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Canonical forms for separability structures
with less than five Killing tensors
by

Sergio BENENTI and Mauro FRANCAVIGLIA

Istituto di Fisica Matematica and Istituto di Meccanica Razionale,
Universita di Torino

ABSTRACT. — We review the general theory of separability structures
in Riemannian manifolds of arbitrary dimension and signature. Canonical
forms for the metric tensor and the Killing tensors associated to separability
are computed for structures with at most four Killing tensors. Also the
separated ordinary differential equations are listed for each case. This
paper covers completely the general framework for dealing with separability
structures in General Relativity.

1. INTRODUCTION

In previous papers [/, 2, 3, 4] one of us introduced the concept of sepa-
rability structure for investigating the integrability by separation of variables
of the Hamilton-Jacobi equation for the geodesics of a Riemannian mani-
fold (V,,g)(M):

1 ..
(11) Egualsajs =e,

This work has been sponsored by Gruppo Nazionale per la Fisica Matematica, Consiglio
Nazionale delle Ricerche.

(') In this paper by Riemannian manifold (V,,g) we mean a (connected paracompact
Hausdorff) C* manifold endowed with a non-degenerate metric tensor of whatever signa-
ture. The term proper-Riemannian will be used for signature (0, n).
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46 S. BENENTI AND M. FRANCAVIGLIA

where S :V, — R is a real valued unknown function on V, and e is a real
parameter. A complete integral of (1.1) is a n-parameter family S,

c=(Ct,.--,Cn)>»

of solutions of (1.1) which depend on ¢’s in an essential way according to
the Hamilton-Jacobi theory. A separable coordinate system (for geodesics)
atapoint x € V, is a coordinate system (x') (i = 1, ..., n)such thata complete

integral S, exists which in the given coordinates assumes the separated
form :
n

(1.2) S, = z S{x'; ),

1
with ;S; = 0 for i # j. A separability structure (for geodesics) at a point
x€V, is the equivalence class of all separable coordinate systems (at x)
such that the corresponding separated complete solutions (1.2) are the
coordinate representations of the same complete integral.

According to the theory of the separability structures ([4]) all separa-
bility structures on a Riemannian manifold (V,, g) (i. e. concerning the
HJ-equation of the geodesics) can be preliminarly classified by means of
two non-negative integer numbers (r,d), with0 < r < nand0<d <n —r,
which are called the class and the index of the separability structure respec-
tively. A separability structure of class r and index d will be briefly denoted
by the symbol &, (*). When a coordinate system (x') is given, a single
coordinate x* is called a first class coordinate if :

(1.3) 0x8i; =0 for i,j#k.

The class r of a &, ; structure is the invariant number of first class coordinates
existing in each separable coordinate system of the given separability
structure (*). We recall that a single coordinate x* is called an ignorable
coordinate if

(1.4 08 =0, Vi, j.

Hence an ignorable coordinate is in particular a first class coordinate.
It can be proved that in each &, structure there exist separable coordinate
systems with exactly r ignorable coordinates.

In order to simplify the notations we agree to re-label any separable
coordinate system (x) (i = 1, ..., n) so that the first class coordinates are
the last coordinates (x%), labeled by Greek indices a, §, . . ., ranging from
n —r + 1 to n. The remaining coordinates (up to the (n — r)-th) will be
called second class coordinates. We agree to denote them by (x%), by using
Latin indices from the first part of the alphabet, a, b, .. ., ranging from 1
ton—r

The index d of a ¥, structure is the invariant number of second class

(%) Further sub-classifications may be considered. A first example has been given in [5].
(%) The fact that r is an invariant is not trivial. For a proof see [3] and [4].

Annales de I'Institur Henri Poincaré-Section A



CANONICAL FORMS FOR SEPARABILITY STRUCTURES 47

coordinates (x°) such that g* = 0. Hence, in principle, d may range from 0
to m = n — r. However, non-degeneracy and signature of the metric imply
in fact the following limitation:

(1.5) 0<d< min(m,p,q)

where (p, q) is the signature of g. We agree to re-label the second class
coordinate (x%) (@ = 1, ...,n — r) so that the last d ones are those satisfying
g = 0. These coordinates will be labeled by barred indices a,b, ...
ranging from n — r — d + 1 to n — r. The remaining coordinates will be
labeled by twiddled indices a, b, . .. ranging from 1 ton — r — d.

