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1. INTRODUCTION

The concept of symbol of difl’erential or pseudodifferential operator
(p. d. o) is useful in finite dimensional analysis. The concept of p. d. o. is
implicity contained in the work of Weyl, Wigner and Moyal for the phase
space formulation of quantum mechanics of systems with a finite number
of degrees of freedom. It seems therefore useful to elaborate a symbolic
calculus in infinite dimensional analysis in view of its application in quan-
tum field theory (Q. F. T.).

(*) Supported in part by the National Science Foundation under the grant GF-41958.
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42 P. KREE AND R. RACZKA

There exist an important discontinuity between the finite and the infi-
nite dimensional analysis :

i ) In finite dimensional analysis, a central role is played by Lebesgue
measures. On the other hand, in infinite dimensional analysis, the Lebesgue
measure does not exist, and we have to use Gaussian measures or their
generalizations ;

ii) The basic variables characterizing symbols in finite dimension are
x and ç, (or q and p). In infinite dimension, the complex variables z and z’
corresponding to symbols of creation and annihilation operators respec-
tively, are most convenient ;

iii) The theory of distribution is most convenient for majority of appli-
cations in finite dimension. In infinite dimensional analysis, it seems more
convenient to use analytical functionals or profunctionals.

In this paper we extend the Wigner-Weyl-Moyal formalism to systems
with infinite number of degrees of freedom. The main tool used here consists
on convenient triplet of spaces

centered on the Fock space Using the L. Schwartz-Grothendieck
kernel theory, we give an effective characterizations of an extensive class
of bounded and unbounded operators in F(X") with the domain D, in terms
of their symbols. In addition, we give also an effective characterization
of an extensive class of linears maps from D to its antidual ’D. The present
formalism allows to control the regularity properties of operators in Q. F. T.:
analysing merely the symbols one may easily verify when non cutoff limit
of operator remain in the Fock space or when becames merely a sesqui-
linear form on D.

In Section 2 we develop a convenient formalism of integration theory
on infinite dimensional spaces. Then in Sec. 3 we elaborate a theory of
analytical functionals and profunctionals of exponential type and we
discuss the properties of Borel transform in infinite dimensional spaces.
In Sec. 4 we develop a theory of kernels and symbols of operators and
sesquilinear forms for quantum mechanical systems with finite number
of degrees of freedom : this theory allows to give a full characterization
of the class of all bounded operators, unbounded operators and sesqui-
linear forms whose domains contain the space Exp ~n in terms of their
kernels or symbols (cf. Propositions (4.20) and (7.1)).

In Section 5 we present a new theory of integral representations for
unbounded operators and sesquilinear forms for systems with infinite

number of degrees of freedom. The main difficulty in the extension of the
Wigner-Weyl-Moyal theory to the interacting quantum system with

infinite number of degrees of freedom consists in the lack of an effective
measure theory on infinite dimensional spaces. In order to overcome this
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43KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

difficulty we introduce a concept of profunctionals and prokernels which
generalizes a concept of a measure. Using these concepts and introducing
an analogue of a Gelfand triplet D c H c D’ we develop a theory of inte-
gral representations of unbounded operators and sesquilinear forms, which
is parallel and equally effective as the corresponding theory for systems
with finite number of degrees of freedom. After experimentation with
prodistributions and various spaces of profunctionals we found that most
effective technique is provided by the theory of analytic functionals. Conse-
quently we stated main results in this language.

Section 6 contains some applications of the theory of integral represen-
tations of operators in the theory of ordinary and generalized quantization
of classical systems with infinite number of degrees of freedom. Finally
in Section 7 we discuss interesting connections between symbols and ope-
rators. In particular we derive an effective criterion for checking when a
given classical dynamical variable Q/e. g. total hamiltonian of a physical sys-
tem in Q. F. T./leads to an operator in the carrier space with D(Q) = Exp XC
and when it leads to a sesquilinear form only. We think that this criterion
will be very useful in quantization theory of classical interacting systems.
We give in Section 8 several examples from quantum field theory for
illustration of main results of our work see also [26] [27].

