev imbedding:

thus we deduct from (243)

and because

we have for any s E [R

For X = E we put

be, &#x26;’" are defined by the same way for X = B. Limits ( 171 ) (172) (173)
are so a consequence of (245) and we have for v = 9, p

a~ (r a E‘’) and are related by Maxwell’s equations:
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and we have

Let B)/ be in C~ x Sw). We have for t large enough:

where ( , ) is the distributions bracket on x S; and thanks to (247)

(251 ) implies

We obtain

being in L2, polarization property ( 174) is proved.
The constraint of free divergence assures that

We have shown that

in distributions sense on as ~+00. Hence we deduct charge
conservation law (175):

Proof of Lemma 5.2. - We verify easily that

with

Vol. 54, n° 3-1991.



298 A. BACHELOT

We note that f and g are in H1 (!R).
We introduce self-adjoint operator ~,1 on L2 

J. Dimock [7] proved that for any the following limits exist in
this space:

It is a direct consequence of the invariance principle for the wave operators
and of fact that is positive and a short range perturbation [22].
Now let fl be

We have

Hence fl is in H 1 and

We have so

and

Thus

and

Now we estimate we use the integral representation

On the one hand we write.
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for in because a2/r2 tends to zero as r* ~ 1-+ oo, we
obtain

On the other hand for 0~ 1 we have

and for ~~1

We apply the dominated convergence theorem to conclude that

(258) (259) and (265) give

and

It follows from (260) (266) (267) that

hence

Because Jl ~ J.11 we deduct that

thus

and by applying (265) (268) again

Obviously we have the same results and by recalling that

(222) is a consequence of (269) (270) (271). At last (221) is proved by
(253) (258).

Q.E.D.

Proof of Theorem 4.3. - Because

Vol. 54, n° 3-1991.



300 A. BACHELOT

it is sufficient to take U in the dense domain H [C ( I~]6. Following (243)
(246) we have _

(273) and (275) imply

By putting

we obtain

therefore W 1 U is well defined in 
Now if ~’1 satisfies (164), we deduct from (273) (274) (275) (276) that

We conclude that Wi is independent on x 1 an by choosing 1,
(272) shows that 

8-~1=,

Proof of Theorem 3.3. - Because .

it is sufficient to consider

Now thanks to lemma 5.2 we may replace in the proof of Theorem 4.4
’Xl by 3(0 and t + r* by r * - t, then we obtain a result similar to Theorem 4.4
for the flat infinity: the electromagnetic field admits an asymptotic profile
as r* - t = s = Const., ~+00; more precisely there exists satisfying
(273) to (278) by replacing x 1 by 3(0 and t + r* by r* - t. That implies
there exists U 1 E £ 1 such that
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Now we introduce the Hilbert space

and operator the Hg

Obviously Hg is self-adjoint on ~o and unitarly equivalent to Ho on 
We define so

H~ is self-adjoint on Hilbert space 

We see easily that

We introduce the cut-off operator
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LEMMA 5.3. - The wave operator

is well defined from ~ i to ~o .
Proof. - Because

we consider only the case

Now thanks to (292)

where

Because g, f and ~0 have compact support we obtain
dr*

Q.E.D.
Now we can end the proof of theorem.
Lemma 5.3 assures there exists U0~H0 such that by noting

We remark that for f E L 2 x S;)
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The limits (284) to (287) and (294) to (298) allow to conclude that

that is, Wo U is well defined in Now if 3(0 is another cut-off function
satisfying ( 119), estimates (284) to (287) show that

That proves Wo U does not depend on 3(0’ Finally, by choosing ~
we obtain

Q.E.D.

Proof of Theorem 5.1. - It remains to verify W -, Ware isometric. We
have

Thanks to the properties of xo, x 1 and the decay of the local energy of
free fields we have

we obtain so

where

Because the local energy of e - 
‘tH U decaies we have again

Q.E.D.

6. MEMBRANE PARADIGM

The Membrane Paradigm [ 14] [ 15] states that, in order to describe long
range effects of Black-Hole, we may replace the horizon by a stretched
horizon that is a true time like boundary with the impedence condition.
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For E &#x3E; 0, we define the absolute space (Ve, 

The boundary of Vg is called the streched horizon

We keep the notations of part 2 and by noting GE the restriction of - i H
at the distribution space on VE, Maxwell’s equations in IRt x VE are

We impose the impedence condition on the stretched horizon

We introduce the Hilbert spaces

We consider operator G with domain determined as the
closure of the set of functions U in C5 (Vg, C6) having a compact support
in and satisfying condition (303), with respect the
graph norm

THEOREM 6.1. - Operator Ge with domain D (Ge) generates a contraction
semigroup Yte is invariant with respect to ’ ~e(~).

