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ABSTRACT. - We prove the Matthews-Salam integral representation
for the quantum field theory with the Hamiltonian

(8) If + Ib 8&#x3E; + H,,

where III and Wi are (rather arbitrary) boson and fermion one-particle
operators and Hi is the interaction Hamiltonian of the (cut-oif) Yukawa
theory.

RESUME. - On demontre la representation integrale de Matthews et

Salam pour la theorie quantique a 1’hamiltonien

d0393b( 1) ~ If + Ib 0 + Hr,
ou 1, cvl sont des operateurs (suffisamment arbitraires) deimis sur les

sous-espaces a une particule Bose ou Fermi de l’espace Fock et HI est
rhamiltonien de 1’interaction de la theorie de Yukawa  cut-offs.

1. INTRODUCTION

In the present paper we prove the Matthews-Salam formulas [7, 2, 3, 4]
for the Yukawa interaction in the two-dimensional space-time ( = y 2)
with a space-time and ultraviolet cut-off. Since we have cut-offs the two-
dimensional restriction is not essential. For the main results and references
on the Y2 theory, see, for instance [5-18].
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194 E. P. OSIPOV

The proof of the Matthews-Salam formulas has been considered in

Refs. [7, 9, 12, 16]. The exposition of Ref. [12] is rather recapitulative.
Gross’s arguments have used the fact that the Euclidean fermion function
is the kernel of the operator the inverse of which is local. In addition, the
Matthews-Salam formulas by itself do not need the existence of the Eucli-
dean fermion fields.

Here we give the proof of the Matthews-Salam representation, which
does not depend on the locality of the inverse of the two-point Euclidean
fermion function and on the existence of the Euclidean fermion fields.

Our proof is close in the spirit to that of Gross [16], but instead of locality
we use the commutation relations to deduce the Matthews-Salam formulas.

In Ref. [17] we use the Matthews-Salam formulas to prove a linear N,
bound and in Ref. prove the Lorentz invariance of the Y2 quantum
field theory.

In the following f~, f denote the direct and inverse Fourier transform
of the function f : We define detn as

By Ci, c2, ... we denote strictly positive constants possibl y depending on
unessential variables.

2. INTEGRAL REPRESENTATION OF MATTHEWS-SALAM

We want to obtain the integral representation of Matthews-Salam type
for the Hamiltonian expressions of the form

exp ( - ... 

where Qo is the free vacuum vector in the Fock space ~ , F is either a fermion

field 1/1 or its Dirac conjugate 1/í : = or a function of the boson

field x) at time zero, H : = Ho + HI, where HI is the interaction

Hamiltonian of the Y2 theory and

We suppose that r~l is the positive seif-adjoint operator in the one-particle
fermion complex Hilbert space L2(~) O ((:2 and that ~1 is the positive
self adjoint operator in the one-particle boson real Hilbert space L2(~)
and that
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195THE YUKAWA QUANTUM FIELD THEORY

where /10 is the operator of multiplication in the momentum space by the
function = (k 2 + mo) 1 j 2 .
To deduce the Matthews-Salam formulas it is technically convenient to

consider the boson measure as a measure on continuous sample paths
which consists of a Banach space Q of continuous functions from the real
line to some Hilbert space. The corresponding construction of the space Q
is analogous to that given by Gross p. 190-192] and may be described
as follows.

Let be the completion of the real Schwartz space in the
norm

The dual space of L2(~) may be identified with L -2(0~) by the pairing

The two-point boson function G is given by ( f, g E 

This expression may be rewritten in the following form

where ~c2 is the generator of the semigroup

and 0

are the continuous linear operators generated by the operators 1/20 and
~0 1l2 , respectively.
For sufficiently large ~3 the operator

is a Hilbert-Schmidt operator on (L 2 1 ~2(~))’ - L2 ~2(~). Fix such a (3.
Let ~f be the real Hilbert space, which is the completion of L2~2(~) in the
norm

where a prime denotes the adjoint operator on (L2 1/2(1R))’ = L~/2(~).
Vol. XXX, nO 3 - 1979.



196 E. P. OSIPOV

By Proposition 5.1 [16] Jf may be identified with the state space for a
Gaussian process ~(t) with continuous sample paths and covariance

We may regard the path space measure /1 as a measure on the space of
continuous functions from R into The seminorms

on this space are measurable and by Fernique’s theorem [19, 20] are inte-

grable. Since the process is stationary, they all have the same distribution.

