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and their commutants
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and
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ABSTRACT. — In this second paper on partial Op*-algebras, we present
a systematic analysis of commutants and bicommutants, both from
the algebraic and the topological point of views, along the lines of the
usual theory of W*- and Op*-algebras. In particular we obtain condi-
tions for the validity of the following statements: given a family 9 of
unbounded operators, its commutant is a partial Op*-algebra, and/or
is dense in its bicommutant for an appropriate topology. We introduce
the class of symmetric partial Op*-algebras, which verify those conditions.
Finally we compare the commutants of a partial Op*-algebra with those
of its canonical extensions to larger domains.

REsuME. — Ce second article sur les Op*-algebres partielles est consa-
cré a une analyse systématique, tant algébrique que topologique, des
commutants et bicommutants, dans la ligne de la théorie usuelle des W*-
et des Op*-algébres. On obtient notamment des conditions garantissant
la validité des énoncés suivants : étant donné une famille 9t d’opérateurs
non bornés, son commutant est une Op*-algébre partielle, et/ou N est
dense dans son bicommutant pour une topologie appropriée. On intro-
“duit la classe des Op*-algébres partielles symétriques, qui vérifient lesdites
conditions. Enfin, on compare les commutants d’une Op*-algebre partielle
avec ceux de ses extensions canoniques a des domaines plus grands.
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326 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

1. INTRODUCTION

In the familiar theory of bounded operator algebras, i.e. W* or C*-alge-
bras [/], the notion of commutant plays an essential role. It enters in the
very definition of factors and irreducible algebras or representations, it
is the basic tool in the decomposition (desintegration) of a given algebra
into simpler constituents, factors or irreducible algebras. More ambitiously,
itis a cornerstone of the Tomita-Takesaki theory for von Neumann algebras.

Quite naturally then the notion of commutant was extended to unbounded
operator algebras, notably Op*-algebras. First Borchers and Yngva-
son [2] considered bounded commutants, of two different types, called
respectively strong and weak (the latter goes back to Ruelle’s work in axio-
matic Quantum Field Theory [3], see also [4]). Next unbounded commu-
tants, again strong and weak, were introduced and analyzed by several
authors: Gudder and Scruggs [5], Inoue [6], Epifanio and Trapani [7],
Mathot [8].

In Part IT of this paper we want to extend that analysis to partial Op*-
algebras, as discussed in detail in Part I [9]. Now, besides the weak and
the strong unbounded commutants, two new types appear naturally, i. €.
the commutants corresponding to the two kinds of partial multiplications,
. and [J. We will call these objects natural commutants. In addition, one
may restrict one’s attention to bounded operators and thus one gets four
different types of bounded commutants, including the two defined origi-
nally by Borchers and Yngvason. Following the standard scenario, the
next step is to define bicommutants: clearly we get many different types.

Our aim is to make a systematic analysis of all these types of commutants
and bicommutants both at the algebraic and at the topological level.
The first few steps have been made by Karwowski and one of us [/0] but
those results require some qualifications (see [/0, Add.]). More recently
the beginning of a representation theory has been set up for partial Op*-
algebras, in collaboration with Lassner (see [//]). There it turns out that,
as far as the characterization of irreducibility is concerned, the appro-
priate object seems to be the bounded natural weak commutant, but the
analysis is still preliminary.

The paper is organized as follows. In Section 2 we define the various
types of commutants, bounded and unbounded, and derive a few elementary
algebraic properties. A natural question is whether the commutant of a
set of operators is itself a partial *-algebra. We examine this problem in
Section 3, in the case of the weak unbounded commutant [7]. Section 4 is
devoted to topological properties. For a *-invariant family B of unbounded
operators, the basic theorem of von Neumann asserts that the (usual)
bicommutant B” coincides with the closure of B in various topologies,
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PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. — I 327

such as the strong or the weak one. What is the corresponding
situation for Op*-algebras? For answering that question, we follow
closely the strategy of [8]: first consider a set of bounded operators,
then a set, or a partial algebra, of unbounded operators that contains
a sufficiently large (dense) supply of bounded operators. In Section 5,
we extend to partial Op*-algebras the familiar concept of symmetric *-alge-
bras. Of course here again several definitions are possible, we compare
them and study the properties of commutants and bicommutants of
such sets. Finally, Section 6 is a systematic comparison between the various
commutants of a given partial Op*-algebra 9 and those of its canonical
extensions I and M to larger domains, as defined in I. Some additional
remarks are summarized in two Appendices.

At this stage, we should mention some related works on unbounded
commutants. Araki and Jurzak [12] have introduced a special type, which
proves useful undsr some countability assumptions. The object so defined
is, in fact, more in the spirit of the theory of operators on partial inner
product spaces [I3]. An analysis of commutants in the latter context
has been initiated by Shabani [/4], but the problem is far from exhausted.
In the same vein, Voronin et al. [/5] and Schmiidgen [/6] have exploited
systematically the notion of intertwining operators. Finally a recent paper
by Inoue et al. [17] pursues the parallel between Op*-algebras and von Neu-
mann algebras, initiated in [7] and [8]. All those works are closely related
to the present one, but do not overlap with it.

Obviously one of the main applications of a commutant theory is the
study of abelian partial algebras. Work on this topic is in progress with
W. Karwowski and will reported elsewhere. We thank this author as well
as J. Shabani and G. Epifanio, for fruitful discussions.

Part of this work was made during a stay of F. Mathot at the University
of Palermo; she gratefully acknowkedges the hospitality of the Istituto
di Fisica, as well as financial support from the FNRS (Belgium) and the
CNR (Italy).

2. DEFINITIONS AND ALGEBRAIC PROPERTIES

Let 9t be a =+-invariant subset of ¢(2). We may consider four different
types of unbounded commutants of R. First we have the weak unbounded
commutant M, originally introduced in [7] [8]in the framework of 6(2, #)
(strictly speaking the object defined here is the quotient of the latter by the
familiar equivalence relation: A; ~ A, iff A [ 2 = A, [ 9, as discussed
in I, Sec. 3):

No={XeWUD) I(X*f,Ag>=(A* [ Xg ), ¥, ge D, VAe N} (2.1)
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328 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

Next we have the two commutants corresponding to the two multiplica-
tions, o and ., defined on §(2): the weak natural commutant 9t , OF commu-
tant in €*(92):

92&,={Xe(€(9)|XeLthR“JlandXEJA=A|:1X,‘v’Ae‘R} 2.2
and the strong natural commutant W, in C(92):
‘Jlfz{XG(Z(@)lXeLsiRmR“RandX.A=A.X,VAe§R} 2.3

Both were essentially introduced in [10]: the latter was called N, whereas Ny,
is the pull-back to €(2) of the *-commutant N, < C%(2). Finally, there
is the strong unbounded commutant:

N.=N.n2L7(D). 2.9
The first three of these commutants are +-invariant subsets of &(2),
whereas N, is an Op*-algebra. ‘

The relations among the four commutants result from the following
easy proposition.