It has been proved (cf. [4]) that in a given ¥,,, structure there always
exists at least one separable coordinate system (x’) such that all the first
class coordinate are ignorable and the metric tensor components take the
following form:

gh=0 (i#a, £g7=0,

(1.6) gh=u", g =0u" (ans) (%
g = [y
m=n—r;a=1,...m—d;ab=m—d+1,...,m,a,f=m+1,....n)

where: (u") 18 the m-th row of a non singular m X m matrlx of functlons
I u [ such that each element u of the inverse matrix || u 1 (u u = &P or equi-
Valently u u = 5‘) is a function of the variable correspondmg to the lower

index only,l e. 0, u = Ofor ¢ # a;(60%) and ({¥) are functions of the variable
corresponding to the lower 1ndex only. Such coordinates have been called
normal separable coordinates (for the given separability structure). In these
coordinates the matrix || gV || takes the following form (see, e. g., [3, 4, 6]):

\\ 0
0 0 m—d
0 \
1.7 0 0 P d
0 gam grz[I r

m—d d r

‘ (*) Throughout this paper we adopt the summation convention for repeated indices,
in the respective range, unless the symbol « n. s. » appear together with a distinguished index.
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438 S. BENENTI AND M. FRANCAVIGLIA

We emphasize that the meaning of class (and consequently of index)
of a separability structure is more subtle than what might appear at a first
sight. In fact let us assume that coordinates (x’) are given in (V,, g) so that
they split naturally in three groups in such a way that, by suitable reordering,
the metric tensor components take the form (1.6). It is certainly true that
the HJ-equation of the geodesics is separable in the given coordinates, but
one is not allowed to claim that the class and the index of the separability
structure are respectively r and d. Actually, it might happen that one (or
more) of the non-ignorable coordinates (x“) are first class coordinates (say
exactly s of them). Then the argument of [4], § 2 applies and shows that (1.6)
can be further transformed, leaving unaltered the separability structure,
to a similar form in which the number of ignorable coordinates is exactly
r + s. This number is the true class of the separability structure. Thus,
the condition to be imposed on (1.6) to assure that the coordinates (x)
are normal separable coordinates of a %, structure is that all the non-

ignorable coordinates (x*) (a = 1, ..., m) are truly second class coordinates,
which means that: for each coordinate x° there are indices i, j # a such that
(1.8) 0.8i; #0.

In the sequel these conditions will be recalled as class conditions. They
impose further restrictions to the functions ’, (¥ and 0 appearing in (1..6).

Unfortunately they cannot be easily written in terms of these functions.
Nevertheless, since the reduction to normal separable coordinates makes
the integration of the HJ-equation easier, in the applications one should
always keep in mind the class conditions and apply them case by case,
by direct computation over the covariant metric tensor components. If
they are not satisfied, the transformations to normal separable coordinates
can be obtained by applying the methods shown in [4].

It is convenient to introduce the following definition: a C' functional

. b . el
mx m matrix % = || u, || is called a Stackel matrix (of order m) if it is regular,

1 2 m . . . .
each row (ug, U, . . ., u,) is function of the corresponding variable x* only
and one of the rows of the inverse matrix % ! = || %4“ || is formed by nowhere

vanishing functions; we assume that this privileged row is the last one
(i. e. the m-th row). Therefore, a Stiickel matrix is characterized by the fol-
lowing conditions:

(1.9) detflug| 0,  da,=0 if c#a, u" #0.
The inverse %! = || 1;“ || of a Stiickel matrix is called an inverse Stdckel

matrix (of order m) (°). .
As we see from (1. 6), Stackel matrices enter the form of the metric compo-

(°) In [4] the reverse terminology is adopted.
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CANONICAL FORMS FOR SEPARABILITY STRUCTURES 49

nents g/ with respect to normal separable coordinates. We remark that,
in general, the Stickel matrix entering (1.6) for a given separable sistem of
coordinates is not uniquely determined. Moreover we stress that condi-
tion (1.9); is essential to assure the non-degeneracy of g.

In applications to Mathematical Physics, one deals often with metric
coefficients g/ which are known to be separable (this property can in fact
be checked by applying the well known Levi-Civita’s conditions [7]) and,
more in particular, that the separable coordinates are normal (i. e. all the
first class coordinates are ignorable and the matrix || g¥ || has the form (1.7)).
However, in general, one does not detect immediately the functions (ﬁtb),
(%) and (0%) entering (1.6), while their knowledge is explicitly required
for the reduction of the H-J equation into separated equations (cfr. (2.6)
of [4]):

(1.10)

{ (@) + (Feuts = i,
20,050,8 + (Peey = ety
where ¢,

Thus the problem is to find explicitly, first of all, a Stéickel matrix || u [|
which allows to decompose g according to (1.6). As already remarked
in [4] and elsewhere, this (purely algebraic) problem can be simplified
by knowing how to express, in a simple manner, the elements of a generic
inverse Stickel matrix (of any order m) in terms of functions depending
on a single variable. We call such a representation a canonical represen-
tation of an inverse Stickel matrix of order m. The corresponding form of
the metric components has been referred as a canonical form for a ¥,
separable metric ([5, 6]).