Hence is integrable whenever ¿ I  oo . In particular,
n=-oo n=-oo

it follows that the norm

is finite almost every where and so the Banach space Q ( = the completion
in the norm (2.1)) is a set of path space measure one. We hence-

forth take  as a countably additive Borel measure on the Banach space
of continuous path Q.
We remark that the Gaussian measure  is hypercontractive and has,

at least, the primitive Markov property in the temporal direction r21], but,
generally speaking, it has no Markov property in the spatial direction [22].
We want to obtain the Matthews-Salam formulas for the interactions

of the form

r = a + i03B203B35 with real (x, /3 and ys = ys and where = dy6(x - 

and = 0’( - x) is a function from ~Re(U~). Let, for simplicity, W be a
bounded analytic real-valued function on , Wi 1 E ~pe(~) and an ultraviolet
cut-off k be made with the help of a function from GRe(R).

Let us define the unnormalized Schwinger functions. Let be piecewise
constant function with a bounded support taking the values 0 or 1. Let

H(t) = Ho + 
The Euclidean propagator for H(t) is the strongly continuous two para-

meter family of bounded operator U(t, s) in the Fock space, defined for
t ~ ~ and for points where x(t) is continuous by the equations

The existence " of a unique " solution of the equations (2.2) follows from the
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197THE YUKAWA QUANTUM FIELD THEORY

self-adjointness and boundedness below of Ho + and from the
fact that is a piecewise constant function. The resulting family s)
is strongly continuous and satisfies (2. 2) on 2}(Ho) for all but finitely many s.

Since x(t) = 0 for sufficiently then (Do, s)F) is independent
of t for large negative t and (F, is independent of s for large s.
We write (Qo, U(- oo, t)F) and (F, U(t, oo)S2o) for the corresponding
limits as~-~2014 

Let ~ = { ~ E = ...~J E x~ for i ~ j ~.
We define the unnormalized Schwinger functions for the Hamiltonian

H(t).
We nut

where F are either bounded functions of the time zero beson field, or the
time zero fermion fields

where 7r is the permutation that puts ..., tn in increasing order. That is,
o. ° ° And p(n) is the number of transpositions of fermion fields

in the permutation n. The time ordering operation T may be used to express
S as

T reorders the factors following it in accordance with increasing time and
introduces the appropriate sign change.
We note that by charge symmetry all S,, with unequal number of 03C8 and
03C8 are zero. Moreover, the functions Sn are continuous and uniformly
bounded in ~ and are locally integrable in t~.

Let

where F l’ ..., Fk are bounded functions of the time zero boson field and

for j = 1, ..., ’.../2~ ~ L2(1R2) (8) ([2 and having bounded supports.
Vol. XXX, nO 3 - 1979.



198 E. P. OSIPOV

Now we define the operator V~ ; L2(!R2) Q9 C2 -+ L2(!R2) 0 C2.
For each point ~ E Q we put

Then 03C503C6(t)(.) is a continuous function on R with compact support for each
t and we define the operator (8) C2 -+ L2(!R) (8) C2 by

that is, V~) is a multiplication by r~~ surrounded by convolution by oB
We deiine V~ as the operator on L2(f~; L2(f~) 0 ~2) = (x) C~ given
bv

We also introduce the Euclidean fermion two-point function

The following theorem is valid.

THEOREM 2.1. 2014 (Matthews-Salam formulas). ... , fm,

and have bounded supports. Let F 1, ... , Fk be bounded _ function , the time
zero boson field. Let (tl, ..., tk) E k. Then

where S is the integral operator in Q ([2 with the integral kernel
S(s - t, x - y)«a, x is the multiplication operator in L2(1R2) 8&#x3E; ([2 by the
function x(t), the product A J= 1 are ordered with larger j to the right, and
denotes the duality on Am[L2(1R2) @ ([2], i. e., the bilinear (rather than

sesquilinear) form.

3. THE MATTHEWS-SALAM FORMULAS
FOR EXTERNAL, TIME-DEPENDENT FIELD

We prove the Matthews-Salam formulas for the interaction of fermions

with an external field.

Annales de l’Institut Henri Poincaré - Section A



199THE YUKAWA QUANTUM FIELD THEORY

Let

where

and x), are piecewise constant in t and smooth in x functions with
bounded supports.

Let and V be the operators defined by (2.3) and (2.4) where x)
stands instead of 
The Euclidean propagator for is the strongly continuous in F

( = the fermion Fock space) two parameter family of bounded operators
U~(t, s) defined for t  s and for points where HI(t) is continuous by the
equations

The existence of a unique solution of the equations (3.1) follows from
the self-adjointness and positiveness of H0,f and from the fact that HI(t)
is a piecewise constant function taking the values in the set of bounded
operators. The resulting family s) is strongly continuous in ~} and
satisfies (3.1) on for all but finitely many s.