ProposITION 2.1. — Let :t = N* < (D). Then one has:

NG ={XeN, |X,X*:2 > 9,N)} @2.5)
RN =N, ZL7(D). 2.6 W

CorOLLARY 2.2. — Given Nt = N* < §(2), the following inclusions

hold:
ml

mg NN, 2.7
If Ris fully closed,i.e. 2 = P(N),onegets N, = N’ (2.8)
If B = B(#), then N = N,. 2.9
If N <« £7(2), the relation (2.7) becomes
NN <Ny =N, (2.10)
Finally, if ! < B(#) N L¥(2), one gets
N =NR,=N,. 2.11) m

The proof of all these assertions follows immediately from the definitions
and will be omitted.

If B=%B*c B(#), the natural commutants are easily described.
The weak one, Bg, coincides with B, by (2.9). For the strong one, B’,
we obtain another characterization, in the familiar language of von Neu-
mann algebras. Let us consider the following set of operators:

B, = { Xe &) | XnB' } 2.12)
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where B’ is the usual bounded commutant in Z(#) and Xn®B’ means that X
is affiliated with the von Neumann algebra B’ [I] [/8]. Notice that the
set B, is *-invariant, but not +-invariant in general. Its usefulness lies
in the following properties.

PROPOSITION 2.3. — Let B be a *-algebra of bounded operators.
Then:
B, ={XeLBNR"B|X.A=AoX VAeB} (2.13)
d
an B = B, "B = { X E@)|X, X% ). (2.14)

Proof. — Let Xe®B,. Then Xn®B’ implies [/] that every Ae®B (even
A e B") leaves D(X) invariant and AX f = XA ffor any f € D(X). Therefore
X eL*B. Also X#®B’ implies X*yB’, and thus every A* e B leaves D(X¥*)
invariant; hence X e R¥B. Finally, AXf = XAf,Vf e 2,i.e. Ao X=X.A.

Conversely, let XeL'BNR*"B and X.A=AoX, VAeB. Given
f € D(X), there exists a sequence { f, } € 2 such that f, - f, Xf, - Xf.
Hence XAf, = AXf, — AXf/. Since Xisclosed, Af € D(X)and XAf =AXf.
Let now Be B”, i.e. B is the strong limit of a net { B, } € B. By the same
argument, we get Bf e D(X) and XBf = BXf. Thus X#B'.

Finally the relation (2.14) is immediate. n

The realization (2.13) of B, suggests a possible role for mixed commu-
tants, that is, commutants that mix strong and weak products. A syste-
matic study of these is given in Appendix A.

Let A be an Op*-algebra. If A is closed, hence fully closed, then, by
Eq. (2.10) it has only two distinct unbounded commutants: the strong
one, A, = W, and the weak one, AU = W.,. If W is self-adjoint, all the four
commutants coincide.

Since self-adjoint Op*-algebras behave notoriously better than other
ones, it is tempting to find a corresponding property for partial Op*-alge-
bras. Standardness has been proposed in [I0] but it seems too strong,
and more a property of individual operators rather than a property of
the partial algebra as a whole. In the light of Proposition 2.1 and Corol-
lary 2.2, we suggest instead the following notion. We will say that R,
a #-invariant subset of €&(9), is normal if N’ = N{;. This relation means
roughly that, between 9t and its commutant, strong and weak products
play the same role. The analogy with standardness is obvious. But it is
easy to characterize classes of normal subsets. For instance, the following
result follows immediately from Corollary 2.2.

LEMMA 2.4. — Let O be a +-invariant subset of Z*(2). If O is essen-
tially self-adjoint, then it is normal and, moreover, O’ = T = O |

We turn now to bounded commutants, denoting as usual the bounded
part of a subset # = (D) by N, = N N B(H).

In particular, i, = N, and N, = N/, are the weak, resp. strong, bounded
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330 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

commutant familiar in the theory of algebras of unbounded operators [2]
[4] [19]. Then we get immediately from Corollary 2.2:

COROLLARY 2.5. — Given 9t = N* = §(2), its bounded commutants
obey the following inclusions:
N Ny Ny < N, 2.15 m

Here again the situation simplifies if 9 is an Op*-algebra, for then R, =N, ;
if it is closed, we get, in addition, M, = RN',; if it is self-adjoint, all four
commutants coincide. It is also worth noticing that the weak natural
commutant N[, appears naturally in the definition of irreducible repre-
sentations of partial Op*-algebras [/7].

Next we define bicommutants. From now on we will pay little attention
to strong commutants N : these are Op*-algebras and hence then have been
studied in detail in previous publications [6] [8]. Thus we are left with
the three other ones, M! « M < N, and correspondingly nine possible
bicommutants R}; = (N]);, with i, j = ., o0 or ¢. Since all three notions
of commutant reverse order, i. e. 9t < M implies M, = N}, the bicommu-
tants obey obvious inclusion relations. We will be interested mostly in
the three non-mixed ones: '/, N5, N... In general they are not included
into each other, and all three contain 9.

In the case of bounded operators, a *-invariant subset B < Z(H#)
is a von Neumann algebra iff it coincides with its (usual) bicommutant,
B = B”. The natural extension of this characterization to Op*-algebras
is given by the concepts of V*-algebras and SV*-algebras [7]. Indeed
V*-algebras play the central role in the algebraic description of complete
sets of commuting observables in Quantum Mechanics [20].

Now we go one step further. Let MM be a partial Op*-algebra on 2.
Then we say:

i) M is a partial V*-algebra if M = M. ;

ii) M is a partial SV*-algebra if P = M.,/

More generally, a #-invariant subset 9 of €(2) is called a V*-set (resp.
a SV*-set) if 9t = N, (resp. It = N.,,). These objects have been introduced
in [27], in the context of integral decompositions of partial Op*-algebras.

The main question we want to adress in the next section is, under which
conditions a given commutant of a subset 9 is a partial Op*-algebra
or even a partial (S)V*-algebra.

3. WHEN IS 9, A PARTIAL Op*-ALGEBRA?

If B is a *-invariant subset of #(#), it usual commutant %’ is a von Neu-
mann algebra. Already for an Op*-algebra U, one has to distinguish:
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the strong unbounded commutant 2/ is a *-algebra, but not necessarily
the weak one 2. In the present context, of course, the natural question is:
given a =-invariant subset R of €(2), which unbounded commutant g
is a partial Op*-algebra, weak or strong, and for what kind of subset R?

Let N’ be the candidate. Given X, Y € R}, we have to find under which
conditions the product X m Y (= stands for . or o), if it exists, belongs
to 9t/ again. Since neither of the products is associative, the only statement
that seems reasonable to prove is X @ Y € it,. On the other hand, one
has to express the fact that X and Y commute with the elements of N,
and for this, the condition X, Y € 9, seems too weak (see the last equality
in (3.1), (3.2) below). Thus we need also (at least) X, Y € 90p, and therefore
we assume at the outset R = N,.

