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Charged particles with short range interactions
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Section A :

Physique ’ théorique. ’

ABSTRACT . 2014 Schrodinger Hamiltonians for charged particles with an
additional force of very short range are studied by scaling techniques and
with a view towards low energy parameters. We present results for the zero

range limit as well as regarding the approach to it. In particular we give the
leading terms for the S-matrix as the range parameter becomes small. As
applications we compare the scattering lengths of charged particles and of
their neutral counterparts and discuss the level shifts of mesic atoms.

RESUME. - On etudie des Hamiltoniens de Schrodinger pour des
particules chargees avec une interaction supplementaire de tres courte
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264 S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN AND L. STREIT

portee, par des methodes de changement d’echelle, a basse energie. On
présente des resultats sur la limite de portee nulle et l’approche de cette
limite. En particulier, on donne les termes dominants de la matrice S pour
les petites valeurs de la portee. A titre d’application, on compare les lon-
gueurs de diffusion pour des particules chargées et leurs analogues neutres,
et on discute les deplacements de niveau des atomes mesiques.

1. INTRODUCTION

Low energy expansions particularly in the form of the effective range
approximation in scattering theory play an important role in the des-
cription and interpretation of particle interactions [32 ].
On the level of dynamics it was recognized long ago [77] ] [45] that the

low energy behaviour of scattering amplitudes typical for short range
interactions is modelled by « (5-function potentials » : The scattering length
approximation becomes exact as the range of the potential goes to zero.
Furthermore the dynamics becomes simple in the sense that closed form
solutions are available in this limit for off-shell T matrices, etc., a fact
that made the model especially attractive for n-body calculations where
these off-shell two-body quantities are used as dynamical input (for a
review and further references see [17 ]). The failure of these early calcula-
tions pointed towards necessity of a precise mathematical treatment of
zero range interactions [2] ] [5] ] [7] ] [9 ], for 3 particle systems [8] ] [37] as
well as multi-center problems [2] ] [2~]-[22] ] [28 ]. Once these idealized
models are well understood it is worthwile to go one step further, i. e. to

include effective range phenomena through a careful investigation of the
low energy [26 ], long distance scaling limit [3 ].
For the description of the vast majority of scattering experiments it is

inevitable to also take Coulomb forces into account. As is well known,
special considerations are necessary in view of the long range nature of
the Coulomb potential such as in [7~] ] [36] ] and references therein. This
is well exemplified by a comparison of the effective range expansions [70 ]
[~6] ] in charged and neutral particle scattering.

In the present note we investigate Schrodinger Hamiltonians with a very
short range plus Coulomb potential with the aim of modelling the low
energy behaviour of strongly interacting, charged particles. (Relativistic
quasipotential models of charged particles with a contact interaction such
as for positronium are discussed e. g. in [3~] ] [~3]).

Section 2 is devoted to a detailed study of the model in the limit of zero
range. In particular the Hamiltonians are characterized as operator exten-
sions, accretive so as to guarantee contraction semigroups. This generality

l’Institut Henri Poincaré-Section A



265CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

is appropriate to be able to describe absorption such as in mesic atoms [15 ]
[7~]. We give explicit expressions for scattering and bound states.
There are different types of behaviour as the zero range limit is approached

by scaling transformations. This depends on the low energy properties
of the short range potential. We present the different cases in Section 3
and prepare the ground for Section 4. Here the corresponding types of
behaviour are studied for the T-matrix and the scattering amplitude and
we give the leading terms as the range parameter becomes small. We intro-
duce the concept of a Coulomb modified scattering length in such a way
that we need not invoke spherical symmetry of the short range potential
and give an explicit expression which encompasses the case of neutral
particles. While zero range interactions allow only for a fit of the scattering
length we can now adjust the model separately to a given value of the
effective range.

Applications in Section 5 fall in two categories. First we compare the
effective range expansions of charged particles and of their neutral counter-
parts with a view towards charge symmetry questions. To do this adequately
we exhibit the model dependence of the relation between charged and neu-
tral scattering lengths which merits some attention because of the well
known uncertainties [~9] e. g. in the case of nucleon-nucleon scattering.
As a second application we give the level shifts of mesic atoms. In the limit
of small shifts we obtain a proof of the results of approximations discussed
in previous work.