In recent years the separability of the ‘H-J equation for geodesics in
space-time (V,, g) has played a certain role in the field of General
Relativity (see [5, 8, 9] and [11, 12] for detailed reviews). Therefore it is
interesting to classify all possible separability structures which may exist
in a four-dimensional Lorentzian manifold. This classification was under-
taken, by relying on a different approach to separability, by Boyer et al.
in [/0], where separable metric forms have been derived. However, it
seems interesting to investigate all the possible separable metric forms in
the framework of the theory of separability structures, possibly without
any a priori assumption on the dimension and signature of the mani-
fold (V,, g), but only relying on the classification given by the integer num-
bersm = n — r and d, where r is the class and d the index of the separability
structure (°), and on the standard form of the metric given by (1.6). In fact,

(°) We stress that the classification of coordinates proposed in [10] is based on another
approach to separability of the HJ-equation, and it is only apparently similar to the classi-
fication based on the definition of class and index of a separability structure. A short compa-
rison between the methods of [4] and [/0] has been presented in [/2].

Vol. XXXIV, n° 1-1981.



50 S. BENENTI AND M. FRANCAVIGLIA

the general properties of separability structures shown in [4] tell us, as we
indicated above, that in considering separable metrics of the kind (1.6)
we have no loss of generality.

On the other hand, for a fixed dimension n, it turns out that the canonical
forms become increasingly more complicated the larger is m, due to the
fact that the discussion of canonical representation of inverse Stéickel
matrices becomes more involved for larger orders m. A short note presen-
ting the general scheme will appear early [/3]. Preliminary investigations,
fully covering the cases of &, ,., and ¥,_;,, structures (') have been
presented respectively in [§]and [5]. In this paper we are trying to mediate
our interest for the most general cases with the aforementioned difficulties
and the pourpose of applications to General Relativity (). It is clear that
the cases of separability structures of classes n and n — 1 in a (V,, g) are
trivial. Therefore we shall present the canonical forms for the following
three cases: &,_,,; and ¥, _,, structures without any restriction to the
index, and &, _ 4, structures. Our results are therefore given independently
of the dimension n of the manifold. On the other hand, these cases cover
fully the range of applications to General Relativity, since a separability
structure of class n—4 for a four-dimensional manifold becomes of class 0,
and a separability structure of class 0 has necessarily index 0.

We remark that Boyer et al. classified in [/4] all separability structures
of class 0 on a Lorentzian space-time satisfying Einstein vacuum field
equations (with cosmological constant). The program of determining all
solutions of Einstein vacuum field equations with an &, , structure is yet
unfinished. We hope that our classification of canonical forms will help
in looking for new such solutions, or at least in understanding geometric
features of previously known ones. We have not investigated in detail
other more general cases since we do not know relevant interest of them
in problems arising from Mathematical Physics. In any case, we remark
that the method presented here could be used (with some more efforts)
to deal (if necessary) with cases of higher m = n — r.

Another reason which makes interesting the knowledge of a canonical
form for separable metrics is the fact that to any &,,; structure there is
associated a linear (n — r)-dimensional space of commuting Killing tensors
of order 2 (containing the metric itself), together with (of course) an r-dimen-
sional space of commuting Killing vectors. In normal separable coordinates

(7) Separability structures with zero index have been previously (and improperly) called
« regular ».

(8) We remark that for Lorentzian metrics (signature (1, n — 1)) the index of a separability
structure may assume only the values 0 or 1 (see (5.1)).
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CANONICAL FORMS FOR SEPARABILITY STRUCTURES 51

a basis of the space of K-tensors associated to the separability structure
is given by (see [4]):

(1.11) K, = %ﬁaa@) 0z + %ﬁog(aa@a 0y + 0, ® 03)
0
araf R
T ® 0 (6' 5x’>

if g (which coincides with K,,) is given in the form (1.6). As we can see, the
determination of such a basis depend on the knowledge of the whole
inverse Stackel matrix whose m-th row appears in the metric tensor compo-
nents (1.6). Hence, together with a canonical form of a separable metric,
we shall give a canonical form of the remaining n — r + 1 non-trivial
K-tensors, which will allow their computation, in the practical applications,
through a simple algebraic process, starting from the knowledge of the
metric. -

2. TRIVIAL SEPARABILITY STRUCTURES

As we already pointed out in the Introduction, the cases r = n and
r = n — 1 are in a certain sense trivial cases and they do not require much
discussion. For the sake of completeness we sketch below their behaviour.

