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Time decay of solutions
to the Schrödinger equation

in exterior domains. I

Nakao HAYASHI

Hongo 2-39-6, Bunkyoku, Tokyo 113, Japan (*)

Ann. Henri Poincaré,

Vol. 50, n° 1, 1989, Physique theorique

ABSTRACT. 2014 We study the time decay of solutions for the following
Schrodinger equation :

where D is the complement of a star-shaped, bounded domain in ~ ~ ~ 3,
and the boundary aD is smooth. We give upper bounds for decay rates of
Lp(D)-norm for the solution u of (*), for example,

where 8 and 61 are sufficiently small positive constants,

RESUME. - Nous etudions la decroissance temporelle des solutions de
1’equation de Schrodinger :

(*) Present address: Department of Mathematics, Faculty of Engineering Gunma Uni-
versity, kiryu 396, Japan.
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72 N. HAYASHI

ou D est Ie complement d’un domaine etoile borne de &#x3E;_ 3, et de bord
regulier. Nous prouvons une borne superieure pour Ie taux de decroissance
dans la norme de Lp(D) des solutions u de (*) :

ou 8 et E 1 sont des constantes suffisamment petites et

1. INTRODUCTION AND MAIN RESULT

We consider the exterior boundary value problem for the following
Schrodinger equation : _

where D is the complement of a star-shaped, bounded domain in f~", n ? 3,
and the boundary aD is smooth. Our main purpose in this paper is to study
Lp-time decay for solutions of ( 1.1 )-( 1. 3). In this paper we use the following
notations :

Jk = + J = J(t) _ (J1, ... , Jn), K = 
J2 = r2 ~_ nit _p ~2~ a" = ail ~ ~ ~ xii ~~ j~ Jil 
a e (N u {0 } )",~~ = x° - J° - I ; ~ denotes the space of rapidly decreas-
ing C~(D)-functions from D to C, Y’ is the dual space of Y ; Lp denotes
the Lebesgue space or 0 Cn, with the 1 ~ j9 ~ oo ;
!!-!! 

!! = !!  = denotes the completion
- 

~Mt
of in H’"’’;
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when D is the complement of a star-shaped, bounded domain with smooth
boundary aD.
The following relations will be used in the sequel:

Different positive constants might be denoted by the same letter C. If

necessary, by C(*, ... , *) we denote constants depending only on the
quantities appearing in parentheses.
With these notations we state our main result.

THEOREM 1. - Let D be the complement of a star-shaped, bounded
domain in tR" (~ ~ 3), with smooth boundary aD. Let u be the solution
of ( 1.1 )-( 1. 3) 

Then u satisfies the following decay estimates

where

and

where

More precise Lp-time decay for solutions of (1.1)-(1. 3) has been studied
by Y. Tsutsumi (lemma 3 .1 in [5 D.
However his assumptions on the initial data and the domain are different

from ours, and his methods are also different from ours.

REMARK 1. - Let v be the solution of the initial value problem for
the linear Schrodinger equation with the initial data ~. Then we have by
well known decay estimates of free Schrodinger group and Sobolev’s
inequality

where 1 /p + 1 /p’ - 1 and y = y( p) is the same one as that of theorem 1.

REMARK 2. - We can treat the nonlinear Schrodinger equations in

Vol. 50, n° 1-1989.



74 N. HAYASHI

exterior domains by using theorem 1, since the decay rates obtained in
theorem 1 are larger than 1 (see [5 ], [7]).
Throughtout the paper we assume that the assumptions of theorem 1

are satisfied.

2. PROOF OF THEOREM 1

For the convenience of the reader we first give a sketch of the strategy
of the proof. The main result follows from Sobolev’s inequality

where p and y are same as those in theorem 1. The first norm is estimated
by lemma 2.1, the second norm is reduced basically to ~ J2u II by lemma 2 . 5
(which does not use the equation), then ~ J2u~ = ~ Ku ~ for the solutions,
II Ku ~ is estimated in lemma 2 . 6 which requires a priori estimates of solu-
tions on the boundary given in lemmas 2 . 2-2 . 4. We note that computation
stated below is rather formal, but it can be justified by considering the
solutions uk of regularized equations such that

where " _- l -_ N - 
and o strongly in H. It is well known that for any k, there " exists
a unique " smooth solution

(see, e. g., K. Yosida [6 ]). This and a limiting procedure allow us to justify
the formal calculation stated below.

