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A model of atomic radiation

E. B. DAVIES

Mathematical Institute, Oxford, England

Ann. Henri Poincare,

Vol. XXVIII, n° 1, 1978,

Section A :

Physique théorique.

ABSTRACT. - We consider a non-relativistic quantum mechanical

particle in an external potential well, coupled to an infinite free quantum
field. We prove rigorously that with certain cut-offs and in the weak
coupling limit, the particle decays exponentially between its bound states
as predicted by perturbation theory. We also prove the existence of a « dyna-
mical phase transition » for a particle attracted to two widely separated
potential wells and also weakly coupled to an infinite reservoir.

RESUME. 2014 Nous considerons une particule quantique non-relativiste
dans un potentiel, couplee a un champ libre infini. Avec certaines regula-
risations et dans une limite faible, nous montrons que la particule passe
exponentiellement entre ses etats lies selon les predictions de la theorie
des perturbations. Nous montrons 1’existence d’une « transition de phase
dynamique » pour une particule attractee par deux potentiels tres éloignés
et aussi couplee faiblement a un reservoir infini.

§1 DESCRIPTION OF THE MODEL

We consider a single quantum mechanical particle with Hilbert space
~f = L 2(1R3) and Hamiltonian

where

so that HS may be easily defined as a self-adjoint operator on ~ as described
in [11] ] [18].
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92 E. B. DAVIES

We also consider an infinite free spinless boson quantum field, in a

quasi-free state as described in [1]. The single-particle space is r = 
with single-particle Hamiltonian

One has a representation of the CCRs on a Hilbert space.!#’ (not necessarily
Fock space) with a cyclic vector Q satisfying

where

in the momentum space picture, and we assume for definiteness that d
is a non-negative polynomially bounded COO function on 1R3. For the Fock
representation d = 0 and more generally d determines the particle density
for different momenta k. If the reservoir is in a Gibbs state (which is by
no means the only interesting case) then according to [1]

The parameters j8, ,u determine the temperature and density, and we
need   0 to avoid having to consider the phenomenon of Bose-Einstein
condensation [14].
The Weyl operator W(f) is related to the field 03A6(x) defined as an operator-

valued distribution by

The free Hamiltonian Hb on F satisfies

and

for all and 
The Hamiltonian for the interaction between the particle and quantum

field is formally

where 5(~) is the (singular) operator on ~f given as a quadratic form by

For technical reasons we introduce " space 
" and 0 ultraviolet cut-offs in the
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93A MODEL OF ATOMIC RADIATION

interaction term and consider the self-adjoint operator H on Jf 0 ~
defined by 

r

where f is a function in Schwartz space and

and

for another function g in Schwartz space. The original Hamiltonian is
then obtained by letting f and g tend to the delta function at the origin
and letting a -+ oo, but we shall deal only with the regularised Hamil-
tonian H from now on.

Given that at time t = 0 the particle and field are uncorrelated and in
a (mixed) state p and the (pure) vacuum state v respectively, the state of
the particle at time t  0 is

One expects that for small ~, the particle evolution will contain dissipative
terms of order ~,2 and that as ~, gets smaller the dissipation will become
more nearly exponential. The precise result is

where the operator Z on the Banach space V of trace-class operators
on J~ is defined by

with the natural domain [6], and the bounded operator K on V is given
by Eqs. ( 1. 6-1.11 ).

Proof. 2014 The problem is of exactly the type solved in [2] [3] [17], the fact
that ~f is infinite-dimensional being of no importance. The crucial esti-
mate needed is that on the field two-point function

Vol. XXVIII, n° 1 - 1978.



94 E. B. DAVIES

One may show by Fourier analysis that h satisfies

for all x E 1R3 and t E [R. The uniformity of this estimate with respect to x
deals with the space integrations arising from the interaction term because
of the space cut-off. According to [2] [3] Eq. (1.3) holds with

where

and

The influence of the field on the time evolution of the system is therefore

entirely determined by the two-point function h.

§2 ANALYSIS OF THE PARTICLE EVOLUTION

Although unambiguous the interpretation of Theorem 1.1 is somewhat
obscure because Z and ~,2K do not have the same order of magnitude as
~, -+ 0. There are several methods of dealing with this problem [3] [4] [5] [12]
but none of them is directly applicable. If Hs had pure point spectrum
then by [4] the strong operator limit in 

would exist and we could replace Eq. (1.3) by

which has the advantage that Z and K~ commute. We have, however,
to take account of the fact that our HS will generally have both continuous
and discrete spectrum. The following example shows that we cannot
expect K~ to exist in this situation.
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95A MODEL OF ATOMIC RADIATION

EXAMPLE 2.1. - Let ~f = C E9 L 2(1R) and define the operators H
and A by

where

for all x E IR. Then

where ~=1~0. We define the operators Z and K on the space V of trace-
class operators on ~f by

A direct calculation shows that

The last term converges weakly to zero, but its trace remains constant.
Therefore it does not converge in trace norm and K~ does not exist as a
strong operator limit.