If r = n, then (V,,g) admits » commuting K-vectors (all the normal
separable coordinates (x') are ignorable). Therefore (V,, g) is flat (in the
domain of the separability structure). The index of such a separability
structure is of course zero.

A little more interesting is the case of separability structures of class
n — 1. In this case (V,, g) admits (at least in the domain of the separability
structure) n — 1 commuting K-vectors and the space of K-tensors is
trivially spanned by the metric itself. For the index we have two possi-
bilities: i) d = 0, ii)d = 1.

i) If d = 0, expressions (1.6) reduce to:

gl=u #0, g\"=0, g¥=(F,

where: o, f=2,...,n; u; and {% are functions of the non-ignorable
coordinate x! only.

The class conditions (1.8), which assure that the class of the separability
structure represented in (2.1) is exactly n — 1, reduce in this case to the
following conditions:

(22) Ba’ﬁ:algaﬁ7é0’

which are equivalent to:
Jo, 20,83 #0.

Vol. XXXIV, n° 1-1981.



52 S. BENENTI AND M. FRANCAVIGLIA

If on the contrary we have a metric in the form (2. 1) with the matrix [R&dl
constant, it is clear that the change of coordinates

J—dx X = x*,

transforms (2. 1) to the new components
gl =1, g'"=0, g¥=y%

The coordinates (x") belong to the same separability structure determined
by (x) (we can say briefly that the two coordinate systems are ¥-compa-
tible [4]); moreover, they are all ignorable. This shows that, also if the
metric tensor components (2.1) (with (% constant) have the standard
form (1.6) with r = n — 1 and d = 0, the coordinates (x') are not normal
separable coordinates of a &,_,., structure but define a S0 structure,
whose normal separable coordinates are just the (x*). Of course, this
example is rather trivial. However, it is instructive, because it is one of the
simplest examples in which one can see that the mere knowledge of the
form (1.6) is not enough to derive the class of the separability structure.

ii) We now turn to the case of a &,_ ., structure. In this case (1.6) give
the metric components:

(2.3) gl=0, gl=06, =¥

where: o, f =2, ...,n; 0% and {3 are functions of x! only. Of course for
a metric like (2. 3) the class is exactly n — 1 if and only if conditions (1.8)
are satisfied, i. e. there exist indices «, § such that d,g,, # 0. These condi-
tions have not a simple expression in terms of functions 0 and (.

3. SEPARABILITY STRUCTURES OF CLASS n — 2

In order to compute canonical forms for all separability structures of
class n — 2 in a (V,, g), we first need canonical representation for an inverse
Stickel matrix of order 2. This has been already given in [8], in implicit
form. The result of a very simple analysis is the following: there are func-
tions ¥,, ¢, of x? only (a = 1,2), with ¥, # 0 and ¢, + ¢, # 0, such
that % ~! takes the form:

1
P11+ @,

Y0, ‘T,l(pZ

3.1 bl =
(3.1) [l v v

where the index a (resp. b) is the index of row (resp. of column).
Provided the limitation (1.5) holds, on the index of a separability struc-

Annales de ["Institut Henri Poincaré-Section A



CANONICAL FORMS FOR SEPARABILITY STRUCTURES 53

ture of class m = n — 2, we have in general three cases: i) d = 0, iij) d = 1,
iiiy d = 2.

i) d = 0. %,_,,0 structures have been already treated in [8]. We recall
here the results, in a more compact form. The metric components in normal
separable coordinates take the following form:

11 _ ¥ 22___L
@1+ @2 ¢+ @
(3.2 Fn-2:0 glt=g"=0 (0, p=3,...,n)
1
af _ af af
g = lP +III ’
(P1+(P2( ! 7

where W§# (resp. W%#) are functions of x! (resp. x?) only (°). From (1.11),
(3.1) and (3.2) we obtain immediately the components of the associated
non-trivial K-tensor:

K = Vi, K22 = — Y0,
o+ @ o1+ @3
(3.3) S r-2:0 Kl*=K** =0 (e, p=3,...,n
1
K¥ = —— (0, V% — 0, ¥%).
01 + 0, (‘Pz 1 (251 2)