2. COULOMB PLUS POINT INTERACTIONS

In this section we describe a system of two charged particles under the
additional influence of a zero-range interaction.

Let FT denote the pure Coulomb Hamiltonian in L2((~3)

and suppose H~ to be the closed extension of c~3~o}) subject to the
boundary condition, with 

in the subspace of angular momentum zero. More precisely, after decompo-
Vol. XXXVIII, n° 3-1983.



266 S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN AND L. STREIT

sition into partial waves, and unitary transformation from L2((o, oo); r2dr)
onto L 2((0, oo)) the function g( ~)) = I! I ! /) lies in the set

locally absolutely continuous on (0, oo);

For angular momentum l ~ 1, H~ clearly coincides with H~.
H~ describes two charged particles with an additional zero range inte-

raction. As long as the particles stay away from each other, technically
for states H~ acts like the Coulomb Hamiltonian H~.
It differs from FT precisely because of our freedom to specify what happens
as the particles come into contact, technically this is stated in eq. (2.2).
The resolvent equation for H~ reads ([47]):

where Gy.k stands for the pure Coulomb resolvent

and and Bf(z) = r’(z)/r(z) are the Whittaker and psi-function res-
pectively (r(z) being the usual gamma function) [1 ]. In the special case y=O
we denote the closed extension of -0394 !c-([R3B{0}) given by (2.2) with y = 0
by - 039403B1 (see [3 ] [5 ]).

Obviously H~ is continuous in a in norm resolvent sense. A further

property of H~ is given by

THEOREM 2.1. - i Ha) generates a contraction semigroup

Proo, f. 2014 We follow [72] where this result has been proven in the short-

range case y=0. Define (where - means closure) and

Annales de l’Institut Henri Poincare-Section A



267CHARGED PARTICLES WHIT SHORT RANGE INTERACTIONS

Let the complex number 0 be such that

then

By straightforward computation

and thus

Thus is accretive [35 and therefore maximal accretive iff 
D

We also note that the operators H~ exhaust the class of all maximal
accretive extensions of 

Next we describe the point spectrum of H~ in the case a E [RL Then it
is easily seen from (2.3) that H~ is self-adjoint.

THEOREM 2 . 2. - Let a E [?. If y ~ 0 then H~ has precisely one negative
bound state if o« y(2C - l)/47c (C is Euler’s constant i. e. C = 0,5772).
The eigenvalue E  0 is determined by the equation

If II ~ y(2C -1)/4~ the point spectrum of H~ is empty.
If y  0, then for all a there are always infinitely many negative

eigenvalues associated with the s-wave given by the equation

For angular momenta &#x3E; 0 we get the usual Coulomb levels

Proof: 2014 We confine ourselves to s-waves. Following Rellich [F7] who
determined the spectrum for y  0 (2. 6) and (2. 7) are easily seen to be the
eigenvalue equations. Let y ~ 0, then using ( [1 ], p. 259).

Vol. XXXVIII, n° 3-1983.



268 S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN AND L. STREIT

we obtain

and F’(x) &#x3E; 0 for all x &#x3E; 0. Thus F(x) for x &#x3E; 0 is strictly increasing from
- co to 2C-1 (see. and (2. 6) has exactly one solution if 03B1  03B3(2C-1)/403C0.
In the attractive case y  0, F(x) for x  0 is strictly increasing from - CIJ
to+00 in each interval (-n-1, -~), 1, ... (cf. fig. 1), completing
the proof. D

Now we turn to scattering theory. It is common practice to subtract
the pure Coulomb part from the scattering amplitude. Indeed according
to eq. (2 . 3) the total on-shell scattering amplitude OJ, as well as
the total scattering operators S~ and in L2(~3) (S(2) the
unit sphere in ~3) respectively split naturally into 

’

where SC, denote the corresponding Coulomb objects. Moreover
we have, including the possibility of absorption (i. e. Im oc  0) in the zero
range interaction

THEOREM 2. 3. - Let 0, then S~ and &#x3E; 0 are contrac-

tions in L2([R3) and L 2(S2)) respectively. The phase shifts associated

Annales de Henri Poincaré-Section A



269CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

with HC" fulfill

where

Consequently

and

where

and

Proof (2.13) and (2.14) follow from (2.12) which in turn is obtained
by eigenfunction expansion. D
Of course if then Sa, are unitary and

(where 6ess, means the essential, absolutely continuous, singular
continuous spectrum, respectively.) For the corresponding spectral and
scattering properties in the case where ~ ~ ~ I is replaced by some short-
range potential and an explicit determination of the point spectrum
and the scattering phase shifts in the case V(x)=(j8-l/4)/)~~ ~&#x3E;0
see [19 ].