Notice that K happens to be a bounded operator on the Hilbert space Jf
of Hilbert Schmidt operators on ~f and that eZr is a unitary group on Jf.

PROPOSITION 2.2.

exists as a limit iri Hilbert-Schmidt norm for all p E f.

2014 We first note from Eq. (1.7) that

where X is a compact operator on ~f. Hence

The term inside { } converges in operator norm as a -+ 0 by [12], so
Ki exists. Similarly K4 exists. Finally K2 and K3 are compact operators
on f so K2 and K3 exist again by [12].
Vol. XXVIII, n° 1 - 1978. 7



96 E. B. DAVIES

The disparity between this Hilbert-Schmidt result and that for the more
physically relevant trace norm means that we have to proceed with some
caution.
We let P be the orthogonal projection on Jf whose range is the discrete

spectral subspace of HS and let Po be the projection

on V. We put P1 - 1 - Po and let Vi = PiV for i = 0, 1. Since P commutes
with HS, Po commutes with Z and we put Zi = PiZ for i = 0, 1. For any
bounded operator L on V we put

LEMMA 2.3. 2014 Both K1 and K4 exist as operators on V and

where X is a compact operator on Jf. The operator norm limit

exists by [12] so K 1 and K4 exist as strong operator limits on V with

By [12] we also have

which implies that

for i = 1, 4. We define

and observe from Eqs. ( 1. 8) and ( 1. 9) that B is a compact operator on V.
To prove Eq. (2.1) we use the infinite Dyson expansion

Annales de l’Institut Henri Poincare - Section A



97A MODEL OF ATOMIC RADIATION

Subtracting from this the similar expansion with A replaced by A~ and
putting
we obtain

Now if pEV and

then it follows from the compactness of B that a(~,) -+ 0 as ~, -+ 0.
By Eq. (2.5) the left-hand side of Eq. (2.1) is bounded by

which converges to zero as /), -+ 0.
The value of the above reduction resides in the fact that by Eqs. (1 4)

and (2 . 2)

where Xa satisfies Eq. (2.3). We now restrict attention to the time evolution
within the subspace Vo of bound states. The assumption of absolute conti-
nuity in the following lemma is known to be satisfied very generally [13].

provided HS has no singular continuous spectrum.
P~oof. 2014 We use the finite expansion

Vol. XXVIII, n° 1 - 1978.



98 E. B. DAVIES

Multiplying on the left and right by Po and using the fact that Z, AB Boo
all commute with Po we obtain the crude estimate

By the dominated convergence theorem it is therefore sufficient to show
that for all T &#x3E; 0

and by the compactness of B even enough to show that for all p in some
dense subset of V 1 and all t &#x3E; 0

The space v 1 is generated by vectors p = ~ ~ ~ ~ ~ ~ I where at least
one of ~, ~ (we henceforth assume it is lies in (1 - By Eqs. (1.8),
(1.9) and (2.4) B has the abstract form

where C(1) and C~ are compact operators on ~f and

Hence for all p of the above form

by Eq. (2.3) and the fact P)~.
By the Lebesgue dominated convergence theorem we are finally left

with proving that ___

Annales de Henri Poincaré - Section A



99A MODEL OF ATOMIC RADIATION

This is a consequence of the compactness of C~ and the fact that 4&#x3E; lies
in (1 - P)~, which is the absolutely continuous spectral subspace of HS
since that operator is assumed to have no singular continuous spectrum.

THEOREM 2 . 5. 2014 If 03C1~V0, 0  To  oo and HS has no singular conti-
nuous spectrum then

where the bounded operator C = commutes with Z and Po.

Proof - Putting Lemmas 2.3 and 2.4 together yields

where

Since p E Vo and Z, A t! and Boo all commute with Po we can replace C1
in Eq. (2.8) by 

!’~I ! A b B . r

The restriction of Z to Vo has pure point spectrum so C = CZ exists by [4]
and we can replace C 1 in Eq. (2.8) by C. Moreover

Eq. (2.7) may be rewritten in the interaction picture using the fact
that C commutes with Z. The result is that if p E Vo and 0 ~ T  oo then

The operator C, which describes both the second order energy level
shifts and the decay of the bound states of the system, may be explicitly
computed from Eqs. (2 . 9) and ( 1. 6) in the same manner as in [2].