It is easy to recognize (from (1.10)) that the separated equations arising
from the HJ-equation are the following:

B.4) Frrao [\P‘,@S)2 + eV — 0, + (= 1'e, =0 (a=1,2)

where ¢, = e, together with the trivial ones: d,S = ¢, (« = 3, ..., n).
ii) d = 1. In this case (1.6) and (3.1) imply:

b3 .
M=t gli=0  (i#1),
@1+ @3
22 21 2 \P;
B.5) San |7 =g"=0, =T,
@1+ @2
1
gh = (¥ + W) @h=3...m,

@1+ @2

(°) With respect to (1. 6) (compare also with the expressions given in [8]) we set P2f =W, (%*,

Vol. XXXIV, n° 1-1981.



54 S. BENENTI AND M. FRANCAVIGLIA

where W3, W3* (resp. W) are functions of x? (resp. x!) oniy (*°). Then the
K-tensor assumes the canonical form:

¥ .
K11=¢ZT%’ K'=0 (i#1),
1T @
— Pz
(3.6) F_n K22 =K2' =0, K=72(P1’
¢+ @
1
K = (0¥ — 0 #) =),
1 2

The two non-trivial separated equations are now of different kind:

"Pl(aIS)Z + CaCﬂ‘Pilﬁ - Cz(pl - Cl = O,

3.7 S
G-7 t 2¢,¥50,8 + cucp¥5 — 200 + ¢, = 0.

where ¢, = e.
iii) d = 2. This case has no relevance to General Relativity, since in a

Lorentzian manifold separability structures can have index 0 or 1 only.
From (1.6) and (3.1) it follows:

g*=0 (a,b=12),
\I‘a
g =—>—  (p=3...,n
(3.8) Fru-2:2 ¢+ @,
1
af af ap
¥ =— (¥ + ¥5).
¢1+¢J1 ?)

Moreover, by (1.11) we find for the non-trivial K-tensor components:

K®=0 (ab=12),

©a+1¥s
K = (—1)p*t 2222 (oq,f=3,...,n),
(3.9) Fu-2. =1 Q1+ @

1
K = (02 — 1%
1

where Latin indices a, b are taken modulo 2. The separated equations turn
out to be:

(3.10) -3 2¢,¥20,S + cucp ¥ — 20, + (= 1)%; =0 (a=1,2)

where ¢, = e.

(*°) With respect to (1.6) we set W2 = ¥ 0%
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As clearly follows from the general formulae (1.6) and (1.11), in the
canonical forms given above, for both g and K, the components correspon-
ding to the ignorable coordinates (x* x*, . ..) have always the same struc-
ture for all values of the index d.

The freedom of rescaling second class coordinates implied by the theory
of the separability structures (see [4], Prop. (4.24)), allows one to rescale
some of the coordinates (x%) in such a way that some of the functions ‘¥,
©q P and W become constants equal to + 1 (according to signature).
For example, in the case of %,_,,, structure one could always choose
&-compatible coordinates in which g has the form (3.2) with ¥, = + 1
and ¥, = + 1 (see [8]). However, we remark that it is better to give the
canonical forms without imposing such normalizations, for the following
reasons. First, because in applications one is generally faced with non-
normalized metrics (in the sense we have just explained). Second, because
the freedom in rescaling second class coordinates may in general be used
more conveniently at the level of explicit integration of the separated
equations. In fact, it might happen that normalizations which make for
example |W, | =|¥,| =1 make more involved the integration of the
separated equations, while other choices could be suggested by the equa-
tions themselves. This remark has to be taken into account in the sequel.

Now, let us compare the canonical forms for separable metrics of class
n — 2 given above with the metric components given in [/0] for the cases
with 2 ignorable coordinates. Case C in [I0] is analogous to the case
of #,_ .0 structures (we remark that the choicea = b =c =d = 01in [10]
is nothing but the transformation to normal separable coordinates (*')).
A glance to the formulae for cases D and E in [/0] tells us immediately
that they are contained as a particular case in our forms (3.5) and (3.8)
respectively (provided some normalization is performed on coordinates x!
and x?). Equations (3.5) and (3.8) give all the separable metrics (in normal
separable coordinates) of class n — 2 and index different from 0. It seems
that they contain cases which have not been considered in [/0].

4. SEPARABILITY STRUCTURES OF CLASS »n -3

First, let us consider a Stickel matrix of order 3:

1 2 3

U Uy Uy

b 1 2 3

4.1 U= |ull =|uy uy u,
1 2 3

Uz Uz us

(*') The reader may look at the metric components g” given in [4] for the case of general
separable coordinates and compare them with (1.6) and (3.2) above, together with equa-
tions (2.3) of [10].