2. INTEGRATION THEORY WITH RESPECT
TO A PROJECTIVE SYSTEM OF MEASURES

(2.1) NOTATION

Let X be a real Hilbert space and XC its complexification. Let 
be the set of all finite dimensional subspaces of X. The inclusion relation
between subspaces of X induces a following order on J : for every pair
i, j E J of indices there exists k E J with k  i and this means
that Xi and XJ. Let si be the orthogonal projection of X onto Xi
and sij the restriction of si to Xj (if i  j). A function 03C6 : X ~ C is called

cylindrical if there exists j E J and a function ~p~ on Xj such that ~p = ~p~ ~ ~;
the subspace X j is called a basis of ~p. The space of cylindrical polynomial
functions on X will be denoted by the symbol Polcyl (X). The space of conti-
nuous cylindrical functions on X with exponential growth will be denoted
by the symbol CExpeyi (X).

(2.2) PROMEASURES
A promeasure ,u on X is a family of bounded measures on the

spaces Xj such that == ~c~ if i ~ ~; ,u has an exponential decay if ,u~
has an exponential decay for any j :

Vol. XXVIII, n° 1 - 1978.



44 P. KRÉE AND R. RACAKA

Such  defines a linear 03C6~ on CExpeyi (X) which we shall some-

times represent by the abusive symbol For example the Fourier

transform of the canonical gaussian promeasure v on X is the following
function on Xc, with z = x + iy; x and y E X

Here the symbol z2 means in fact (z, z) i. e. the bilinear extension of the

quadratic form ~x~2 on X.
A subset K c J is called cofinal if for any j E f, there exists ~ ~ ~

kEK
A promeasure  = is known if we know only the coherent family

where K is any cofinal subset of J. For example the gaussian pro-
measure v’ on X~ (considered as a real space), is defined by the family

of the following gaussian measures on the finite dimensional com-
plex subspaces of X":

(2.6) REALIZATION OF A CYLINDRICAL PROBABILITY

Let m = cylindrical probability on X : m is a promeasure
such that all mj are probability measures. A realization {03A9, 1:, P, 
of m is defined as a probability space (Q, 1:, P) and a family 0 ~ Yj
of random variables (r. v.) such that

b) The completion T of the 6-field T with respect to P is generated by
the r. v. ~..

For any realization {Q, !, P, (~’~) ~ of m, a complete description of the
complex Lebesgue classes and an algorithm to compute integrals
uniquely in terms of m, are given below.
(2.7) For each j E J, let E j be a dense subspace of the Lebesgue class 
and let E~ _ ~ ~p~ ~ f~ E E 

Then generates a dense subspace of 1 ~ p  oo . This
j

follows directly from (2 . 6 . b).

(2.8) DEFINITION OF L~ FOR 1 ~ /7 ~ 00

Let L~ be the vector space of family of elements t/1 j E such that

Annales de l’Institut Henri Poincare - Section A



45KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

Remarks. i) Condition b~ means that for every Borelian subset ~3 of Xj

This means also that is the conditional mean of t/J with res-
pect to see for example [8].

ii) Condition (2. 8 . c) is empty if p &#x3E; 1, because any set of r. v. bounded
in Lp is uniformly integrable if p &#x3E; 1.

iii) The space L~ has a natural structure of normed space and can be
defined directly with rrc, without any realization of m. Because conditioning
is a contraction in Lp for any p (1 ~ p ~ oo) and because (2 . 6. b), the
sup in (2 . 8 . a) is in fact a limit for p  oo .

(2 . 9) THEOREM([79] [7~]). r, P, be any realization of the

cylindrical probability m on the Hilbert space X. For any g in with
1 ~ p ~ oo and any j, let ~p~ = be the conditional mean of g with
respect to the random variable f~.

a) Then the map

is isometric and bijective.
b) Moreover (~p~ ~ -~ ~ strongly in if p  00 and -~ ~

weakly for any 
This can be proved by a compacity argument or using the martingale

theory. For more details and extensions, see [18].

(2.11) COMMENTARY AND COROLLARY

a) Because is complete, Lm is a Banach space.
b) Part a) of (2 . 9) states that any 03C6 E can be represented by the

promeasure Hence an element (~ e L~ ~ can be identified
with the corresponding promeasure on X. Then the element (~p~)~ of Lm
is written symbolically ~(~).

c) Lm c L~ p. For p  oo, the antidual of Lm is with
+ p’ -1 - 1. For the antiduality will be symbo-

lically written ~p, ~ )&#x3E;.

d) For any g E and any j, we have

Vol. XXVIII, n° 1 - 1978.