Similarly define the unnormalized Schwinger functions for the theory
with an external field.
Let

If ~i 1  ~  ... and /i, .... ~ are two-component test functions
we put

..., ~ /.) = U ( - 00, /,)... Q,~),
where .p# is either 03C8 or 03C8 at time zero. If (t1, t2, ..., tn) E then we put

..., ~~) = sgn ..., f3.2)

where 7r is the permutation that puts ~ ..., ~ in increasing order.
...,/2m E L2(1R2) g) (:2 and have bounded supports. We put

--’~fM~/M+l~ ’’-?/2~)

where the test functions f1, ... , , f’m correspond to the fields 03C8 and the test
functions ~+1, ...,~~2014to the fields Vi.
To calculate the Schwinger functions we prove some lemmata.

Vol. XXX, nO 3 - 1979.



200 E. P. OSIPOV

Let 03C8(f) = 03C8(+)(f) + 03C8(-)(f) be the decomposition of 03C8 in the creation-
annihilation operators and let ( . )t be the operator on C8&#x3E; (:2 such
that -

LEMMA 3.1. - Let t  s, then

where is the integral operator in Q9 ([2 with the kernel x - y)«~
and ( )tr denotes the transpose (i. e., the adjoint) of an operator in L2(1R) 8&#x3E; ([2.

Proof of Lemma 3.1. - Let us consider the case of an annihilation operator.
Let us write the commutation relations

Using the fact that is a piecewise constant function, we apply the
Trotter formula writing it in the following form

where the factors in the product are ordered from left to right in corres-

pondence with the increase of r and where

and

Commuting j 03C8(-)(f) to the right and , using the commutation relation (3 . 4)
and o (3.5) we obtain

Annales de l’Institut Henri Poincare - Section A



201THE YUKAWA QUANTUM FIELD THEORY

Since the convergence in (3.6) is uniform in s, t for boun ded s, t, s)
is strongly continuous in s, t and the operator ~((S(t - is strongly
piecewise continuous in r, so taking the limit in the right side of (3.7) we
obtain the statement of the lemma.

In the same way we consider the case of a creation operator. Lemma 3.1

is proved.
Lemma 3.1 implies the following assertion

LEMMA 3.2. ..., E L2(R2) 8&#x3E; (:2 have bounded supports.
Then

Here ,f I m+ a denotES that the corresponding fermion field is missed, S is the

integral operator in L2([R2) (8) ([2 with the kernel S(s - t, x - y)aa and
( )tr denotes the transpose (i. e., the adjoint) o, f’ an operator on L2(1R2) (8) C2.

Proof of Lemma 3.2. we write + ~~ ~(,fi(t~))
and, using eqs. (3.2), (3.3), the commutation relation of Lemma 3.1, we
commute ~t+ ~ to the left and -) to the right. It is easy to see that as a
result we obtain eq. (3.8). Lemma 3.2 is proved.

LEMMA 3.3. Let the operator 1 + 03BBSV be invertible in L2([R2) (8) ([2
and let 66 : _ (nO,!, U( - oo, 0. Then the operator

is the integral operator in Qx (:2 with the kernel

~ u~ t)v )L2(~)@C2 = u ~ r~ U)ICo u~ v E L2(~) (8) ([2,
is the duality on L2(R) Q ([2, i. e., bilinear (rather than sesqui-

linear) form.
The kernel D(s, t) is strongly continuous in (s, t) for s ~ t. The jump at

’ 3.3. - Lemma e 3.2 implies that

If 1 + ÂSV is invertible, then 1 + is also invertible. The above

equality implies that

Vol. XXX, n° 3 - 1979.
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This representation and o the strong continuity of the Euclidean propagator
s)  s imply the statements of Lemma . 3.3. Lemma . 3.3 is proved.

LEMMA 3.4. Let A be the ’ Hilbert-Schmidt operator. Suppose that g
is an entire , unction such that 0 = a and

for ~hose /M some neighbourhood q~ zero , for which 1 + ~A has
a bounded inverse. Then

Proof of Lemma , 3.4. - The proof of the lemma . is analogous to the
proof of Lemma . 4.1 of Gross [16]. Lemma o 3.4 is proved.