§3 LIMITATIONS OF THE THEORY

We have given a rigorous treatment of the decay of a quantum particle
which corresponds to the usual calculations of second order perturbation
theory. It is very difficult to obtain rigorous higher order results, although
some progress is made in [5] [15].
The model we have described can be modified by using a relativistic

quantum field of arbitrarily small positive mass m. The single particle
Hamiltonian S of the field is given in the momentum space picture by

and estimates similar to Eq. ( 1. 5) can be proved by the method of stationary
phase [8] [9].

Vol. XXVIII, n° 1 - 1978.



100 E. B. DAVIES

The removal of the space cut-oif in the interaction term of the Hamil-
tonian H is, however, more difficult.

PROPOSITION 3.1. 2014 If the space cut-off is omitted by putting 
then the integrals defining K are generally not norm absolutely convergent.

Proof. - We take the Fock representation by putting d = 0 so that

We put m = M = 1, f = g and p = t ~ &#x3E;  ~ ). Then according to Eq. ( 1. 7)

The integral whose finiteness is at stake is therefore

Since

is a bounded operator which commutes with space translations and there-
fore with S

because the integrand is independent of t.
The above Proposition does not prove the non-existence of a suitable

operator K but does suggest that considerably different techniques are
needed to deal with the problem without the space cut-off.
We finally comment that one may solve certain problems similar to

those of this paper with a reservoir of self-interacting particles provided
again that the self-interaction has a space cut-off [7].

§4 COUPLING
BETWEEN DISTANT POTENTIAL WELLS

One can study the evolution of a particle attracted by two widely sepa-
rated potential wells and simultaneously coupled to an infinite reservoir
by choosing the system Hamiltonian HS to be

Annales de Henri Poincaré - Section A



101A MODEL OF ATOMIC RADIATION

on H = L 2(!R3), where V is a suitably regular potential, ~a~ = 1 and

As  -+ 0 the point spectrum of HS becomes doubly degenerate and the
eigenvectors of H~ which are either symmetric or antisymmetric with
respect to the operator

become less and less localised in space.
The time evolution with respect to the Hamiltonian H of Eq. (1.1)

when 03BB and  are both very small, should be studied by letting them con-
verge to zero simultaneously but one could not hope to obtain a physically
relevant answer without first removing the space cut-off. For this reason
we consider a modified model which retains many of the features of H
and Hs, at least as far as the discrete spectrum of the latter is concerned.
We take the system space to be

where the spaces represent the separate potential wells. H is provided
with a Hamiltonian Ho with discrete spectrum. Its eigenvalues {03BBn}~n- 1

are supposed to have multiplicity two and to be strictly increasing with n,
and to be associated with eigenvectors en EB 0 and 0 EÐ en forming an ortho-
normal basis ofj’f. The two wells are coupled by a Hamiltonian H 1 defined
bv

where 0  ~3n  {3 for all n so that H 1 is a bounded operator. The system
Hamiltonian

is then symmetric with respect to S where

and the eigenvectors of HS fall into symmetric and antisymmetric pairs

We shall also use the symmetry T on Jf defined by

and the induced symmetry T on V defined by

although T does not commute with Hs.

Vol. XXVIII, n° 1 - 1978.



102 E. B. DAVIES

The system is coupled to an infinite free reservoir of the type already
described, the Hamiltonian on H @ g- being

where " A is a bounded self-adjoint operator on ~ o , f lies in Schwartz

and

for all We study the system in the limit as À -+ 0 and  -+ 0
simultaneously. As  -+ 0 the two system subspaces become more

weakly coupled to each other via and also are coupled to more remote
parts of the quantum field. We show that the asymptotic evolution of the
system depends on the relative speed at which 03BB and  converge to zero.
If we put  = 03BB03B2 where 0  03B2  oo then the time evolution of the system
changes discontinuously at 03B2 = 2. The significance of this « dynamical
phase transition » is explained at the end of the section.
We start by showing that the results of [2] are uniform with respect

to ,u.

then

where the operators Z and K on V are defined by

and Eqs. (4.5-4.10) respectively.

Proof. - We show that the estimates of [2] are uniform with respect
to  by examining the two ways in which  enters the calculations. The
first is via HS for which we use only the estimate

which is valid for all  and t. The second is via the field two-point functions

By an analysis identical to that used for Eq. (1.5) one may obtain the
estimate ..

for all /1, t E IR and i, j = 1: 1. The analysis of [2] [3] now establishes Eq. (4 . 3)
with
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103A MODEL OF ATOMIC RADIATION

and

and

Note that K  depends on  both through h and through HS. For the
rest of the section we suppose that  = 03BB03B2 where 0  j8  oo.

where

for j = 0, 1, the operator K, which is independent is given by Eqs. (4 .13-
4.17) and commutes with T.