Finally we turn to the effective range expansion. For suitable spherically
symmetric short-range interactions V(r) in addition to the Coulomb poten-
tial y/r the modified effective range expansion in the s-wave reads [70] ] [2~] ]

where and denote the Coulomb modified (s-wave) scattering
length and effective range respectively. Under appropriate conditions
on V(r) (cf. [4 ]) the left hand side of (2.15) is real analytic in k2 around k2 = O.

Vol. XXXVIII, n" 3-19~3.
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Inserting (2.12) into (2.15) we obtain for the right
hand side of (2.15)

i. e. == 0 and all terms of higher order in k2 also vanish identically !
This fact obviously justifies the name « zero-range interaction ».

3. CONVERGENCE TOWARDS POINT INTERACTIONS

The question we now discuss is : In what sense are zero range models an
approximation of short range ones ? We show that they arise as a norm
resolvent limit of a sequence of charged particle Hamiltonians with short
range interactions. In we introduce the following operators defined
as quadratic forms [40 ]

where V is a real measurable function such that E R (the Rollnik
class) for some a &#x3E; 0 i. e.

and ~, ( . , . ) is analytic (not necessarily real valued) around the origin, with
~(0,0) = 1. UG denotes the unitary dilation group on L2([R3)

With the notation

we obtain from (3.3)

From eq. (3 . 6) we infer that in order to find the limit of Hyg as a -~ 0+
we have to control (03BB(~, 03B3~ ln ~)uG~03B3,~kv + 1)-1 as a ~ 0+. It turns out that

Annales de l’Institut Henri Poincaré-Section A



271CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

similar to the short-range case y = 0 [3] ] [3] the behaviour of this inverse
operator is governed by the spectral properties of H== 2014A+V(~) at zero
energy. Thus we recall the notion of zero-energy resonance functions of
H [3] ] [5 ] : If -1 is an eigenvalue of uGo.ov i. e.

we call the functions 

(zero-energy) resonance functions of H and note that

in the sense of distributions. Under hypothesis (3 . 4) (actually V E Rand
(1+! I .x suffices [3 ]) ~ J~x) E L~(~),~’=1,...,N and

With these notions in mind we now distinguish the following cases [3] [5] ]
[26 ] [30 ] [33 ] :

CASE I. There exist no resonance functions (i. e. -1 is not an eigenvalue
of uGo.ov).
CASE II. There exists precisely one resonance function ~ (i. e. -1 is a

simple eigenvalue of uGo.ov) is not in L 2(~3).
CASE III. There exist N ~ 1 resonance functions ~~, j = 1, ... , N which

are all in L 2([R3).
CASE IV. There exist N ~ 2 resonance functions = 1, ... , N and

at least one of them is not in 

We note that in case IV one can always choose a particular set of linear
combinations of the resonance functions t/1 j such that (v, ø 1) =f: 0 and
(v, ~)=OJ==2, ..., N. From now on we adopt this convention throughout.
Thus in case III zero is an eigenvalue of H with multiplicity N whereas
in case IV its multiplicity is N 2014 1. We also stress that in the case of spherically

symmetric potentials V, due to symmetry (i;,~)=2014 

for resonance functions ~ belonging to angular momentum 1 &#x3E;_- 1, in other
words case II will only be found for ~=0.
From the explicit representation of Gy.k in terms of Whittaker func-

tions [2~] ] [2~] we observe that uGEy,Ekv is of the form

Vol. XXXVIII, n° 3-1983.
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Analyticity of A amounts to

so that after multiplication and reordering we again obtain a double series
for 03BB(~, yE In ~)uG~03B3,~kv in powers of ~ and (ya In s):

For an explicit determination of the lowest order coefficients Gml,
and Bmn we refer to the appendix. We also need the (norm convergent)
expansion of

where P is the projector onto the eigenspace of uG0,0v to the eigenvalue-1,

(from now on the normalization (Ø j, == 2014 will be used) and T is
the so called reduced resolvent [27]