LEMMA 3.5. - SV is a , Hilbert-Schmidt operator in Q9 (:2 and

Proof of Lemma 3.5. It is evident that the kernel of the operator SV
is square integrable and, hence, SV is a Hilbert-Schmidt operator in

L2(1R2) (8) ([2.
To prove Lemma 3.5 it is sufficient to prove that 66 is an entire function

of the coupling constant ~, and that for sufficiently small in absolute value
complex ~,

Then the assertion follows from Lemma 3.4.
For this purpose let us consider the operator A = ((1 + S)V

supposing that the operator (1 + exists as a bounded operator.
Then we show that the operator A satisfies the conditions of Lemma 4.6 [7~].

Since

SV is Hilbert-Schmidt, ( 1 + is a bounded operator, so A is a trace
class operator.
By Lemma 3 . 3 both D(s, t) = [(1 + t) and S(s - t) have

a (strong) jump of - Yol at t = s. Thus, the operator

is strongly continuous in (s, t). Thus, for any compact operator C, R(s, t)C
is norm continuous in (s, t). Writing v as a product of two functions we see
that the operator V(t) is a product of two Hilbert-Schmidt operators, and,
hence, is a trace class operator. For each given t we may find a compact
strictly positive operator C(t) such that V(t) = C(t)W(f), where is

trace class. Let = 1, ..., n, be the distinct nonzero values of V(. )

Annales de l’Institut Henri Poincaré - Section A



203THE YUKAWA QUANTUM FIELD THEORY

is piecewise constant and is trace class for all t. But then

is piecewise continuous in (s, t) from 1R2 into the space of trace class opera-
tors and is continuous in s into this space for each t. This verifies hypo-
thesis (b) of Lemma 4.6 [16]. The hypotheses (a) and (c) are also fulfilled
since t) ~ II is bounded in  and t.

Thus, applying Lemma 4.6 16 we have

Then, Lemma 4.4 [16] implies that

Let Ut, u2, ... be an orthonormal basis in (8) C2 and

Since V(t) is trace class for each t, the series

converges in operator norm and is equal to the operator HI(t). The equality
follows from the fact that these operators satisfy the same commutation rela-
tions with ~(/), and because of irreducibility of the set of the operators

Now

Lemma 3.3 implies that the last expression may be written in the form

Vol. XXX, nO 3 - 1979.
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Integration over t and eqs. (3.9), (3.10) imply the equality

(1 + is invertible for small |03BB|, thus, this equation holds for all 03BB
in some neighbourhood of zero. We apply Lemma 3.4 to conclude the proof
of Lemma 3.5. Lemma 3.5 is proved.

LEMMA 3.6. - If (1 + bounded inverse in L2([R2) (8) (:2, then

Proof of Lemma 3.6. Lemma 3.6 follows from the statements of Lem-
mas 3.2 and 3.5. Lemma 3.6 is proved.

4. THE PROOF
OF THE MATTHEWS-SALAM FORMULAS

LEMMA 4.1. - The Gaussian measure  is nondegenerate, i. e., rhe only
closed subspace of Q of measure 1 is Q.

Proof of Lemma 4.1. - For the covariance G of the measure may be
written the following expression ( f, g E 

Let be the completion of 9’ Re(1R2) in the scalar product (4.1) (it is
easy to see that + ,u 1 ) -1 is a positive operator in L2(1R; L2(~».
The inequality 0  Cl  /11  c2 n0 and Theorem VI.2.21 [23] imply

that in L2(~; L2(1R))

and

~4 .
Let ~fB 1 be the completion of ~~e((~2~ in the scalar product

Annales de Section A
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The inequality (4.2) implies that

With respect to the pairing

.~ ~ may be identified with the completion of in the scalar product

Thus, with respect to the pairing (4.3)

and so :::&#x3E; g Re(~2).
If, now, a linear subspace A has a nonzero measure, A c Q, then, since

~ is the normal distribution over A :::&#x3E; and, thus, A :::&#x3E; 

and so is dense in Q in Q norm and if A is closed it coincides with Q. Lem-
ma 4.1 is proved.

LEMMA 4.2. - The operator 1 + bounded inverse in

for  almost Q. Equivalently, det2(1 + 03BBSV03C6~) ~ 0 ,u almost
everywhere on Q.

Proof of Lemma 4.2. 2014  is nondegenerate mean zero Gaussian measure
on a separable real Banach space and the proof of the lemma follows
from Lemma 5.4 [7d] and is analogous to the proof of Theorem 5.2 [16].
The equivalence of the invertibility and of the nonvanishing of the deter-
minant follows from Corollary 6.3 [24]. Lemma 4.2 is proved.

Proof of Theorem 2.1. The proof may be given in the same way as
that of Theorem 5.5 [1cS] with Gross’s being replaced by our

etc.

Theorem 2.1 is proved.
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