Under this condition, we try the . multiplication first. So, let X,
YeN, =N, such that Xe L(Y). Then we compute, for any AeM,

geg:

(XY)LA* Y=< XY/, ATg )= YL X*ATg>=( YL A*X g)  (3.1)

and, on the other hand:

(ALK YY) g )=C ALY X g )= Y *A£, X g )=CAT*Y X g ).
3.2

Now, for R = N, to be stable under . means that (3.1) and (3.2) must

be equal for every AeR, f, g€ P, and this means that we must have

Y f e D(A* | X*9)*) and (A* | X*2)*Yf = A**Y f. Thus we are led to

consider the following subset of # (actually a dense domain containing &),
for a fixed Y e 9/ = N

A3 = \D(A* 1 [ 0 L)1 2)) (3.3)
Aeh
Before stating a proposition, we repeat the argument for the o multipli-
cation. However, for deriving the relations equivalent to (3.1), (3.2),
we must impose the conditions A*g e D(X*), Af € D(Y). Thus we assume
g =% and take X, YeNgn LY(Y).
Then for every Ae M, f, g€ P, we get as above:

(XaY)fAT g Yy=(X"*YLATg )=( YL X ATg )= Y[ A*X"g)

3.4
CAf,(X oY) g Y=< A, Y*X*g )=( YA, X¥g >=C(AT*Y £ X*¢g)
3.5
and we are led to the same conclusion. Thus we define: G-3)
HY(N) = m D((A* I [ot; n L*(Y)]*2)*) (3.6)

AeM
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332 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

These subsets verify very simple inclusions.

LeEmMmA 3.1. — For every Y e R, one has:
DN) = AYR) < HYR) < DR). (3.7)
Proof. — Since 1 e R, N L¥Y), one has

AR = [ \D(A*} 2)) = 2,%).

AeM
On the other hand we have A = A** < (A*| X*9)*, which gives the_
first inclusion. The central one is obvious. [ ]

With the help of this lemma, we may now summarize the whole discus-
sion above as follows.

PROPOSITION 3.2. — Let 9 be a =+-invariant subset of €(2), such
that NG = N. Then:

i) Mg is stable under the . multiplication iff Y f e A $(RN) for every
Yen,.

ii) Assume, in addition, that R = N, = L*N; then N, is a weak par-
tial V*-algebra iff Y /' € A "Y(N) for every Y e N,. [}

To improve on Proposition 3.2, we must add some restriction on R.
First we assume that it leaves 9 invariant. This guarantees that the two
conditions Ny = N; and Ny < LN are satisfied automatically. Putting
together all particular cases, we get the following results, either from Corol-
lary 2.2 or Lemma 2.4,0r from Lemma 3.1 and Proposition 3.2.

PROPOSITION 3.3. — Given a =#-invariant subset O ¢ £ ¥(9), consider
the following conditions:

i) OcBH);

ii) Ois essentially self-adjoint, i.e. 2(D)= 2,(9D);

iii) O is normal, i.e. ! = Of;

iv) O =90=90,;

v) O is a weak partial V*-algebra and it is stable under the . multi-
plication.

Then the following implications hold:
i) = ii) = iii) < iv) = v). [ ]
CorOLLARY 3.4, — If © = O* «¢ £7(9) is self-adjoint then, in
addition, O; = 0" = O = O, and O = O/.. [ |

(The last result follows from the fact that O, ¢ Z7(9)).
All these results apply in particular to Op*-algebras, for which many
explicit examples are known, such as polynomial algebras [22] [23] or
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tensor algebras [24-26]. We will get more information about bicommu-
tants in the next section.

If N does not leave 9 invariant, we need stronger conditions to guarantee
the stability of 9/, under . or o. As it turns out, the crucial condition
in Proposition 3.3 is iv). Indeed:

PROPOSITION 3.5. — Let 0 be a =*-invariant subset of §(2). If one has
N = NG = N, then this commutant is a weak partial V*-algebra and
it is stable under the . multiplication.

Proof. — Y e . implies Y € L’ and Y f € 2(N). Thus Proposition 3.2
applies. [ |

4. TOPOLOGICAL PROPERTIES

We turn now to the topological properties of commutants and bicommu-
tants. First, we ask for which topology each of them is closed in €(2)
or in a set of multipliers. For unbounded commutants the answer is sum-
marized in Proposition 4. 1 below, where we refer to the various topologies
defined in I [9, Sec. 5]. For the convenience of the reader we recall here
the most important topologies on the commutants R} of a given =+-inva-
riant subset N of €(2):

. the quasi-uniform topologies t(N), T,(N) on N[, given by the semi-

norms: .
| A = sup {IBaASf I+ AT aB*)f |} @.1)

where Ae 9t and 4 < 2 is a bounded subset in the case of 7,(N), a finite
subset in the case of 7,(N).
. the strong*-topology s* on M., with seminorms:

Bl =IBf I+ IB*f Il (fe9D). 4.2)

It is worth remembering that the quasi-uniform topologies 7, () are
defined only on the space of weak multipliers M*9t = L*9t n R*%,
not on the whole of €(2) as it is the case for s* and all the weak topologies
defined in [9].

We collect now the closure properties of the various unbounded commu-
tants N; of a given subset R = N* of €(2). The proof of those results
may be found in [8] or [I0], or derived from the proof of [10, Proposi-
tion 5.7].

ProposiTION 4.1. — Let 9%t be a =+-invariant subset of €(2). Then
its unbounded commutants have the following properties:

i) The weak unbounded commutant 9, is closed in the Rt-weak*-topo-
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334 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

logy and a fortiori in the quasi-weak* and the strong*-topology; for the
latter 9, is complete;

iy fN c £7(2), then N, is weakly closed;

iii) The weak natural commutant R is complete for the quasi-uniform
topologies 1, (N);

iv) The strong natural commutant 9’ need not be complete for 7, ((N):
one has only N < Jtg. However N is closed in M*9t. [ ]

Notice also that the natural commutants 9/, N need not be s*-closed
in §(2). Indeed, if X = s*-lim X; with X, € R or N’, we can conclude that X
belongs to N, but X need not be a two-sided multiplier of 9.

The closure properties of the bicommutants follow trivially from Pro-
position 4.1:

PROPOSITION 4.2. — Let R=NR*" << §P) and i= ., o or o

Then one has, for all i:

i) N, is closed in &(2) for the N;j-weak*-topology, a fortiori it is gw*-and
s*-closed;

ii) Mip is complete for the topologies 1, (N7);

iii) M’ is closed in M) for 7, (N)). [ ]
Of course the same results hold true for the corresponding commutants
of . or of the bounded ones N}, ; in addition, R’ is weakly closed.

Proposition 4.2 yields in particular the following inclusions:

N NE*] < N, 4.3)
N < N[,00)] < R, O5)] < RL; @.4)
N« N0 ]° < N[z, O0]° = N 4.5)

where 9 denotes the closure of M in MY(N), for 7, (N).

The main question we want to address in the sequel is: under
which conditions are the inclusions in Eqs. (4.3)-(4.5) in fact equa-
lities? To answer it, we will follow closely the strategy of [8], that is,
consider first a *-algebra B consisting of bounded operators, then partial
Op*-algebras containing sufficiently many bounded operators.