For a proof of expansion (3.11) with P and T given by (3.12) and (3.13)
compare [3] lemma 3.1.
With these preliminaries we are now in position to control the behaviour

+ 1) 1 as 8 ~ 0+ according to cases 1-IV:

LEMMA 3.1. - Assume case I (i. e. P=0). Then 
1 is

analytic in E, (yE In E) around the origin and we get the following expan-
sion (valid in norm)

Then

which immediately proves (3.14). D

Annales de l’Institut Henri Poincaré-Section A
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Here we used the notation ( B ~ == ( ~, for bounded operators B.
We also note that the expansions (3 .17), (3 .18) and all the following expan-
sions in this section are valid in norm.

and consequently

Vol. XXXVIII, n° 3-1983.
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A) If ~,01 = 0 and the matrix is non singular we get

Here we used  B = (~, and (  B ~ )~t 1, the inverse matrix of
( B )~, where B is some bounded operator.

B) If 03BB01 ~ 0 we obtain

Annales de Henri Poincare-Section A



275CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

into (3.19), we obtain after straightforward 0 manipulations similar to that

before and after 3. 21

Now assume = 0 and  B10 ~~~ to be non singular. Then

and (3 . 25) follows. On the other hand if 03BB01 =t= 0 then

and (3.26) holds. D

REMARK 3.1. 2014 In the case ~,01= 0 and singular we expect in

general non existence of n - lim 
1 but we conjecture

For a careful analysis of this point in the short-range case y = 0 see [3 ],
Theorem 3. 3.

LEMMA 3.4. - Assume case IV

and 7+0 (for y = 0 cf. [3 ], Theorem 3 . 4).

Vol. XXXVIII, n° 3-1983.
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and (3. 32) holds. D
With these facts we are able to state the main result of this section :

THEOREM 3.1. - Let y ~ 0, then converges in norm resolvent

sense to Hx as B -~- 0 +

Annales de Henri Poincaré-Section A
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where ex is given by (1)

In particular y8 In E) is real then Ex  0 is an eigenvalue of H~ if
and only if there exists a sequence Ey of eigenvalues of Hy,E that converges
to E~ as £ -~ 0+. (We remark that HC, the ordinary Coulomb
Hamiltonian. For a complete discussion of the short range case y = 0
see [3 ], Th. 2 .1).

Proof. - A change of variables in (3.6) yields

where the kernels of A. ~) and C are given by

Obviously

pointwise. From [2~] we have

and we obtain

where ~ ~HS is the Hilbert-Schmidt norm and

( 1) The integral operators v ln (j y |x+/2) v are defined in the appendix.

Vol. XXXVIII, n° 3-1983.
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Since by the bound (3 . 40) and by ~dominated convergence also

holds, we actually infer ( [42 ], Th. 2.16)

Thus denoting

we obtain

Inserting from Lemmas (3.1)-(3.4), (3.36) results. 0

REMARK 3 . 2. - a) If ~~ is real, or if V ~ 0(V &#x3E;_ 0(Im/~0)
then fHyg generates a contraction semigroup 0 and Theo-

rem 3.1 implies in particular strong convergence of to as

~ -+- 0+.
b) For the sake of simplicity we assumed E R for some a &#x3E; 0.

It is obvious from the expansion (3.8) and from the proofs of Lemmas 3.1-
3 . 4 that V E Rand (1 + |x)"V(x) E L1(R3) for some power n (depending
on the order of the expansion involved) suffices for all results of this section
to hold.

c) Case I I if 201 - - I (v, /J) 2/4~ and case IV if 201 = " ! (v, ~ 1 )2/4~c
represent a variant of Klauder’s phenomenon [29 ] [41 ]. In fact let us
assume in addition to E R for some a &#x3E; 0 (but cf. Remark 2b))
that is continuous and monotonously decreasing outside some fixed
sphere of radius p centered at the origin. Then obviously

but

4. SCATTERING THEORY

We first introduce the on-shell scattering amplitude 0), co’) and

scattering operators corresponding to Hy,. Throughout this
section we assume such conditions on ~, and V that Sy,E.are bounded ope-
rators (cf. Remark 3.2a). Similar to (2.8)-(2.10) we have

Annales de Henri Poincare-Section A



279CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

and

In (4.2) ~~ denote the Coulomb wave functions

For ~, real, and are unitary as a consequence of the assump-
tion (3 . 4) [40 ]. With the help of

and Lemmas 3.1-3.4 we get the following expansions 

THEOREM 4.1. - Assume case I. Then

THEOREM 4.2. - Assume case II.

