Scattering theory for Hartree type equations
Annales de l'I.H.P. Physique théorique, Volume 46 (1987) no. 2, p. 187-213
@article{AIHPA_1987__46_2_187_0,
     author = {Hayashi, Nakao and Tsutsumi, Yoshio},
     title = {Scattering theory for Hartree type equations},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {2},
     year = {1987},
     pages = {187-213},
     zbl = {0634.35059},
     mrnumber = {887147},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1987__46_2_187_0}
}
Hayashi, Nakao; Tsutsumi, Yoshio. Scattering theory for Hartree type equations. Annales de l'I.H.P. Physique théorique, Volume 46 (1987) no. 2, pp. 187-213. http://www.numdam.org/item/AIHPA_1987__46_2_187_0/

[1] J.E. Barab, Nonexistence of asymptotic free solutions for a nonlinear Schrödinger equation. J. Math. Phys., t. 25, 1984, p. 3270-3273. | MR 761850 | Zbl 0554.35123

[2] P. Brenner, On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations. Math. Z., t. 186, 1984, p. 383-391. | MR 744828 | Zbl 0524.35084

[3] P. Brenner, On scattering and everywhere defined scattering operators for non-linear Klein-Gordon equations. J. Differential Equations, t. 56, 1985, p. 310-344. | MR 780495 | Zbl 0513.35066

[4] J.M. Chadam and R.T. Glassey, Global existence of solutions to the Cauchy problem for time dependent Hartree equations. J. Math. Phys., t. 16, 1975, p. 1122-1130. | MR 413843 | Zbl 0299.35084

[5] A. Friedman, Partial Differential Equations. Holt-Rinehart and Winston, New York, 1969. | MR 445088 | Zbl 0224.35002

[6] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation I, II. J. Funct. Anal, t. 32, 1979, p. 1-32, 33-71 ; III, Ann. Inst. Henri Poincaré, Physique Théorique, t. 28, 1978, p. 287-316. | Numdam | MR 533219 | Zbl 0397.35012

[7] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations with non local interactin. Math. Z., t. 170, 1980, p. 109-136. | MR 562582 | Zbl 0407.35063

[8] J. Ginibre and G. Velo, Sur une équation de Schrödinger non linéaire avec interaction non locale, in Nonlinear partial differential equations and their applications. Collège de France, Séminaire, vol. II, Pitman, Boston, 1981. | MR 652511 | Zbl 0497.35024

[9] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of non-linear Schrödinger equations, J. Math. pures et appl., t. 64, 1985, p. 363-401. | MR 839728 | Zbl 0535.35069

[10] R.T. Glassey, Asymptotic behavior of solutions to a certain nonlinear-Hartree equations, Comm. Math. Phys., t. 53, 1977, p. 9-18. | MR 486956 | Zbl 0339.35013

[11] N. Hayashi and M. Tsutsumi, L∞-decay of classical solutions for nonlinear Schrödinger equations, preprint.

[12] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On solutions of the initial value problem for the nonlinear Schrödinger equations, to appear in J. Funct. Anal. | MR 880978 | Zbl 0657.35033

[13] N. Hayashi and Y. Tsutsumi, Remarks on the scattering problem for nonlinear Schrödinger equations, preprint. | MR 921265

[14] W. Hunziker, On the space-time behavior of Schrödinger wavefunctions. J. Math. Phys., t. 7, 1965, p. 300-304. | MR 193939 | Zbl 0151.43801

[15] A. Jensen, Commutator methods and a smoothing property of the Schrödinger evolution group. Math. Z., t. 191, 1986, p. 53-59. | MR 812602 | Zbl 0594.35032

[16] E.M. Stein, Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press. Princeton Math. Series 30, 1970. | MR 290095 | Zbl 0207.13501

[17] W.A. Strauss, Nonlinear invariant wave equations, in Invariant Wave Equations (Erice, 1977), Lecture Notes in Physics, t. 78, Springer-Verlag, Berlin-Heidelberg- New York, 1978, p. 197-249. | MR 498955

[18] W.A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal., t. 41, 1981, p. 110-133. | MR 614228 | Zbl 0466.47006

[19] W.A. Strauss, Nonlinear Scattering theory at low energy: Sequel. J. Funct. Anal., t. 43, p. 281-293, | MR 636702 | Zbl 0494.35068

[20] R.S. Strichartz, Restrictions of Fourier Transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., t. 44, 1977, p. 705-714. | MR 512086 | Zbl 0372.35001

[21] Y. Tsutsumi, Global existence and asymptotic behavior of solutions for nonlinear Schrödinger equations, Doctor Thesis, Univ. of Tokyo, 1985.

[22] Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique Théorique, t. 43, 1985, p. 321-347. | Numdam | MR 824843 | Zbl 0612.35104

[23] Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. (New Series). Amer. Math. Soc., t. 11, 1984, p. 186-188. | MR 741737 | Zbl 0555.35028

[24] K. Yajima, The surfboard Schrödinger equations. Comm. Math. Phys., t. 96, 1984, p. 349-360. | MR 769352 | Zbl 0599.35037

[25] J. Ginibre, Private communication.

[26] T. Kato, On nonlinear Schrödinger equations, preprint, University of California, Berkeley, 1986. | MR 1037322

[27] Y. Tsutsumi, L2-solutions for nonlinear Schrödinger equations and nonlinear groups, to appear in Funkcialaj Ekvacioj. | MR 915266 | Zbl 0638.35021