For the first step the results are summarized in the next proposition.

PROPOSITION 4.3. — Let B be a *-algebra of bounded operators contai-
ning 1, 2 any dense domain in #. Then the unbounded bicommutants of B
with respect to 2 may be characterized as follows:

i) Bi,=B[s*] = B[B;-w*] =B, =(B'),,fori=.,0andg;
ii) B! = Bt (B)T, the closure of B in M¥(B’);
iii) B N Brg=B[1,(B)]°n B[r(By)] and B is 7,(Bp)-dense in it.

First we prove a technical lemma.
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LEMMA 4.4. — Let B be as in Proposition 4.3. Then:

i) B is s*-dense in (B');;

ii) For j = . and o, B is dense in L*(B%) N (B’). for ,(B)).

Proof. — We treat all three cases simultaneously, using the argument

developedin [8, Prop. 5]. The seminorms defining the topologies in question
are all of the generic form (see Egs. (4.1), (4.2)):

| Y || & e = S (Y a Ofl+ 1€ o YOS}

<j<
the operator C runs over B for t4(Bj), and C = 1 for s* (with k = 1).
For fixed C and f € @, we denote by P the orthogonal projection on the
(norm)-closed subspace BCS of #. Then [8], PB = BP for every BeB
and so P e B’ = B’,, the usual bounded commutant. For C=1and Ye(B’'),,
we have (f, g€ 2):

(Yf,(1-Pg>=<(1-P)fY*g) =0,
since f=Pf Similarly, for YeM"(C)n (B’)., we get:

(Yo Of,(1 —Pyg)=<Y"*CL(1 - Pg>
= (CLY* (1 -Pg>=(Cf(1 -PY*g)=0,

since Cf = PCf. Thus, in both cases, (Yo C)f e BCf and one may
repeat step by step the argument of [8, Prop. 9]

The only modification is that the mixed product between the extended
algebras %} and @}} must be defined as follows (*):

(X1 O) <Z1 O _<X1|:|Zl (6]
o x,) \o z,) \ O X,0Z,
(both @} and @}’j consist of diagonal matrices only; this follows from the
inclusion B/ B’ and the results of [8]).

Exactly as in [8], the conclusion is that every neighbourhood of Y, for
the topology defined by the operators {C}, contains an element of B.

For C = 1, we obtain:

B < (B'), = Bls*] 4.6)

since the g-commutant is s*-closed. By Eq. (4.3), this proves i).

For Ce B(j = . or o), we obtain the statement of ii), since

B = M*(B)) N (B’).. However, the latter is in general not closed in M*(%B%)
for the topology 7 (B5). [ ]

() Here, and only here, the symbol ® denotes as in [8] the extended algebra B @ B,
and has nothing to do with the fully closed extension of B discussed in I and in Sec. 5 below.

Vol. 46, n° 3-1987.



336 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

Proof of Proposition 4.3. — Since B < (), one has:
B! < B =B, 4.7

For proving i), observe that Eq. (4.4) and the results of I, Sec. 5 yield the
following inclusions:

B < Bls*] = B[B.-w

B s g,
IS gy e
Then, comparing (4.6) and (4.8), we get the result.
As for ii), we observe that B!’ is contained in
(M¥(B’) N (B'))) n M*(B’) = M(B’) n (B).,
thus B is dense in B!/ for the topology 7,(B’) by Lemma 4.4. Hence
B! < B[r,(B))]. By Eq. (4.5), this inclusion is in fact an equality.
Finally, B’ n B < (B’). " M¥(B!), so that B is 7,(Bpy)-dense in
B! N By, by Lemma 4.4. Hence:
B N B = BN Bt (B

Using ii) and Eq. (4.4), we obtain iii). ]

c(®B)p=0®) 4.8

REMARKS 4.5. — a) The argument of Lemma 4.4 works under more
general circumstances. For instance:

. left multipliers L*(B}) instead of M*(B;): B is dense in L*(B;)N(B')’-
in the topology 77(BY).
. Ce B!, YeM(B))n (B')s, but since

MS(B’) N (B')g = M (B) N (B'). =« M*(B’) n (B').,
we get nothing more.

Ce B, Ye B : this yields the relation B’ = B[1,(B;)], but no
further conclusion may be drawn from that.

b) The proofs given above apply only for the topologies 7,(B;). In fact
the analogous statements do not hold for the full quasi-uniform topolo-
gies 7,(Bj). For instance, when 9= #, §(2)=2(# ), B'=B’ and B''=B",
so that B’ cannot be the closure of B in 7,(B’), since the latter is the ope-
rator norm topology !

Before going on, we would like to argue that the set B!/ N By is in
fact the natural bicommutant of B. Indeed, an operator Y belongs to
it iff Y commutes strongly with every Ae B/, Y.A = A.Y, and still com-
mutes, but weakly, with every B in the larger set Bp.

Our next task is to extend the analysis to sets i which are no longer
contained in %(). The outcome, patterned after Proposition 4.3, follows
closely the results of [8]: If a set 9t contains a *-algebra B of bounded ope-
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rators, suitably dense, then the bicommutants of 9%t have the properties
described in Proposition 4. 3.

PROPOSITION 4.6. — Let 9t be a +-invariant subset of €(2) containing
a *-algebra B of bounded operators, with 1 B. Then:
i) B is s*-dense in N < B, =N, = N,. =N, =N[s*];
i) R B[1(BYPB)=B" « B'=N = NI=N[r,(N)"®) where
N[ ]™ denotes the t-closure of N in M ;
iii) M = Bt (BYM®) ~ B[r,(BL)] = B n B
< Bi=N and By=Ng
< BN Bog =R NN

= N A NRL = N, O0 M A R, RG]

Proof. — The proof of all the assertions is almost immediate.
Ad i) : in general, the following inclusions hold:
B < B, =B, =B[s*] = N[s*] = N, = Wy

Let B be s*-dense in ¢ ; thismeans | <= B[s*] = NR[s*],i.e.B <« N<=B...
This implies B, = .. All the other implications are shown in the same way.

Adii) : All three implications follow from the chain of inclusions:
B < B! = B[r,(B)"®) <« B, (W)@
< B, (MY < R ()M < R

Ad iii) : Same reasoning, treating B'’ and By separately (for the latter,
all closures may be taken in Ry which is complete). |

REMARKS 4.7. — a) If B/ = N, B is dense in N for 7,(9’), but the
converse need not hold. The same situation holds in case iii).

b) For i), the equality B/, = N/, may also be shown directly, using the
density of B in N, in the standard form: every element of N is the s*-limit
of a net { M, } € B. Similar reasonings can be made for ii) or iii), and also
using the continuity properties of the two partial multiplications (see I,
§4.A).