46 P. KREE AND R. RACZKA

and this gives a simple method of computation of integral of function
defined on the infinite dimensional space Q.

e) Let K be a subset of J which is cofinal. Let m’ - (mk)k and let Lm-
be the space of family of elements Lmk satisfying conditions a), b),
c) of (2. 8) but only for i and j in K. Then L~ is isometric to 

f ) A « function » cp = in Lm will be called cylindrical if there exists jo
such that ~pi = for jo. The subset K of J consisting of
indeces i ~ jo is cofinal in J, and moreover

We have also 
1

g) With notation of f ) let g be the element of Lp’(Q) corresponding to
the cylindrical functional cp = T, P, is any realization

of m. Let t/1 = (~~)J in L~ not necessarily cylindrical and let h be the corres-
ponding element of By Holder inequality By a well
known property of conditioning we have

Then applying (2.12) we obtain

This gives a very simple formuls for computation of if cp or 03C8 is

cylindrical with a basis Yj. The Segal space L2(X) of wave representation
of free quantized scalar field is the Lebesgue class L2(X) corresponding
to the canonical normal promeasure v = on X.

We now introduce the Segal Bargman space F(X’) = of the

corpuscular representation, using the following results of infinite dimen-
sional holomorphy.

(2.15) INFINITE DIMENSIONAL HOLOMORPHY

Let Z and Y be two complex locally convex Hausdorf spaces, and let Y
be complete. The space HG(Z, Y) of Gateaux holomorphic functions

on Z, valueted in Y, is the space of functions ~ : Z -~ Y, entire on each
one dimensional subspace of Z : see [15]. The subspace H(Z, Y) of holomor-

phic (or entire) functions on Z, consists of functions in HG(Z, Y) which
are continuous.

Annales de l’Institut Henri Poincaré - Section A



47KERNELS AND SYMBOLS OF OPERATORS IN QUANTUM FIELD THEORY

We set HJZ) = C); and H(Z) = H(Z, C). If Z is a Banach space,
then for any 03C8 E H(G), and any zo E Z, there exists s &#x3E; 0, such that the
Taylor series of 03C8 at points Zo converges to 03C8 in the ball ~ z - Zo II  s;
if a function 03C8 E HG(Z) is locally bounded, then 03C8 E H(Z) : see [25]. In the
following considerations, Z is obtained from a real locally convex Haus-
dorf space X by the complexification : Z = XC. An antiholomorphic func-
tional on Z is by definition a holomorphic functional on the conjugate
space Z of Z ; such functional is denoted in the following 

(2.16) DEFINITION

Let p &#x3E; 1. be the space of Gateaux antianalytical functions 03C8
on XC such that

where denotes the restriction of 03C8 to XI and where v’ is the canonicat

gaussian promeasure of X‘ : see (2 . 2). Note that p  pl implies

(2.18) PROPOSITION

a) The space is isometrically embedded in the Lebesgue class
b) For any 03C8 E and any z E XC hotds the following reproducing

pro pert y

c) Each 03C8 in entire.

Remarks on (2.19). i) Using (2.13) it can be shown that the cylindrical
function (exponential) _.

belongs to with p-l + ~ ~ = 1. The integral part of (2.19) must
be understood as explained in (2 .11. f ) : the integral means the anti-

duality pairing between 03C8 E Lp and ez E Then (2 .19) can also be written
in the form

ii) Let {Q, T, P, be any realization of v’. Contrarily to the finite
dimensional case, the reproducing property does not hold for any z in Q
but only for z in xc. Then the general formalism of [6] needs one improve-
ment for its application in the infinite dimensional case.

iii) The L2 norm of ez is exp 1 z 2 Coherent state z used in finite
Vol. XXVIII, n° 1 - 1978.
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48 P. KREE AND R. RACZKA

dimensional models for quantum optics are in fact normalized exponen-
tials :