Vol. XXXVIII, n° 3-1983.
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THEOREM 4.3.2014 Assume case III. If 03BB01 + 0 or 03BB01 = 0 and (j, B10(k)03C6l)is non singular then

THEOREM 4.4. - Assume case IV and y ~ 0.

REMARK 4.1. a) For an explicit computation of the coefficients ( Bmn&#x3E;
in various cases we refer to the appendix.

b) In all cases one finds (just as in the case II A) of Th. 4.1) that the angle
dependent terms are suppressed by a factor of 8.

Insertion of these results into (4.5) yields for the leading term of the
t-matrix :

Annales de Poincaré-Section A
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Concerning continuity of the S-matrix we have

THEOREM 4.6. - Assume such conditions on ~, and V that are

uniformly bounded with respect to G. Then

and

where a is given by (3.36) according to cases I-IV.

~’roof. Identical to that of Theorem 5 . 3 in [12 ]. Q
Of course the assumption in Theorem 4. 6 is trivially fulfilled t;

is a contraction i. e. for real as well as for optical (purely absorbing) inter-
actions. The important point of the theorem is that it shows in which sense
the scattering of charged particles with a short range force is approximated
by models with Coulomb plus zero range interaction.
Next we introduce the concept of a Coulomb modified scattering length

for arbitrary (non spherically symmetric) short-range perturbations V(x).
If V is spherically symmetric, we infer from (2.15) that

where denotes the Coulomb modified s-wave scattering length for
the Hamiltonian (defined as quadratic form)

Eq. (4. 20) immediately suggests the following definition of the Coulomb
modified scattering length as‘ for an arbitrary non spherically symmetric
interaction V(x) in (4.21). Approaching the threshold from above
we take care to avoid a set ~(y) - the set of all k2 _&#x3E;_ 0 such that has
an eigenvalue - 12014 where the energy spectrum may be singular [40 ].
In particular this is a precaution to avoid the k2 corresponding to possible
positive energy bound states. Assume now krn ~~ 0, ~(y), then

Vol. XXXVIII, n° 3-1983.
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defines where [18 ]

is the Coulomb modified scattering amplitude associated with

The following theorem provides on explicit formula for 

THEOREM 4 . 7. - Let for some a &#x3E; 0 and suppose 0,
km 20142014~ 0. Then

where J1(z) (I1(z)) denotes the (modified) Bessel function of order one [1 ].
In the special case y = 0 we recover the well known expression

(Here as and fs denote the corresponding short-range quantities (7=0)
for H = - d + V(x)).

This result is a generalization of the corresponding one in the short
range case. A detailed treatment of the Coulomb case will be given else-
where [4 ].

REMARK 4. 2. - Note that for y  0, V E R n L 1([R3) is certainly suffi-
cient in order to guarantee  oo whereas for y &#x3E; 0 we roughly need
V E Rand e~4y~xl o,2V(~ E L1(~3).

Annales de l’Institut Henri Poincaré-Section A



283CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

5. APPLICATIONS

In this section we study the relation between the effective range expan-
sions for charged and neutral particles, as well as the shifts of Coulomb
levels induced by additional short range interactions. For concreteness
we envisage nucleon-nucleon scattering and mesic atoms.
We consider the Hamiltonians

and

and apply Theorem 4 . 7 to (5 .1 ) and (5 . 2) :

THEOREM 5.1.2014 Denote by the scattering length corresponding
to H JHJ. Then, if ~,(E, y~ ln has no eigenvalue -1

Moreover we have (1 ) as  ~ 0+

e) The integral operators v In () y ) x+/2) v are defined in the appendix.

