An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
Annales de l'I.H.P. Physique théorique, Volume 48 (1988) no. 1, pp. 77-96.
@article{AIHPA_1988__48_1_77_0,
     author = {Carminati, J. and McLenaghan, R. G.},
     title = {An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies {Huygens'} principle. {Part} {III} : {Petrov} type {III} space-times},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {77--96},
     publisher = {Gauthier-Villars},
     volume = {48},
     number = {1},
     year = {1988},
     zbl = {0706.35131},
     mrnumber = {947160},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1988__48_1_77_0/}
}
TY  - JOUR
AU  - Carminati, J.
AU  - McLenaghan, R. G.
TI  - An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1988
DA  - 1988///
SP  - 77
EP  - 96
VL  - 48
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1988__48_1_77_0/
UR  - https://zbmath.org/?q=an%3A0706.35131
UR  - https://www.ams.org/mathscinet-getitem?mr=947160
LA  - en
ID  - AIHPA_1988__48_1_77_0
ER  - 
%0 Journal Article
%A Carminati, J.
%A McLenaghan, R. G.
%T An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
%J Annales de l'I.H.P. Physique théorique
%D 1988
%P 77-96
%V 48
%N 1
%I Gauthier-Villars
%G en
%F AIHPA_1988__48_1_77_0
Carminati, J.; McLenaghan, R. G. An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times. Annales de l'I.H.P. Physique théorique, Volume 48 (1988) no. 1, pp. 77-96. http://www.numdam.org/item/AIHPA_1988__48_1_77_0/

[1] B. Buchberger, A Survey on the Method of Gröbner Bases for Solving Problems in Connection with Systems of Multi-variate Polynomials. Article in The Second RIKEN International Symposium on Symbolic and Algebraic Computation by Computers, edited by N. Inada and T. Soma. World Scientific Publishing Co., Singapore, 1984, p. 69-83. | MR | Zbl

[2] J. Carminati and R.G. Mclenaghan, Some new results on the validity of Huygens' principle for the scalar wave equation on a curved space-time. Article in Gravitation, Geometry and Relativistic Physics, Proceedings of the Journées Relativistes 1984, Aussois, France, edited by Laboratoire Gravitation et Cosmologie Relativistes. Institut Henri Poincaré;. Lectures Notes in Physics, t. 212, Springer-Verlag, Berlin, 1984. | MR | Zbl

[3] J. Carminati and R.G. Mclenaghan, Determination of all Petrov type N spacetimes on which the conformally invariant scalar wave equation satisfies Huygens' principle. Phys. Lett., t. 105 A, 1984, p. 351-354. | MR

[4] J. Carminati and R.G. Mclenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Ann. Inst. Henri Poincaré, Phys. Théor., t. 44, 1986, p. 115-153. | Numdam | MR | Zbl

[5] J. Carminati and R.G. Mclenaghan, The validity of Huygens' principle for the conformally invariant scalar wave equation, Maxwell's equations and Weyl's neutrino equation on Petrov type D and type III space-times. Phys. Lett., t. 118 A, 1986, p. 322-324. | MR

[6] J. Carminati and R.G. Mclenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part II: Petrov type D space-times. Ann. Inst. Henri Poincaré, Phys. Théor., in press. | Numdam | Zbl

[7] B.W. Char, K.O. Geddes, W.M. Gentleman, G.H. Gonnet, The design of MAPLE: a compact, portable and powerful computer algebra system, Proc. EU ROCAL, 83. Lecture Notes in Computer Science, t. 162, 1983, p. 101.

[8] S.R. Czapor and R.G. Mclenaghan, NP: A MAPLE package for performing calculations in the Newman-Pensose formalism. Gen. Rel. Grav., t. 19, 1987, p. 623-635. | MR | Zbl

[9] R. Debever, Le rayonnement gravitationnel : le tenseur de Riemann en relativité générale. Cah. Phys., t. 168-169, 1964, p. 303-349. | MR

[10] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. K., t. 100, 1952, p. 1-43. | MR | Zbl

[11] P. Gunther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103-106. | MR | Zbl

[12] P. Gunther, Eigine Satze uber Huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-Natu. Reihe Leipzig, t. 14, 1965, p. 498-507. | MR | Zbl

[13] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip I. Math. Nach., t. 63, 1974, p. 97-121. | MR | Zbl

[14] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. | JFM

[15] H.P. Künzle, Maxwell fields satisfying Huygens' principle. Proc. Cambridge Philos. Soc., t. 64, 1968, p. 770-785.

[16] R.G. Mclenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139-155. | MR | Zbl

[17] R.G. Mclenaghan and J. Leroy, Complex recurrent space-times. Proc. Roy. Soc. London, t. A 327, 1972, p. 229-249. | MR | Zbl

[18] R.G. Mclenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 153-188. | Numdam | MR | Zbl

[19] R.G. Mclenaghan, Huygens' principle. Ann. Inst. Henri Poincaré, t. A 27, 1982, p. 211-236. | Numdam | MR | Zbl

[20] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., t. 3, 1962, p. 566-578. | MR | Zbl

[21] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171- 201. | MR | Zbl

[22] A.Z. Petrov, Einstein-Raume. Academie Verlag, Berlin, 1964. | MR

[23] F.A.E. Pirani, Introduction to gravitational radiation theory. Article in Lectures on General Relativity, edited by S. Deser and W. Ford, Brandeis Summer Institute in Theoretical Physics, t. 1, 1964, Prentice-Hall, New York.

[24] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung. Beitr. zur Analysis, t. 18, 1981, p. 43-75. | MR | Zbl

[25] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. Math. Nach., t. 47, 1970, p. 131-154. | MR | Zbl

[26] V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip II. Math. Nach., t. 73, 1976, p. 19-36. | MR | Zbl

[27] V. Wünsch, Über eine Klasse Konforminvarianter Tensoren. Math. Nach., t. 73, 1976, p. 37-58. | MR | Zbl

[28] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. zur Analysis, t. 12, 1978, p. 47-76. | MR | Zbl

[29] V. Wünsch, Cauchy-problem und Huyenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen II. Beitr. zur Analysis, t. 13, 1979, p. 147-177. | MR | Zbl