Therefore, given is a weak solution of (301 )
(302); moreover, if U is in dense - subspace D (GJ n we have -

and boundary condition (303) is satisfied in strong sense thanks to the
following result:

LEMMA 6.2. - The map

can be extended to a continuous map from ’ ’ Sobolev

Moreover the classical charge conservation law is satisfied on the stret-
ched horizon:

PROPOSITION 6.3. - Let U be in D (GE); we note
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then we have

and

The existence of a limit of Er on ~ r = ro + E ~ x S; is a consequence of
the constraint of free divergence.
Now we assume ~ &#x3E; 0 small enough for that

In order to compare the electromagnetic fields in Vg and in the Minkowski
space-time, we introduce cut-off function xo satisfying ( 119) and identifica-
tions operators:

We define wave operators

THEOREM 6.4. - WE- is well defined from H0 to 
WE is well defined from ~E to 

WE do not depend on xo and

Therefore, despite the long range gravitational interaction, the classical
wave operators exist and the scattering by the stretched horizon is descri-
bed by the operator

The following result is the mathematical foundation of the Membrane

Paradigm:

THEOREM 6.5. - FDr U-0~H0

Remark 6.6. - Theorems 6.5 and 6.6 are true again for the non smooth
cut off function xo such that
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To prove that it sufficient to approximate 3(0 with smooth functions

satisfying ( 119) and we use the previous results and the decay of the local
energy.

(312) is meaningfull of viewpoint of numerical analysis; indeed, imped-
ence condition (303) is the first order absorbing condition introduced by
B. Hanouzet, M. Sesques [12] by generalising for the Maxwell system in
euclidian space the absorbing boundary conditions for the wave equation
of A. Bayliss, E. Turkel [2]. Hence we may make numerical calculations
of fields by using boundary condition (303) on the stretched horizon. On
physical view point it is very natural that condition (303) is absorbing: it
is well known in geometrical optics that the reflecting coefficient between
two media is minimal if these media have the same impedence; (303)
means the stretched horizon has the vacuum impedence; hence it is a

transparent boundary.

Proof of Theorem 6.1. - It is a direct consequence of the classical
results about the symmetric systems with dissipative boundary conditions
(e. g. to see [20]); we recall only the key point is operator GE is accretive
i. e. .

indeed we obtain easily by Green’s formula:

So we show that the adjoint of Gg is accretive, hence Gg generates a
semigroup of contraction. Now by (58) the restriction of Vg (t) at H~ is a
semigroup of contraction on H~ again.

Q.E.D.

Proof of Lemma 6.2. - Given ee, e, b, b in H1/2(S203C9), take ?, , be,
~ in so that for X==~ v=6, (p,

We put

Green’s formula implies
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Thus we get

therefore

Q.E.D.

Proof of Proposition 6.3. - we 

so that

We have

By integration by part we get

thus

then we deduct from (317) that

Now for U in D (GE) we have

and as previous

that is to say

Q.E.D.

Proof of Theorem 6.4. - To prove the existence of WE we can repeat
exactly the arguments of the proof of Theorem 3.1.
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To establish WE U exists its is sufficient to consider

We split the electric and magnetic fields into radial and transverse com-
ponents that we expand in series of generalized spherical functions (208),
(209); we note r,~) the coefficients in (208) (209), associ-
ated to X = E, B, v=O, +, -.

~x sarisfying equations (210) (211 ) (212) (213) in ]~ + oo [. By
using Maxwell’s equations, impedence condition (303) and relations (79)
(90) we obtain the boundary conditions at ~:

Now equations (210) (320) give

and with (213) (321 )

The same result holds for

We conclude that

is solution of

But (324) is a perfecty transparent condition, so
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where u is solution of

with

Now we may apply lemma 5 . 2 for

Hence there exists an asymptotic profile f~H1 (]r~*, oo [ ) so that

and we achieve the proof of existence of WE u like for Wo U.
Q.E.D.

Proof of Theorem 6 . 5. - We can consider only the case

Then by Huygens principle

If

Proposition 3.2 states

It follows that for E small enough so that

we have

By the asymptotic completeness we write

where M is defined by ( 128) and
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Given ~&#x3E;0 we choose such that

Thus

(338)

We introduce

Our main result is to prove that

We assume E &#x3E; 0 so that

Then 

Notice that satisfies boundary condition (303) for 
and

Since

we obtain for 

On the other hand satisfies so boundary condition (303)
and

with
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thus for 

From (342) (344) (346) we deduct

We evaluate

By using respectively ( 134) ( 136) ( 163) (336) (337) ( 137) ( 138) ( 191 ) ( 193),
we see that each norm of right side of (348) is smaller than" for t large
enough

that proves (340) and we obtain finally with (338):

7. CHARACTERISTIC CAUCHY PROBLEM

We can interpret the whole scattering theory in terms of characteristic
Cauchy problem with data specified on the horizons.
We introduce the Kruskal coordinates:

and we use the Penrose compactification:
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So we put:

Then the Schwarzschild metric becomes

where dsK is the metric

on manifold K.

Therefore we can represent the Schwarzschild space-time by the famous
Penrose diagram.

Penrose conformal diagrams for Schwarzschild Black-Holes.