In general, the three density conditions imply each other: iii) = ii) = i).
For the case of an Op*-algebra 2, we may take B = 2, in Proposition 4.6.
Then we get:

WAL =A,
and
(W)! = (Wp)g = (Wy);.-

So, if we impose ii), A = (W,)’, which implies i), W, = (2,)., we obtain iii).
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Thus for an Op*-algebra ii) <> iii), and in that case, all six commutants
coincide.

The next point is to characterize classes of partial Op*-algebras for
which one or another of the conditions of Proposition 4.6 are satisfiéd.
We shall do this in Sec. 5, which will bring into focus the notion of symmetric
partial Op*-algebra.

5. SYMMETRIC PARTIAL Op*-ALGEBRAS

As it is well-known, an Op*-algebra U is called symmetric if, for every
AeU, (1 + A*A)™! belongs to A,. These Op*-algebras enjoy many
interesting properties relevant for our discussion, for instance they verify
the relation A7 = (A,), [8] [/7]. We want to generalize this concept to
partial Op*-algebras. As usual several possibilities occur.

Let 9t be a =-invariant subset of €(2). For every A € 0 the usual pro-
duct A*A is a positive self-adjoint operator, so that (1 + A*A)™! is a
bounded self-adjoint operator. However it need not belong to 0, and A*A
is not necessarily 2-minimal. This motivates our first definition.

A =-invariant subset N of §(2) is called *-symmetric if, for every A e N,
(1 + A*A)™! belongs to M,. The prime examples of such sets are strong
natural commutants.

LEMMA 5.1. — Let B be a *-algebra of bounded operators. Then
its strong natural commutant B’ is *-symmetric.

Proof. — By Proposition 2.3, 8! = {Xe§(2)| X, X*nB’}, where B’
is the usual bounded commutant of B, hence a von Neumann algebra.
Notice that B'=B',. Let X € B!. Then XyB’, hence X*B’ and X*XyB' [/8),
which is equivalent to (1+X*X)™'e®B’ = B!. Thus B! is *-symmetric
(notice that X* and X*X do not necessarily belong to €(2)). [ ]

In the sequel we will discuss partial Op*-algebras that are *-symmetric
as defined above (for Op*-algebras, this reduces to the usual notion of
symmetry). More restrictive concepts will be discussed later on.

If an Op*-algebra U is symmetric, it is well-known that A, =(W,),,
i.e. Ay is s*-dense in A. This result extends to partial Op*-algebras as well :

PROPOSITION 5.2. — Let 9 be a *-symmetric partial Op*-algebra.
Then M, = (M,), and M, is s*-dense in M.

Proof. — For every Ae 9, (1 + A*A)™! belongs to M, and so does
A(1 + A*A)™!: the product is an everywhere defined, bounded operator,
hence it belongs to M and thus to IM,, since M is a partial Op*-algebra.
Similarly, for every n = 1,2, ..., A(1 + n"'A*A)"'e M, and, forn — 0,
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T,= (1 + n”'A*A)™! tends strongly to 1, since || T,|| < 1, Vn, and the
sequence { { f, T,f> } is non-decreasing for every f e # (see [27, Theor. 4. 28]).
We have to show that (IR,), = M,. Let Ce(M,),, so that, for f, g€ 2,
we have:

CCf, A(1 + n7TA*A) g > = ((A(1 + n~*A*A) " H)*f,C¥g >.

Inserting in the 1 h. s. the decomposition A = U(A*A)'/2, where U is a
partial isometry, this may be rewritten:

CCLUM + n~TA*A) " HA*A) 2g > = ((1 + n"'A*A) 1A* £, C*g >.
Taking the (strong or weak) limit n — oo, we get:
(CfAg)=(A"f,C%g),

that is, C e M. Therefore we have proven (IM,), = M., which is equiva-
lent to the s*-density of I, in I, by Proposition 4.61). ]

For the natural commutants, the corresponding result holds for the
bounded parts, but apparently not for the commutants themselves.

PROPOSITION 5.3. — Let 9 be a *-symmetric partial Op*-algebra.
Then the three unbounded commutants I, My, M’ have the same
bounded part, which is a von Neumann algebra equal to the usual commu-
tant (I,)'.

Proof. — A priori we have for the bounded parts:
My M= M,
N N Il
M) = (M) = My)ge = D), - (5.1

Let Ce (M,). Thus C o -commutes with (1 + A*A)™! and A(l + A*A)™!
for every A e M, hence we have, for f e Z:

C**A(1 + A*A)7'f = A(1 + A*A)7'Cf = ACT*(1 + A*A)"'f,
which means:
C**Ak = AC*F*k, Vke A = (1 + A*A)"'9. (5.2

In fact, all relations may be extended to f e D(C), using the closedness
of C. As for that set 4", we get:
A = (1 + A*A)" 19 <= D(A*A) = D(A) (5.3)
but, in general, " need not contain 9, although it is of course dense in .
Since C is bounded, Eq. (5.2) gives
CAk = ACk, Vke A (5.4)
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and therefore
IACk|| = ||CAk|| < ||CIl. |Ak|I < ICIl . Il klla

i.e. Cis bounded in the graph norm || . ||a. Thus (5.4) extends to all k e D(A),
in particular k € 9, which means that C e (Mt’),. Thus we have shown that
M) = MM, In view of (5. 1), this implies that all six bounded commu-
tants are equal, and equal to (3,)’, which is indeed a von Neumann algebra.

Remark. — Although " need not contain 9, it is a core for A. Indeed,
let g € D(A) be orthogonal to every k = (1 + A*A)™' f, f € 9, in the graph
inner product:

0 = (g (1 + A*A)1f da= ((1 + A*A) 2, (1+A*A)2(1+A*A) 1 f )
= (g (1 + A*A)1 + A*A)"!f > by  (5.3)

=g f>
and this implies g = 0.
As an application of Proposition 5.2, we derive the link between partial
V*-algebras and von Neumann algebras.

ProPOSITION 5.4. — Let M be a partial V*-algebra; then its bounded
part M, is a von Neumann algebra.

Conversely, for any von Neumann algebra ¥, there exists a partial V*-
algebra M such that M, = A.

Proof. — Let M = M., be a partial V*-algebra. It is s*-closed in §(2),
then so is M, in the s*-topology induced on %(H#), which is weaker than
the s*-topology on %(#°). Hence I, is a s*-closed *-algebra of bounded
operators, i. €. a von Neumann algebra.

Conversely let 2 = A” be any von Neumann algebra. Given an arbi-
trary dense domain %, in 4, define the domain 2 = AW P, = WAY,,
which contains %,. Obviously A and W’ leave & invariant. Thus we get
from Proposition 3.3 and Lemma 5.1:

i) AW =AL =W, = {Xe®(2)|X, XTn}

ii) W) = W)y =W, ={Ye®D)|Y, Y nu"},
and both are *-symmetric partial V*-algebras, with.bounded parts U’
and A” = A, respectively. .