Proof of (2.18). 2014 a) In view of (2.8) and of the definition of 
it is sufficient to prove that for any 03C8 in the family (03C8i) is coherent.
For example if S21 denotes the canonical projection z2) ~ Zl of C2
onto C, it is necessary to prove that

Using polar coordinates this follows from the mean value property applied
to the function z2 ~ Z 2’ 0) at point z2 = 0

The same proof holds in the general case using convenient orthonormal
basis and the L. Schwartz convention of multiindices.

b) Because ¿ is cylindrical the integral in (2.19) can be computed
using (2.14). Then the proof of (2.19) is reduced to the one dimensional
case, and this case was treated by Berezin [5].

c) Using (2.15) it is sufficient to prove that 03C8 is uniformly bounded
on any bounded subset of X~. This follows from (2.19), using Holder
inequality.

(2.22) COROLLARY

a) If p = 2, and if X~ is finite dimensional, a Taylor expansion gives

where !)~~(0)~ denotes the Hilbert Schmidt norm in the symmetrical
completed tensor product QX’. Then (2 . 23) holds also in the infinite
dimensional case because

This proves that F(X‘) is isometric to the usual Fock space.
b) and 03C8 in F(X‘) we have

Annales de l’Institut Henri Section A
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Symbolically, this means that the identity map of Fock space can be written

c) The result of Berezin used in the proof of (2 .18 . b) can be slightly
extended :

For any 03C6 antientire on Cn such that

the following reproducing property holds

(2.26) THE PROBLEM

The following isometry is known in the finite dimensional case [3]

This holds also in the infinite dimensional case but the integral must be
understood as a sesquilinear pairing between and

If an orthonormal basis is chosen in X, e maps the cylindrical functions
on X associated to normalized Hermite polynomials

onto the cylindrical function on X~ associated to the following monomial
on Cn

We want to analyse the properties of unbounded operators in L2(X)
or and also unbounded operators of the space Lm(X) where rn is the
interacting measure of promeasure. It turns out that convenient formalism
can be elaborated with the help of a certain generalized Gelfand triplet
D c L2 c D’ similarly as in case L2(IRn). We take as the space D a certain

Vol. XXVIII, n° 1 - 1978.
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space of analytical functions on e. g. D = Expcyl (X’). The choice of
test functions in Expcyi is motivated by the formal relation correspond-
ing to the wave representation for exponents of creation and annihilation
operators . m n __ ... ~_ ..

and also by the following property

(2.28) PROPOSITION

The map () defined in (2 . 26) is a bijection between (XC) and Expcyl (X’).

Because E Expcyl eXC) is transformed by () into a cylindrical
function with the same basis, XC can be chosen finite dimensional and
identified to C" :

where the multiindices notation of (2.27) is used. Using the generating
function of Hermite polynomials one obtains

Utilizing the Cauchy formula one deduces from 
estimates for all derivatives of ~p

Then

and finally

Conversely it must be shown that if ~ E Exp then cp = 0-14&#x3E; belongs
also to Exp (~n). This follows directly from the inversion formula for 0
transform : _

3. ANALYTICAL FUNCTIONALS AND PROFUNCTIONALS
OF EXPONENTIAL TYPE

To define the normal representation and the diagonal representation
of an operator in F(X’) a concept of generalized measure is needed, even

Annales de l’Institut Henri Poincaré - Section A
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in the finite dimensional case. Prodistributions and distributions [19] [18]
can be used in the infinite dimensional case in a way to extend well known
results if dim X is finite. It seems more convenient to use a complex exten-
sion of the theory of measure, because this extension permits to pass very
naturally from gaussian measures to Feynman pseudomeasures [17].

(3.1) BACKGROUND IN MEASURE THEORY

If Y is a vector space and if 8 is a locally convex topology on Y, (Y, 8)
denotes the corresponding topological vector space, and (Y, 8)’ denotes
its dual. If X is a completely regular space, denotes the space of
bounded continuous functions ~p : X -~ C. Let j8 be the unit ball of 

The space M(X) of bounded Radon measures over X is the space of bounded
complex measures of the borelian 03C3-field of X such that for every 8 &#x3E; 0
there exists a compact subset K of X such that |m| (X/K)  8. Let tk be
the topology of uniform convergence over all compact subset of X. The
strict topology! over is the finest locally convex topology on 
which agrees with tk on /3. It can be shown [11] that M(X) can be defined
as the dual of the locally convex space !).