We have introduced the classical notations for which

H+(-) is the future (past) black-hole horizon and 1+(-) is the future ( past)
flat horizon. Given a real c we define neighbourhoods K° of flat infinity
1- U 1+ and K 1 of black hole horizon H - U H + by putting:
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We split manifold K with Cauchy hypersurfaces Vt :

and we put

If (E, B) is an electromagnetic field in the Schwarzschild space-time, we
define

Because Maxwell’s equations are conformal invariant and ds~ and dsK are
conformally related metrics, f satisfies an hyperbolic system 2 and an
constraint equation ~ (free divergence) equivalent to Maxwell’s equations
on (K, dsK)

In fact we may consider ~ as a differential operator on vt for each t.
We say f is a finite energy solution if (E, B) given by (360) is a finite

redshifted energy field, i. e. (E, and satisfies (30), (31). Therefore
we introduce

where cut off function x,, is given by:

The classical results of Leray on the hyperbolic systems assure the Cauchy
problem for (361 ) in K with Cauchy data specified on Vt=to is well posed;
moreover, Theorem 2 .1 implies that if for some real to

then for each t in fR

The study of the characteristic Cauchy problem does not follow from
the standard results of existence of solutions of Maxwell’s equations on a
globally hyperbolic curved spacetime, since timelike and spacelike infinity
are singular in the Penrose conformal spacetime. Actually, this study is
equivalent to the Scattering Theory.
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We start by defining Hilbert spaces of data with right polarization on
horizons H -, 1~, and left polarization on horizons H + , I’:

where

Given ~°_ , ~L, respectively defined on I - and H we call solution of the
characteristic Cauchy problem with past data (~P., ~), any finite energy
solution f of (361 ) (362) such that

where 0’L is the plane wave defined on K and related to 

We say thatfhas a limit on future horizons if there exists ~ + such that

where

Now the existence ofW- implies that the characteristic Cauchy problem
is well posed and the asymptotic completeness assures the solution has a
limit on the future horizons:

THEOREM 7 . 1. - and there exists a
unique solution f of (361 ), (362) satisfying characteristic boundaries condi-
tions (373) (374) and
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Moreover, there exists 03A61+ E (H + ), 03A60+ E YtR (1+) satisfying (376) (377).
The linear map

is an isome try from YtR(H-) X YtL(I-) on to ’ ’ YtR(I+).
At last we interpret the Membrane " Paradigm. We note rE the stretched

horizon:

and we note for t e [R

where

We specify on re the impedence condition for/given by (360):

Theorem 6 . 2 means the mixed characteristic Cauchy problem is well posed
in KE and the solution has a limit on 1~:

THEOREM 7 . 2. - For 1&#x3E;’: E YtL (1-) there exists a unique solution f~ of
(361) (362) in KE satisfying (383) and

Moreover there exists 03A60+, E E YtR (I+) satisfying:

The Membrane " Paradigm states that C~ approximates the limit on 1+
of the solution in K with past data, null on H -, equal to 

~ 
on I’:

THEOREM 7 . 3. - With the ’ notations of Theorem 7 . 2 we ’ have

Proof of Theorem 7.1. - We prove immediately the uniqueness of the
solution: assume

then (373) and (374) give

and we conclude by (367) f is null.
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We shall use the fact that a free electromagnetic field in the Minkowski
spacetime has an asymptotic profile and is caracterised by it:

LEMMA 7 . 4. - Zet ’Xo be satisfying (365) with c &#x3E; o. We define

We introduce wave operators

Then Wi o is defined from H0 to Ytt and W i o is defined from H±1 to
~o ~
These results are classical; we can prove them easily by using Cook’s

method (to see so in e. g. [20] a proof by the Lax-Phillips method involving
the Radon transform).

Given ~ 1 and define

Then we have:

and we put

We verify that ~1 , defined by (375) satisfies:

Now we establish that the finite energy solution of the characteristic

Cauchy problem is given by:

where operator W - is defined by (203).
We have
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Thanks to remark 4 . 6 this last quantity tends to 0 as t ~ - oo , that proves
(373). On the other hand

By using remark 3 . 4, the decay of the local energy of e - U 0 and (391 ),
we conclude that (374) is satisfied. Now by (373), (374) we have

with :

Hence (367) gives (379).
Now we put

Then we have:

where
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By changing t into-t in estimates (401 ) (402) we deduct (376) (377) from
(411 ) (412); moreover

then (403) and (414) prove that Sk is isometric.

Proof of Theorem 7.2. - If 03A60-=0, (384) implies

on the other hand, (313) implies that any solution of (361) (362) (383)
satisfies

therefore/=0 and the uniqueness of the solution is proved.
We introduce Uo defined by (394) and (397) and we define f E on KE by

putting:

where wave operator WE is defined by (309). As previous we have

By using remark 6 . 6, the decay of the local energy of e - itH0U0 and
(391),we conclude that (384) is satisfied. Now by (416), (384) we have

Now we put

l’Institut Henri Poincaré - Physique theorique



319GRAVITATIONAL SCATTERING

Then we have:

Hence we conclude from (420) and o (391) that £ satisfies (386).
Q.E.D.

Proof of Theorem 7. 3. - We evaluate ’

where ~, ~-’ are defined by (407) and (422).
We have

Therefore Theorem 6 . 5 implies A~ -+ 0, E -+ 0.
Q.E.D.
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