Now take MM = A... Since A, is *-symmetric, we have

Art = (AL, = (W),

so that M, = A. B

Obviously there is a large non-uniqueness in the answer, coded into

the domain 2. In fact, if A or A’ has a cyclic vector f,, then D(fy) = UWA’ £,
may be used as well.
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We turn now to commutants and bicommutants of Op*-algebras. Let A
be an arbitrary Op*-algebra on 9, U, its bounded part.
Then their various commutants obey the following scheme:
A = A < UL = A,
8 N N N (5.5)
(Wp): = (W) = (Wy)g = (Wp)o

and Q,), = { Xe @) |X, X*nA,) } is a *-symmetric partial V*-algebra
(Proposition 3.3 and Lemma 5.1).
If we assume that 2 is a s*-dense in 2, then A, = (A,), and we conclude:

PROPOSITION 5.4, — Let A be an Op*-algebra on 2, with s*-dense
bounded part. Then A, is a *-symmetric partial V*-algebra, given by:

AL = {Xe®(2)|X, X nQ,) }. (5.6) A
If A is symmetric, it verifies A, = (A,), [8]. Hence:

COROLLARY 5.5. — The conclusions of Proposition 5.4 hold, in par-
ticular, for every symmetric Op*-algebra. W

Clearly the best situation will be obtained when all eight commutants
coincide in Eq. (5.5). This condition leads indeed to a stronger result.

PROPOSITION 5.6. — Let U be an Op*-algebra that verifies one of the
following conditions:

a) U is closed and (A,). = W

b) W is self-adjoint with s*-dense bounded part.

Then:
i) A, is a symmetric SV*-algebra and
A = A = {(Xe LT (D) X, X n(W,) }. (5.7
i) A, is a *-symmetric partial SV*-algebra and
Woo = Wy, = Wo = UL = { Xe®D) [ X, XFn(2A,)" . (5.9)

Proof. — Since a closed Op*-algebra verifies A, = W/, in both cases a)
and b), the eight commutants coincide in Eq. (5.5). Thus, from Propo-
sition 5.4, A, = A, is a symmetric V*-algebra given by Eq. (5.7). By
Corollary 5.5, U, isa *-symmetric partial V*-algebra, consisting, according
to Eq. (5.6), of operators affiliated with (.Y = (U,),,) = (A,)". It
remains to prove the SV* character of A, and A,,. Let M = A... Then
M, = A, which is symmetric, thus MM, = WA,, = A, =M, i.e. A, is
a partial SV*-algebra. Similarly ./ being *-symmetric, A, = W, .. =A.,
i.e. W, is a SV*-algebra. [ ]
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Remembering that a closed symmetric Op*-algebra is automatically
self-adjoint with s*-dense bounded part, we get:

COROLLARY 5.7. — The conclusions of Proposition 5.6 hold, in
particular, for every closed symmetric Op*-algebra. W

As mentioned earlier, the notion of *-symmetric partial Op*-algebra
is not the most natural one. For instance, if M is one, the bounded ope-
rator (1 + A*A)™! belongs to M, for every A € M, but A*A need not even
be defined on 2, and the products A* o A or A*. A do not necessarily
exist. This motivates more restrictive concepts.

Let M be a partial Op*-algebra. We will say that:

i) M is weakly symmetric if, for every AeIM, A*eL*(A)and (1+A* o A)™
exists and belongs to M, ;

it) M is strongly symmetric if, for every Ae M, A¥eL(A) and (1 +A* . A)™!
exists and belongs to M,

Clearly strongly symmetric implies weakly symmetric. As for *-symme-
try, we have the following result:

PROPOSITION 5.8. — Let I be a weakly symmetric partial Op*-algebra
on 2. Then, for every A e M, A*A = A* o A is P-minimal and M is *-sym-
metric.

Proof.—Forany A € M, the condition A* € L*(A) means that A2 = D(A¥)
or equivalent]y 2 < D(A*A). ThusA* o Ac A*Aand 1 FA* 0 Ac 1+A*A.
Hence Ker(1+A“t o A)c Ker(1+A*A)={0},ic. 1+A* o A is inver-
tible. Hence its inverse (1+A* o A)~! is a closed operator, with domain
Ran (1+A* o A). and therefore

(1 +A* 0 A) ' c 1+ A*A)! (5.9)
so that (1 + A* o A)~! is bounded on (the closure of) its domain. Since
(1 ¥ A* o A)~! e M, by assumption, that domain contains 2, and therefore
the two operators in Eq. (5.9) coincide.

It follows that 1 + A* 0 A =1 + A*A and A* o A = A*A, hence M
is *-symmetricc. W

Remark. — This does not imply that I is standard, i.e. A* = A* [9],
as it is the case for Op*-algebras; the proof of Inoue [28] does not work

(see below).
Let now 9t be strongly symmetric. It is a fortiori weakly symmetric
and A*.A = A* o A = A*A for each A e M. But there is more.

PROPOSITION 5.9. — A strongly symmetric partial Op*-algebra is
standard.

Proof. — Let M be strongly symmetric. We have to show that every
symmetric element A = A* e M is self-adjoint, A = A*. As shown above,

A*A =A* A=A.A=AT19 c A
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On the other hand, A = A* and thus A2 = A*A. Hence A2 = A*A is
a positive self-adjoint operator, i.e. A = A*. ]

This proof shows why the same result does not hold if we assume only
that 9k is weakly symmetric. In that case:

A*A=A*0A=AcA=AT*AT9,

and this operator is not necessarily a restriction of A% On the other hand,
if we assume from the outset that M is standard and weakly symmetric,
then M is also strongly symmetric. Indeed since A* = A¥, we get A*eL(A)
iff A¥eL"(A) and A* 0 A = A¥.A = A*A,

With the definitions given above, weakly or strongly partial Op*-algebras
are apparently not the realization, in €%(9) or €¥(2), of the symmetric
partial *-algebras defined abstractly in I. Indeed we have used only usual
operator inverses, not inverses with respect to the appropriate product .
or o. But in fact, as shown in Appendix B, the two approaches are equi-
valent.

To conclude this section, let us come back to Proposition 4.6. If tis a
general partial Op*-algebra, its bounded part 9, is a *-algebra, containing 1,
hence we may take B = N, is all the statements.

Let ¢ be *-symmetric; by Proposition 5.2, it verifies N, = (N,),, i.e.
the weakest density condition i) of Proposition 4.6. So if we assume that 9
is weakly or strongly symmetric, one could expect to prove that it verifies
a stronger density statement, ii) or iii) of Proposition 4.6. But this does
not seem to be the case, especially if one looks at the proof of Proposi-
tion 5.3 and the remark following it. Weak or strong symmetry implies
that @ is a core for A*A, but still we don’t know if #° o 2. Notice that
for an Op*-algebra 2, all three notions of symmetry coincide, and imply

o= Wy = A, = (A,),, but not necessarily A, = (A,)!. So the pro-
blem remains open.

6. EXTENSIONS OF PARTIAL Op*-ALGEBRAS
AND THEIR COMMUTANTS

Let 9 be a partial Op*-algebra on 2. As we saw in I [9, Sec. 4], M defines
two other partial Op*-algebras, MM and M, with domains & and (M)
respectively. The following inclusions hold:

9 < 9 < M)
€2) > 6(D) > G2IN))

but M, M, M consist of the same closed operators. We will examine their
various commutants in turn.