Vol. XXXVIII, n° 3-1983.
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into Lemmas 3.1-3.4 and remarking that

we obtain (5.4), (5 . 5), (5.7)-(5.10), and (5.13). (5 . 6) and (5.11) follow from
Lemmas 4 . 2 and 4 . 4 of [3 ]. D
At this point it is easy to discuss the physical content of our parameters ~.lo

and E occuring in Hy, and H,. Assuming for a moment that V is spherically
symmetric the (Coulomb modified) effective range expansion (2.15) and
formula (3.3) immediately lead to

where ~, denote the Coulomb modified scattering length and effec-
tive range associated with Hy, and ~), r~(s) denote the corresponding
quantities for Similarly for ~, ~ and ~(s), the

(short range) quantities associated with 
03B3 = 0 in 5. 14

(1) The integral operators v ln ( x+/2) v are ’ defined in the appendix.

Annales de l’Institut Henri Poincaré-Section A
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Looking at Theorem 5.1 we infer

and (cf. Lemmas 4 .1-4 . 4 of [3 ])

where oc( ~,1 ) = a( i~ 1 ) ~ y = o given by Theorem 3 .1 ) and as represents
the scattering length of H = - d + V( x ). Similarly we get

where ~s denotes the effective range parameter of H. (5.16)-(5.18) clearly
indicate the particular interest of case II with ~01 = ~! (v, ~) ~ 2/4~ (or case IV
with ~01 = " ! I (v, ~ 1 ) P/47r): Varying ~,1 o and 8 we are able to control and
adjust the scattering length ify=0) and effective range (~ if y = 0)
of (HE if y = 0). Note that in all circumstances the effective range r~
(r~ if y = 0) is of order a as 8 ~ 0 + . 

-

Obviously thIS interpretation is valid irrespective of any symmetry
assumptions on V. In fact for an arbitrary non spherically symmetric
interaction V (5.14), (5.16), and (5.17) follow directly from (4. 24) without
using (2.15). In the same way (5.15) and (5.18) follow from general consi-
derations in [4 ].
Now we derive a relation between the « proton-proton » and « neutron-

neutron » scattering length. For that purpose we choose case II and

(case IV and ~.01 == 2014 ~ ~i)~/47r would lead to similar results). According
to (5.18) and the discussion following it we choose 80 in such a way that ~ors
Vol. XXXVIII, n° 3-1983.
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coincides with the known numerical value ro of the nuclear effective range
and introduce the Hamiltonian Hpp modelling the interaction by

and we assume in addition

For the n-n interaction we define

where now

Under the additional hypothesis of charge symmetry i. e. 

we obtain

and using (5 . 5), (5 . 6), and (5 . 25) we get the approximate relation 1

where app = and ann - as denote the p-p and n-n scattering length
respectively. As already remarked (5 . 26) is an approximation to the extent
that higher order terms in (5 . 5) and (5.6) have been neglected. The stan-
dard reference (J. D. Jackson and J. M. Blatt [25 ]) suppresses the model
dependence inherent in (5.26). Also our results are valid for arbitrary non
spherically symmetric interactions V. A quantitative investigation of
the model dependent relation between charged and neutral scattering
lengths will be given elsewhere with a view towards a comparison of expe-
rimental findings [16 ] and the postulate of charge symmetry.

Finally we turn to the computation of level shifts in mesic atoms [13 ] [15 ]
[34] ] [44 ] .
We consider spherically symmetric potentials V( I ~ I) fulfilling

in addition to (3 . 4). Denoting by 10), n = 1, 2, ... the solutions of
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THEOREM 5.2. - A) assume case I (i. e. no zero energy resonances or
bound states of H = - 4 + V( x ~ I)) then the level shifts = E~:~ - E~ ~‘,
where E~~‘ _ - y2/4(n + 1)2, y  0, are the Coulomb levels, the eigenvalues

of H_,,F = -0394 + I + 03BB(~, yE ln ~)~- 2V( x I/G), are given by

where ~ and are the partial wave scattering lengths of Hy,E and H

B) Assume case II (i. e. a zero energy resonance of H in the s-wave but
no zero energy bound states in higher waves) then

and for l ~ 1, coincides with (5.28).
C) Assume case III (i. e. zero energy bound states of H in partial waves

I ~ 1, for instance in and 4= 0 or ~01 =0 and (~, B10(0+)1Jd non
singular. Then

and for t ~ 1J ~ ~ coincides with ~5.28).
Vol. XXXVIII, n° 3-1983.
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D) Assume case IV (i. e. a zero energy resonance of H in the s-wave
and zero energy bound states for some 10 ~ 1). Then