LEMMA 2.1. - Let u be the solution of ( 1.1 )-( 1. 3). Then we have

Annales de l’Institut Henri Poincaré - Physique theorique



75SOLUTIONS TO THE SCHRODINGER EQUATION IN EXTERIOR DOMAINS. - I

Proof From ( 1.1 ) we have

where v = u or atu. We multiply (2.3) by Jv and take the imaginary part.
This leads us to

where Im f denotes the imaginary part of f For any a, b E ~, we have

We obtain by (2.4), (2. 5) and the fact that v = 0 on 3D,

(2.1) and ( 2. 2 ) follow from ( 2 . 6 ) and ~M(O) = - - A~. Q. E. D.
LEMMA 2 . 2. 2014 Let M be the solution of (1.!)-(!. 3). Then we have for t &#x3E; 0

Proof 2014 We put’ = (1 + &#x3E; 1. We have by a simple calculation
From this and the fact

that 9D is bounded we have

here we have used the Schwarz inequality. We multiply ( 1.1 ) by ’to obtain

By the elliptic estimates (see, e. g., [1 ]) and (2 . 8) we get

By Holder’s and Sobolev’s inequalities we have

for any v E H1,2 with |x| v ~ L2.

Vol. 50, n° 1-1989.



76 N. HAYASHI

By a simple calculation we obtain for any v E H1,2

(2.9)-(2.12) and (2.7) give

Since ~ u ~2,2 ~ C ~ 03C6 II2,2 by the energy estimates of(l.!)-(!. 3), lemma 2.2
follows from lemma 2.1 and (2.13). Q. E. D.

LEMMA 2 . 3. - Let u be the solution of ( 1.1 )-( 1. 3). Then we have

Proof From (1.1) we have

LKM=0. (2.14)

We multiply (2.14) by at(Ku) and take the real part to obtain

where Re f denotes the real part of f By using (2.5) we have

We have by (2.15), (2.16) and the Schwarz inequality

Annales de l’Institut Henri Poincaré - Physique theorique
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From this we have

since (1 + t~t)~u ~2b = - t II ou + t3 II ~ ~~tu ~2b + d dt t2 II ~u ~2b.

Thus from (2.17), lemmas 2.1-2. 2 and the Schwarz inequality it follows
that

This completes the proof of lemma 2. 3. Q. E. D.

LEMMA 2.4. - Let w E n H2’2 and r2w E L2. Then we have

where 0  ~  4/3 if n=3, 0  j8  2 if n=4, 0j8~2ifM~5.
- We put 03BE1 = (1 + r)-(2k+1), 0 ~ 2k  n - 2. Since 

we have with f = S (- t)w

where we have used the boundedness of aD. Since

we obtain by (2.20)

Vol. 50, n° 1-1989.
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where’ =(1 + r) - k. On the other hand, integration by parts and the Schwarz
inequality give

In the same way as in the proof of (16) (Chapter 1 in [3 ]), the first term of
the R. H. S. of (2. 22) is dominated by

Therefore by virtue of (2.22) and (2.23)

A direct calculation shows

Since A~ ~ 2/c(2~ + 2 - n)(l + r)-~-~, we get by (2.25)

Holder’s inequality gives

Thus by (2. 26), (2. 27) and Holder’s inequality, we see that

From (2 . 21 ), (2 . 24) and (2 . 28) we have

Annales de l’Institut Henri Poincaré - Physique theorique
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Since J2W = S(t)( - (2 . 29) implies (2.18). In the same way as in the
proofs of (2.21) and (2.24), we have

(2.19) follows from (2. 30) and (2. 31). Q. E. D.

LEMMA 2. 5. - We assume that the assumptions of lemma 2.4 are
satisfied. Then we have

Proof 2014 We have for u = S ( - t)w

In the same way as in the proof of (16) (Chapter 1 in [3 )), The first term of
the R. H. S. of (2. 32) is dominated by

Since aD is bounded. Thus we have by (2. 32) and (2 . 33)

In the same way as in the proof of (2.30), we get the desired estimate.
Q. E. D.

LEMMA 2 . 6. - Let u be the solution of ( 1.1 )-( 1. 3). Then we have

~~ Ku(t) II2 ~ CI(~)(1 ~- t)2~2 -~)/~3 -~)(1 + log (1 + ~-~3-~
where /3 is the same one as that of lemma 2.4.

Proof 2014 We multiply (2 .14) by Ku and take the imaginary part to obtain

Vol. 50, n° 1-1989.
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We apply (2. 5) and the Schwarz inequality to (2. 35). Then we have

Lemmas 2.1-2.2 and (2.36) yield

By lemma 2 . 2, lemma 2 . 4 (2 .18), (2 . 36) and (2 . 37) we see that

From this, (2.37), lemma 2.1 and the Schwarz inequality it follows that

where b 1 = 2(3 - /3)/(4 - ~3), b2 = (2 - ~)/(4 - {3). Lemma 2 . 6 follows
from (2. 38) immediately. Q. E. D.

Proof of T heorem 1. 2014 By Sobolev’s inequality (see [1], [3 ], [4 ]) we have

where p = 2n/(n - 2 - 203B3) ~ 2, 0 ~ 03B3 ~ 1/2 if n = 3, 0 ~ y  1 if n = 4,
o ~ 7 ~ 1 if ~ 5. We have by lemma 2.1, lemma 2.5, (2.37) and (2.40)

Annales de Henri Poincaré - Physique " theorique "
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From (2.39) it is clear that

Theorem 1 follows from (2.41) and (2.42). Q. E. D.
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