6.1)
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A. Unbounded commutants.

We begin with weak unbounded commutants. From the inclusions (6. 1)
we get immediately
M =M <M, 6.2)
Indeed the definition (2.1) of the three commutants may be recast in a
unified form:

(@MO), = (X G@Y) | (X*f,Ag ) = (A*f, Xg ), ¥, g€ 2V, VA e M® }
(i=1,23) (6.3)

where we have introduced the following notation: (™, 2) = (M, 2),
MM, 9=, F), (M, 2™) = (W, D(AN)). Notice that 2, (IM?) = 2, (M)
for i = 1, 2, 3. Hence Proposition 2.1 gives the following representation
for the weak natural commutants (R®): .

Mg = {XeM | X, X*: 29 > 2,M)} (i=1,23)

so that, by Eq. (6.2):

My < My < M. , (6.4)
It is worth recalling that the involution + and the multiplication o are
the same whether defined on 2, P or 2(M) [9, Prop. 4.2]. Thus there
is no ambiguity of notation in Eq. (6.4).

As for the strong natural commutants (M®)., we have obviously
R*M < RM = R*IM and similarly for L*. On the other hand, the commu-
tation relation XAf = AXf (AeM) is the same for the three commu-
tants, except that f is taken in (M), P or 9, respectively. All together
we get:

M < M < M. (6.5)

The case of the strong unbounded commutants (I®). will be discussed
below.
We summarize these results in a proposition.

PROPOSITION 6.1. — Let 9 be a partial Op*-algebra, M and Mt its
canonical extensions. Then for j = ¢, o or ., the following inclusions
hold among unbounded commutants:

WM. N ' (6.6)
REMARK 6.2. — We may combine the inclusions (6.6) with those
between the commutants themselves, Eq. (2.7). Writee = 1, 0 =2, . = 3.

Then the inclusion relations between the nine unbounded commutants
are the following:

(M), = (MDY, whenever i=i, j=[.
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B. Bounded commutants.

If we consider the bounded commutants (MR®);, =(MD);~B(#), for

j = ., O or g, the inclusions (6.6) actually reduce to equalities.
PROPOSITION 6. 3. In the notation of Proposition 6.1, one has for
j = ., o and o, the relation,
A;’b=W}b = §b~ 6.7

Proof. — i) Consider first j = o, i.e. the weak bounded commutants
(jb = w). By (6.2) it is enough to show that M, < M. Let Ae M, X e M,
and f, g € 2(IM). Then there exists a sequence { g, } € 2 such that g, - g
and Ag, — Ag (this sequence may depend on A), and also a sequence
{ fv €2 such that f, —» f and A*f, - A* f. Then, since X and X*
are bounded and belong to M, we get:

(A*f,Xg) = lim ¢ A fi, Xgu >
= lim (X*fi, Aga)
) = (X*}, Ag),
e XeM,.

ii) We turn to the case of weak natural commutants, j = o. Let again
XeMy,. By 2.5 X e M, n B(A)and X, X* map 2 into 2,(M). We show
that X, X* map 2(M) into 2,(M) and thus X e My,. For any AeM
and g e P(IM), there exists a sequence { g, } €2 such that g, - g and
Ag, —» Ag. Then Xg, » Xg and the sequence { A**Xg,} converges,
since A o X=X o A implies A**Xg,=XAg, - XAg. Hence Xg € D(A ¥*).
In the same way, X* f € D(A*) for every f e 2(M) and AeM, and the
assertion is proved.

iii) For the strong natural commutants, j = ., the argument is identi-
cal, replacing A¥* A* by A, A¥ respectively. [}

C. Special cases.

The argument in the proof of Proposition 6.3 rests on the existence
of the sequence { g, }, for which simultaneously g, — g, Ag, — Ag and
Xg, — Xg, and similarly for f, — f Let now X be an unbounded ele-
ment of M. If D) or D [te] is contained in D(X), and thus is a core for X,
there exists sequences { g, } and { g } tending to g, such that Ag, — Ag
and Xg; — Xg respectively, but not necessarily a common sequence for
both X and A. Itis interesting to note the analogy with the situation described
in the Appendix of I. There too the lack of a common sequence for the
operators A% and B? was the origin of the difficulty leading to the breakdown
of associativity.
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This objection disappears, for the domain @[tm ], in certain particular
cases. Indeed:

PROPOSITION 6.4. — Letj = ., o or ¢. Then:
i) MM =M, ~M; (5.8)
ii) If 9 [ty] is barrelled, M} = M. (5.9)

Proof. — By definition of @[t‘m], every ge,@[tm] is the tyg-limit of a
convergent net { g, } €2, which means that Ag, — Ag for all AeM
simultaneously.

If XeI, then Ao X =X o AeI too, when they are defined. Then
the argument of Proposition 6.3 works and yields i).

Let now 9 [ty] be barrelled. Then, as shown in I, Lemma 3.2, every
X e &(2) maps 2 [ty ] continuously into ., i. e. there exists Ao € M such
that || Xf |I<I|Aof Il, Vf€ 2. Given any ge P[ty] and a net g, — g
as above, the net { Xg, } is Cauchy, hence converges to Xg. Therefore
the argument of Proposmon 6.3 works again, replacing the sequences
{e).{ fi} by nets {g,). ! f;). Hence we get ii). [ ]

The statement i) of this proposition may also be rephrased as follows:
the partial Op*-algebras MM and IM have the same center, for all three
notions of commutants.

Finally we turn to strong commutants. For the unbounded ones, (M),
there is no simple inclusion similar to (6. 3)-(6.. 5), because the corresponding
Op*-algebras £ *(2") are not included into each other. However we
do get some relations for particular cases.

PROPOSITION 6.5. — For the strong commutants the following rela-
tions hold:

i) For the bounded parts: M, = M, = D, (6.10)

ii) For the centers: M. N M < M. ~ M. (6.11)

iii) If D [ty] is barrelled: M. < M. 6.12)

Proof. — i) The inclusion M; = M, is proved as in [25, Section 1.3].
Given f e @[t‘m], thereisanet { f, } € Z such that f, - fand Af, - Af,
VA e M. For X e M, this implies Xf, - Xf and AXfa XAf, - XAf.
Hence X f € D(A) for all Ae. Furthermore { Xf,} is Cauchy in each
norm || . ||, i.e. { Xf, } is Cauchy in the topology tg, hence X f e @[tm]
As for the other inclusion, the proof is identical except that the net {12}
converging to f € 2(IM) may depend on A and is taken in Q[tm]. Then
the argument shows that, for Xe M, {Xf,} is Cauchy in D(A); thus
Xfe2(M) and AXf = XAS, i.e. Xe .

ii) This is proven as Proposition 6.4 i).
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iii) If D [ty ] is barrelled, M, = M, and L*(2) = L*(P) by the closed
graph theorem; thus M. < WM. W