Proof 2014 By using the infinite Dyson expansion with the estimate

valid for all ~,, t we find that in order to replace K~ by K in Eq. (4. 3) it is
sufficient to prove that 

-

We examine each of the terms KIA separately. By Eq. (4.4) and pointwise
convergence

Since H1 is bounded

Vol. XXVIII, n° 1 - 1978.
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where

It follows by the Lebesgue dominated convergence theorem that

where

Eq (4.12) is therefore valid with

Finally since Ai commute with T and Ho also commutes with T, it may
be seen that K commutes with T.

where the bounded operator

on V commutes with Zo. Moreover both Zo and K~ commute with T.

Proo, f : Since

and

which converges to zero as ~, -~ 0. We may therefore drop the term 
in Eq. (4.11). Since Zo has pure point spectrum, K exists by [4] and we
may replace K by K~ a in Eq. (4 .11 ).
The case 0  ~8  2 is more difficult because the term is no longer

Annales de l’Institut Henri Poincaré - Section A
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negligible. We shall rely mainly on the following properties ofZo and Zl.
They commute and exp { (Zo + is an isometry for all 03BB, t E IR.
Also Zo and Zt have joint pure point spectrum in the sense that the linear
span of the set of simultaneous eigenvectors is dense in V.

LEMMA 4.4. - If0~2 then for all oee ~2 the strong operator
limit

exists and defines a projection Pa with range

Proof. 2014 Since its right-hand side is uniformly bounded in norm as a
function of ~,, we need only prove Eq. (4.18) when applied to a state p
lying in one of the subspaces Vy . For such p

which converges to fl a~ y0 as ~, -~ 0. The formula

for all p E Vy is sufficient to show both that Pa is a projection and that
its range is Va .
By uniform boundedness it is again sufficient to prove Eq. (4.19) when

03C1~V03B3. If 03B1 = 03B3 then

which converges to zero as ~, -+ 0 uniformly with respect to (1.

Vol. XXVIII, n° 1 - 1978.



106 E. B. DAVIES

LEMMA 4 . 5. 2014 If K is a bounded operator on V then the strong operator
limit

exists and is given formally by

Moreover K# commutes with Zo and If

then

Proof. 2014 In order to prove the existence of K# it is sufficient by the uni-
form boundedness in norm of the right-hand side of Eq. (4. 20) to consider
the case p E Va. If p E Va then

which converges to P03B1K03C1 as À -+ 0 by Lemma 4.3.
The formula

for all 03C1~V03B1 establishes the validity of Eq. (4 . 21) when applied to any p
in the dense subspace

of V. By Eq. (4.21) we obtain

for all p E ~ and hence all p E V by the boundedness of the operators
involved. Hence K# commutes with Zo and Z1. Eq. (4.22) is deduced
from Eq. (4.19).

where the operators Zo, Z1 and K# all commute.
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Proof. 2014 We let ~ denote the Banach space of all norm-continuous
V-valued functions on [0, To], with the 
Given p E V we define f in E by

Since Zo, Z1 and K# commute our problem is to prove that

The equation

implies, upon substituting = r and ~,2s = (1, that

which may be rewritten as an operator equation

on Similarly the equation

may be rewritten as an operator equation

on ~.
We show that converges in the strong operator topology on E to H.

Since are uniformly bounded in norm it is sufficient to show that

when g lies in the dense set of continuously differentiable functions from
[0, To] into V.

Integration by parts yields for such g

which by Eq. (4.22) converges uniformly to

Vol. XXVIII, n° 1 - 1978.
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The strong convergence of ~~ to ~f as ~, -+ 0 implies that

for all g and integers n  0. Since are integral operators of Volterra
type the solution of Eq. (4.23) is

where

for some constant c independent of n. Eqs. (4.24) and (4.25) imply that

as required. 
" "

We say that a state p E V is an asymptotic equilibrium state if for all

THEOREM 4. 7. 2014 If 0  ~i  2 the asymptotic equilibrium states p are
precisely those for which

If 2  {3  oo they are those for which

Proof - Suppose 0  /3  2. By Theorem 4 . 6 every solution of Eq. (4. 26)
is an asymptotic equilibrium state. Conversely if p is an asymptotic equi-
librium state then

This implies the weaker result

for all 0 ~ to  oo, which can be reduced to

Therefore Zop = 0, and Eq. (4.28) can be rewritten in the form
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