In case II if ~i == - ! (z’, ~) !~/47r and in case IV if ).01 = -I (r, p/47r,
~;~ are analytic with respect to the variables E, E In [; (they are given by
simple zeros of the modified Fredholm determinant

and we get

proving (5.29) and (5.32). In the remaining case we use the Coulomb
modified effective range approximation for l ~ 0 [~6] ]

Since in these cases Hy, converges to HC in norm resolvent sense we have

and thus

Since
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follows. Insertion of ~===~?~ from Theorem 5 .1 proves our assertions
for ~==0. Using (3 . 2) and (3 . 3) we obtain (analogously to (5.16))

completing the prof. D

REMARK 5.2. - Small (negative) level shifts are obtained in the limit
of large negative Im ~,10 ~ I remains bounded in (5 . 29) we have

and thus

where 5(~o)=~(~io)!y=o and a(~,10) is determined from (3 . 36). A similar
result is valid for (5 . 32). Small positive deviations are in fact « large shifts ».
As Re ~,1 o approaces + oo the level approaches the n~k Coulomb level
from above, while the ground state becomes extremely strongly bound.

REMARK 5 . 3. - For ~=0, the first term in (5 . 28) may be obtained
simply by using Rayleigh-Schrödinger perturbation theory [15 ]. This
argument and the method of proof in Theorem 5 . 2 show that (5 . 28), (5 . 29),
and (5. 32) are true for non spherically symmetric interactions V as far as
the ground state shift is concerned.

Therefore, in order to describe complex level shifts in mesic atoms we
take case I I with ~,01= - ~ (v, ~) ~ P/47T (or case IV with ~01 = - !(~ ~i)~/47r)
and choose 80 such that ~0rs coincides with the effective range of the hadro-
nic interaction. The Hamiltonian Har describing the mesic atom is then
defined to be

where in addition a~ obeys
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Next we have to choose ~,1 o in such a way that the ground state shift
in (5.29) coincides with that observed in nature. Writing

where denotes the energy shift and abbreviates the line broadening
(width) due to absorption we get the following approximation for the
s-wave shifts and widths

neglecting higher corrections in (5.39). Note that a fit of the ground state
level shift E 1.0 to the experimental value eliminates all free parameters
from (5.43), for all n &#x3E; 1. In the same approximation higher shifts are
given by (5 . 28) (cf. also [15 ])

Since in (5 . 44) is real, F~=0 in this approximation i. e. absorption
effects only appears in higher corrections if 1 &#x3E;-_ 1 [44] as long as V is real.
The fact that ~(S(~io))==[4~io!(~~)r~]’~ 1 in (5 . 39) represents the

leading term of the scattering length of the short range Hamiltonian
- d + ~) (i. e. y = 0 in Hat) is in agreement with previous discussions [13 ]
[15 ].

ACKNOWLEDGMENTS

We are indebted to Professors D. Bolle, L. Ferreira, A. Grossmann,
R. Vilela Mendes and T. T. Wu for stimulating discussions. This work was
greatly facilitated by stays at the following institutions : Physics Department,
University of Bielefeld; Mathematics Departments of Bielefeld, Bochum and
Oslo University; Centre de Physique Theorique, CNRS, Marseille Luminy
and UER Mathematique Physique Theorique, Universite d’Aix-Mar-

seille ; and Physics Department, University of Wrocaw. Financial support
by the Alexander von Humboldt Foundation (F. G.) and the Volkswagen
Foundation (L. S.) is gratefully acknowledged. Further support came from
the Norwegian Research Council for Science and the Humanities under
the program Mathematical Seminar Oslo.

Last not least we would like to thank heartily Mrs. B. Richter for her
patience with a difficult manuscript and her skilful typing.

Annales de l’Institut Henri Poincaré-Section A



291CHARGED PARTICLES WITH SHORT RANGE INTERACTIONS

APPENDIX

Expansion coefficients for the Greens function.

First we recall

The lowest order coefficients are given by integral operators with kernels

Expansion coefficients for the scattering amplitude.

In case II A (Theorem 4. 2) we have
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where denote Hilbert-Schmidt operators with kernels

In case II B (Theorem (4.2) we have

In case IV A(Theorem 4.4) we have
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