To conclude this Section, we notice that M is fully closed, and therefore
M. = M and M, = M’,. On the other hand, if A is an Op*-algebra,
A c P7(D), then A = 9 and AL = AL Hence, in that case, there are
only three distinct bounded commutants:

W W, =W, =W c Ay = Ay = A, =W, (6.13)
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APPENDIX A

MIXED COMMUTANTS

As mentioned in Section 2, it might be useful to consider also mixed commutants, i. e.
commutants that mix strong and weak products or, better, commutants defined in terms
of the various mixed multipliers introduced in [9]. For a #-invariant subset i < §(2), four
different types arise naturally:

i) CyM) = N, A LMR iii) C(R) = Ny A LMR
i) Cg(M) = N, N RMN iv) Cg(M) =N n RM9Y
Obviously these sets are not #-invariant, but instead we get:
CLOY* = M),  Cr(M)* = Ci(W).
Thus we may define two =-invariant mixed commutants:
N = C() N CL(R)
={XeNGIX,X*:2 - 9N}
= {XeNL | X**Af = AXf, X*A* [ = A*X* [V €D, VAe N} (A1)
NL = C(N) N Cr(MN)
={XeNZIN:2 - DX)nDX*)}
={XeRL|XASf = AT*X[X¥A*f = A*X* [ V[ ed, VAeR}. (A.2)
Consequently we get:

n;
NN = gmm;i‘“f‘z%cm;. (A.3)
AL

The following properties are straightforward:
i) If N <« £%(2), one gets:

Ci)=CLM)=RL=NZ=9N,, Rp=N". (A.4)
ii) If ® < B(A), one has:
Ce(M) = CLi(M) =M =N =N, N =N". (A.5)

iii) Thus if N = B(H) L (D), all commutants coincide in Eq. (A.3), except N,
in general.

iv) Cgr(M), Ci(N), Ny are vector subspaces of €(2), the others not necessarily (because
of the non-distributivity of €(7)).

v) Using the present notation, Proposition 2.3 may be stated as follows: for
B =B* <« B(H), B, =C(N) N Cr(N); then Eq. (2.14) follows from the relation
B! = By n Br.

As for the topological properties of the mixed commutants, the proof of [/0, Proposi-
tion 5.7] shows that:

i) Cr(M), Ci(9M) and N are complete for the quasi-uniform topologies 7, (N);

ii) Cg(N), CL(N), NL need not be complete; their completions are contained in Ny
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but each of them is t, ,-closed in the corresponding space of mixed multipliers: C(%)
in RMR, C (N) in LMR, R{ in LMRN ~ RMA.

Corresponding to the mixed commutants, one may now define mixed bicommutants.
One ends up with four bicommutants containing R, but mutually not comparable: R/,

1k, ML, R
Combining the results above with those of Section 4, we get:
i) Mix is complete for 1, (N}), hence closed in Nif;
ii) gL need not be completeint, (NR), Nl Nipy, but Ni1 is closed in LM ARM(NR).
Finally, the analysis of Section 4 may be extended to mixed bicommutants. Let again B
be a *-algebra of bounded operators containing 1, as in Proposition 4.3. First B'x =B
and Bpy = Brp by (A.6). Next, we have:
B < B! < BL = MY(B) n (B)..
Thus, using Lemma 4.4, we get
B! = B = B[1,(B))]* « Bik.
The final picture is the following:
B! =B < Big

B < Bii < ”, S B4 (A.6)
[ala]
If we assume, in addition, that B leaves 2 invariant, so that B! = By = B, then Pro-
position 4.3 and the relation (A.6) give finally:
B < Bri =B = B[r,] « Bir <« Bpp < Bs*] < B, = (B, (A.7)

where 1, = 1,(B) = 1,(Bp).
A similar discussion may be given for the general case ! > B as in Section 4, but it is
straightforward and we shall omit it.
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APPENDIX B

INVERTIBILITY OF OPERATORS
AND SYMMETRIC PARTIAL Op*-ALGEBRAS

In Section 4 we have defined three different types of symmetric partial Op*-algebras:
*-symmetric, weakly symmetric and strongly symmetric. Yet none of these definitions
coincides a priori with the abstract one given in I [9, Section 2D ], because we have used
usual operator inverses, and not inverses within the given partial Op*-algebra. But, as
we shall see now, in fact the two approaches are equivalent.

Given A € §(2), we say that:

i) A is invertible (in the usual sense) iff there exists a closed operator B = A ™! such that
BA =1 D(A) and AB = 1| D(B), where D(B) = Ran A. Notice that D(B) need not
contain 2.

ii) A is weakly invertible if there exists Be {A };; suchthat B A=A oB = 1.

iii) A is strongly invertible if there exists Be { A }' such that B.A =A.B = 1.

What are the relations between these three notions? One is obvious: if A is strongly
invertible, it is also weakly invertible, and the two inverses coincide. We collect the other
results in a proposition.

ProposITION B.1. — Let A e §(2). Then:

i) If A is strongly invertible, with strong inverse B, then A is invertible and A~! = B.

ii) If A is invertible and weakly invertible, with weak inverse B, then A~! « B**.

iii) If A is invertible, and A~'e (%), then A is also weakly and strongly invertible,
and the three inverses coincide.

ir) The same is true, in particular, if A

Proof. — i) We have ABf = BAf = £,V /€.

Let ge D(A). There exists a sequence { g,}€ 2 such that g, > g and Ag, — Ag.
Since BAg, = g, converges ahd B is closed, Ag e D(B) and BAg = g. Similarly ABh = h
for all he D(B). Hence A is invertible and A~! = B.

ii) If A is only weakly invertible, we have A**Bf = B¥*Af = f, Vf € 9, and the pre-
ceding argument fails. If we assume in addition that A is invertible, then A~! and B¥*
coincide on Ran (A | 7). We show this is a core for A~ %

' is bounded.

Givenge D(A '), we have A 'ge D(A), and there exists a sequence | k, } € & such that
k, - A~ l'g, Ak, — g, i.e. Ak, — g in the graph norm of A~!. Thus we get:

A™'=A"!'IRan(A] 2) = B**[Ran(A| 9) c B**.

iii) Since A~ !e €(2), we have & = D(A) n D(A™!). Thus we get A"'Af = AA™!f = f,

V fe 2, which implies
AA'=A""A=AoA !'=A"1'ogA=1.

iv) Obvious, since #(H#) < &(2), for any 2.
Let us go back to symmetric partial Op*-algebras. If 9 is a weakly symmetric
one, we have seen in the proof of Proposition 5.8 that the condition A* e L*(A) implies
C=1%A*0 A = | + A*A. So C is invertible, with bounded inverse C~*. By Propo-
sition B.11iv), it is also weakly and strongly invertible, and all three inverses coincide.
The same holds if _is strongly symmetric.
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In conclusion, in the definition of weakly and strongly symmetric algebras, we may as
well use weak, resp. strong, inverses, we get the same objects, which are indeed the sym-
metric partial Op*-algebras in the sense of the abstract definition of I, Section 2D.
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