Vol. XXXIV, n° 1-1981.



56 S. BENENTI AND M. FRANCAVIGLIA

together with its inverse

Wyt

4.2) 2 = =t R
b 2 2 2

TR TR Al

3 3 3

and let us discuss a canonical representation of % ~!. The following result
has been proved in [5], § 2 (*?):

LEMMA 1. — For a (3 x 3) Stdckel matrix % defined on an open subset
U < R? one of the following alternatives holds: i) there exists an open
subset U’<c U in which at least one of the first two columns of U contains
only nowhere vanishing functions; ii) there exists an open subset U” < U in
which both the first and second columns of U contain one and only one
possibly vanishing function, not belonging to the same row.

It is now useful introduce the following concept:

DEFINITION. — Two Stickel matrices of order m, U and U’, are said to be
S-equivalent if they have the same m-th row apart from permutations of
columns.

It is clear that the following operations on a Stickel matrix yield an
S -equivalent one: (a) arbitrary permutations of rows of % ; (b) replacement
of one column among the first m — 1 columns by a linear combination
of them (see [/3]). We remark that &-equivalence is in fact an equivalence
relation in the set of all Stackel matrices of order m (for any m > 1). The
relations with the separability structure theory are the following. As we
remarked in Section 1, the Stéckel matrix % entering a given separability
structure through the general form (1.6) is not uniquely determined.
However, equations (1.6) tell us that the m-th row (u“) of %~ ! is fixed by

the choice of the normal separable coordinates in the separability structure
(only rescaling of coordinates are allowed). Therefore, any Stickel matrix %’
which is #-equivalent to % spans the same m-dimensional space of K-ten-
sors, characterizing the separability structure. In fact, it turns out that such
a choice gives the same metric components g'/ and a new basis for the linear
subspace of the remaining m — 1 K-tensors (cfr. equations (1.11)). We also
remark that operation (a) above destroys, in general, the preferred order
of the second class coordinates (x). Therefore its use can produce a modi-
fication of the matrix form (1.7). On the contrary, operation (b) does not
affect the convention we have choosen for labeling the second class coordi-
nates.

(*2) This lemma has been proved in [5] as a part of &, _ 3 structures theory (see Prop. 1,
[5]), but it turns out to be simply a property of matrices satisfying conditions (1.9)and (1.9)3,
hence, in particular, a property of Stickel matrices. Similar remark holds also for lemmas
below.
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The following holds:

LEMMA 2. — Let % be a Stickel matrix of order 3. There exists always
an S -equivalent Stickel matrix A’ in which the first column contains only
Sfunctions which are nowhere vanishing.

This Lemma has been implicitly proved in [5], § 2, by rather long direct
calculations in a different perspective. However, there is a straightforward
proof by using the operation (b) above (see the general discussion given
in [13)).

In order to give canonical forms for an .%,_ ;. structure, according to
Lemma 2, it is sufficient to assume that the Stickel matrix entering (1.6)
has the following form:

u £0 4y i
4.3) U=\, #0 u u

1
us #0 u3 uy

As already described in [5], we take:
1 i, i,

(4.4) \Pa=_1_7 Ug = 7 Va=1—.

U, u

(a = 1,2,3). With these positions the elements of the inverse of matrix (4.3)

assume the form:

( ¥,

llla T j(ua+1va+2 - uﬂ+2vﬂ+1)’
¥,
4.5) 124a = - ;(VaJrl — Va+2)s
a lP“
= —(Mas1 = Has2)s
®

\

where: indices are taken modulo 3, ¢ is the (non vanishing) determinant:

1 1 1
(4.6) p=det|lu; u w3

and ¥, u, and v, are functions of the coordinate x* only.

In a manifold of dimension n > 3 a separability structure of class n — 3
may have index 0, 1, 2 or 3, provide the limitation (1.5) holds. Hereafter
we discuss these four cases in detail.

i) d = 0. This is a case already investigated in [5]. There we have shown
that the metric tensor components (in normal separable coordinates)
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admit the following form (which can be derived directly from (1.6) and
4.5),): ‘

ua lPa
g = —(;(Ma+1 - .ua+2) (a =12, 3)5
(47) yn;3;0 gai=0 ’ (l¢a)’

ap 1 ap
g =a \Pa (ﬂa+1—#a+2) (oz,ﬂ=4,...,n),

a

where W2 are functions of x* only. By (1.11) and (4.5), 3, we find the
following forms for the components of the two non-trivial K-tensors:

K= — j(ﬂaﬂ"au — Mat2Vat1)
Ki=0 (i#a)),

af 1 ap
K% = — _q; W (Ua+ 1Var2 — Hat2Va+1)s

4.8 iz _

2 = __a(va+1 — Vat2)
®
Ki=0 (i#a),
1
KY = — _Zl}‘:ﬁ(va+l — Va+2)-
®

a

In this case the non trivial separated equations are the following ones:

(49) yn_3;0 \Pa(aas)z + cacﬂ\P:B + Caldq + ev, + €1 = 0 (a = 1, 2) 3)

Before discussing the other three cases (d # 0), we first remark that (in
analogy with the case r=n — 2) components (o, ff) of the metric and K-tensors
mantain the same canonical forms (as in (4. 7)y, (4.8)y; and (4.8)yy). There-
fore, in giving the subsequent canonical forms for d # 0, we shall write
the other components only.

if)d = 1. In this case the metric components in normal separable coordi-
nates take the form:

=—(Ug+1 — Ha+2) (@=12),
Y

gﬂﬂ
(410) eyn—3;1 gai:() (l:}éa)y g33 =0a

\}'a
=y — ), g¥=...
¢
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where o, f = 4, . . ., n. For the corresponding K-tensors we have:

(4 11) yn—?a;l

a@ ¥z
K{'= - ?(“b"+1v&'+2 — Ha+2Va+1)
Kf=0 (i#a),
\Ija
K3 = =2 (uyv; — ppvy),
%
ar ¥a
K2 = — —-—(V‘7+1 - V‘&'+2)
@
Ki=0 (i#a),
\Pa
K3 = D, vy,

K3* =0,
K“l‘” —
(@a=1,
K3 =
Kozzﬂ —

(a=12),

The non trivial separated equations are the following three ones:

WA0:S) + ¢,y V¥ + copa+ evz+ ¢, =0 (a=1,2),
4.12) F_3.4
: 20,5058 + c,cp¥5 + cous + evy + ¢, =0.
iii)d = 2. When the index is 2 we have the following canonical forms:
v .
M= = ), gi=0 (i#1),
(4
do LP% —
(4.13) Sz g =7p—(lla+1 — Ha+2) (a=23),
g=0 (b=123, g¥=...
KF=—jWM—mm, Kif=0 (#1),
an \P% -
K® = = —(tz+ \Var2 — Has2Ya+1) (@a=12),
K® =0 — af — .
(414) %_3;2 1 (b 17253)) _Kl sy
Ki'= = 02wy, Kif=0 (i#0),
_ b 4
K‘iaz —-?(vﬁﬂ-l _vﬁ+2)’ (6_1:2,3),
K% =0 b=1273), K% = ;
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where, as before, o, f = 4, ..., n. The non trivial separated equations are:

W1(0:8) + c,cp¥3¥ + cuq + evy + ¢, =0,

(415) eSpn—.’:;l -
20,9208 + ¢,c, ¥ + otz + eva+ ¢, =0 (a=2,3).

iv) d = 3. In this last case we have:

g =0 (ab=1,23), g¥=.. .,
@16 Sisy |, W
g =?(#a+l —,ua+2);

K¢ =0 (a,b=1,2,3), K# = ...,
k¢
K = ?(#a+ WVat2 = Hat2Yat1) s

4.17) s
@.17) 33 K®=0 (ab=123), K#Ff=...,
Kgaz = —a(va+1 - va+2) 5

®

while the non trivial separated equations are (a = 1,2, 3):

(4.18) Sz 2¢,¥50,S + ccp V&P + couy +ev, + ¢, =0

5. SEPARABILITY STRUCTURES OF CLASS n — 4

As we already announced in the Introduction, in this section we shall
give the canonical forms of the metric and of the remaining three K-tensors
for separability structures of class r = n — 4 and index d = 0. These forms
will be given, as usual, in terms of normal separable coordinates. They will
be obtained from a canonical representation of the generic Stidckel matrix
of order 4. From this representation, by following the scheme presented
in the Introduction and described in the preceding Sections 3 and 4, the
reader can easily compute the canonical forms for indices d = 1, 2, 3, 4
whenever required. We do not list these forms here, for obvious reasons
of space. Furthermore, we stress again that for applications in General
Relativity only the case d = 0 is interesting, since d # 0 is not allowed
in a Lorentzian 4-dimensional space time with a separability structure of
class 0. Similar remarks apply to cases with r = n — 5 (see [/3]).

In the analysis of a Stéickel matrix of order 4 we shall follow a procedure
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perfectly analogous to that used in Section 4. A Stéckel matrix of order 4
is given in the following form:

5.1) U = |||

(where b is the index of column and « the index of row), together with the
inverse matrix:

(5.2) =l

(where b is the index of row and a the 1ndex of column). Each u is a function

of x* only. We denote by # the (4 x 3) matrix obtained by deleting the
last column of %. We have the following lemma (see [/3]):

LEMMA 3. — Let % be a (4 x 4) Stdckel matrix defined in an open ser
U < R* In each point x € U at most six elements of % may vanish together.
In each row and in each column of U we cannot have more than two functions
vanishing together.

Proof. — As in [5], the proof may be given by relying on the relations
which give the elements u” of 1 in terms of the elements Z of %, taking

into account that u* # 0 everywhere in U (see footnote (*?)). We have
obviously:

1 23 2 1 23 23
(5.3 %1 = [%(“3”4 — Uglz) + “3(“4“2 - ”2“4) + ug(uyuy — uzu,)],
—1 23 1 23 23 1 3 23

(5.4 u2 A [“1(“3“4 — Uglz) + uz(uglt, ——u1u4)+u4(u1u3 = uzuy)],

(and two similar relations for u and u‘*), where A denotes the determmant
of %. Let us suppose that two functlons on the same row (e. g. u4 and u4)
vanish together at a point x € U. From (5.3) and 14 # 0 it follows that u4

cannot vanish at x. This proves that on each row we cannot find three
Zeroes. Analogously, the similar result for columns is proven by taking for

example u3 = u4 = u4 =0 at x. In this case, (5.3) and (5.4) imply that

uz(x) # 0, us(x) # 0, ul(x) # 0. Finally, we observe that Stickel matrices

of the form:
4

u £0 0 0 u
1 2 4
u; #0 u, #0 0 U,
0 s #0 s #0 11y
0 0 g #0 ity

. 1 o .
are certainly allowed, where u,, ... are nowhere vanishing functions.

(Q. E. D))

The analogous of Lemma 2 also holds. In fact we have:
LEMMA 4. — Let U be a (4 x 4) Stickel matrix defined in U = R*. There
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exists an S -equivalent Stickel matrix U’ in an open U’ < U in which the
first column contains only nowhere vanishing functions.

For the proof it is sufficient to apply the general argument of [/3], by
suitably combining the first three columns of % (i. e. the columns of %).
Therefore, it is not restrictive to suppose that the Stickel matrix % ente-

ring (1.6) is such that the elements tha are nowhere vanishing. In analogy
with (4.4) we can take now:

1 i, iy iy
(5.5) Wom= — 1y A== =D va=— (a=1,234).
ua ua ua ua

With this choice the determinant A of % takes the form:

¢
5.6 A=me———
©-6) Y, ¥, ¥,
where ¢ is the following non-vanishing determinant:
1 1 1 1

K M2 U3 Ha
ViV, V3 vy

5.7 ¢ = det = g% Apuv,

where &, if the Levi-Civita symbol and 1, = 1 (a = 1, 2, 3, 4). Then, we
can represent the elements z:“ of the inverse Stickel matrix  ~! as follows:

( ¥
ut = _ e Sabm}'bﬂcvd ,

! @

¥
Ut = _a Eadelb[J Vi,

2 ¢

(5.8) 4

ut a s“bc‘il,,vcid ,

¥
%a =— 8ade1b)'mud s

\

We conclude that the metric tensor components in normal separable
coordinates of an ¥, _ ., structure have the following canonical form:

¥
gaa = _agabc‘ilbllcud »
[0
(5'9) yn~4;0 gai =0 (i?& a) (a = 1,2, 3’4)9

1
gaﬁ = _Babcdlb)“cud\{lzﬁ ((Z, ﬂ = 5’ ] n) ’
@
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where W, A,, iy, V., P2# depend on x* only. The corresponding three K-ten-
sors are represented as follows:

v
an =2 8abca}'bucvd >
K% =0 (i+#a),

1
K = = e W hopuva ;

& S

K§' = —e®yu,,
(5.10) S0 K§=0 (i#a),

1
K = = a1, W2
@
¥
Kga = 8ade1bvc)Ld >
K§=0 (i #a),

1
KY = o™l e

Finally, the four non-trivial separated equations are:

5.11)  Fy_uo W(0.8)* + gV + ev, + capiy + C2hg + ¢ = 0.
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