(3.2) INTRODUCTION OF WEIGHTS

We shall use the strict topology on spaces of continuous functions in
order to obtain a topology on spaces of entire functions. In view of the
fact that any entire function c~ is unbounded, we introduce a weight, in
order to allow growth of cp at infinity. Let Z be a real Banach space and
let m be a positive integer. The space CExpm (Z) is the space of continuous
functions ~p on Z such that sup exp ( -  oo . This space
has a natural unit ball ~3m, a topology tk, and it can be equipped with a
strict topology im. The dual MExp’m (Z) is the space of Radon measures ,u
on Z such that

The space C Exp (Z) = C Expm (Z) is the space of continuous func-
m

tions on Z with exponential growth. It can be equipped with the topology
9 = lim 03C4m. The dual M Exp’ (Z) of (C Exp (Z), 8) is the space of measures 
with exponential decay, i. e. measures satisfying (3.3) for any m. If in the
preceeding definitions the weights exp are replaced by the weights
exp z 112) we obtain instead of C Exp (Z) and M Exp (Z) the spaces
C Exp2 and M Exp2 (Z).

Vol. XXVIII, n° 1 - 1978.
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(3.4) ANALYTICAL FUNCTIONALS OF EXPONENTIAL TYPE

Let Z be a complex Banach space and let Exp Z be the topological
subspace of (C Exp (Z), 0) consisting of entire functions. The dual Exp’ (Z)
of Exp (Z) is called the space of analytical functionals of exponential type
over Z.
The Hahn-Banach theorem implies the following.

(3.5) CHARACTERIZATION OF Exp’ (Z)
Let T be a linear form defined over a dense subspace of (Expcyl (Z), 0).

Then T E Exp’ (Z) if and only if T can be represented by an exponentially
decreasing Radon measure on Z.

(3.6) FOURIER TRANSFORM FT

For every (eZ’ the function z -~ exp ( - J=1 zQ belongs to Exp Z
where z~ denotes the bilinear duality from between Z and Z’. Then FT is
defined by the following function on Z’

where the integral has only a symbolic meaning. It can be shown that FT
is entire of nuclear type on Z’ and that the map T -~ FT is injective [17]
at least if Z is separable and has the metric approximation property ;
these hypothesis will be assumed below.

(3.8) IMAGE BY A LINEAR MAP

Let Z and U be two complex Banach spaces, and let ~, be linear conti-
nuous map Z -~ U. For T E Exp’ (Z) the analytical functional ~,T on U
is defined by

for every 1/1 E Exp (U). This implies the following relation between the
Fourier transforms of T and ~,T

where ~,’ denotes the transpose of /L

(3 .11) Product with an element ~ E Exp (Z).
The product ~T is defined as in the distribution theory by the formula

for any 03C8 E Exp (Z).

(3.13) TENSORIAL PRODUCT

Let Z1 and Z2 be two complex Banach spaces and Z = Z1 x Z2. Then
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the tensorial product of the two linear forms associated to T 1 E Exp’ (Z1)
and to T2 E Exp’ (Z2) is a linear form on the subspace E = Exp(Z1)~Exp (Z2)
of Exp (Z). The subspace E is dense in Exp Z ; indeed if T E Exp’ (Z) is

orthogonal to E then the Fourier transform T = 0 and T = 0. If
M Exp = 1, 2 represents t~ then J11 (x) ,u2 E M Exp (Z) repre-

sents ~,. In view of (3 . 5) (Z); we write ~, = T 0 T 2’ There is a
Fubini-L. Schwartz formula

for any 03C6 E Exp (Z).

(3.15) REMARKS

i) The preceding theory holds for any kinds of weights on the complex
Banach space Z. For example for any p &#x3E; 0 we can define the space Exp p (Z)
of entire functions ~p on Z satisfying the estimate

The corresponding space of analytical functionals will be denoted by
Expp (Z). In particular, for p = 1 we obtain Exp’ (Z).

ii) For T E Exp’ (Z) the Borel transform BT of T can be defined by

Comparing with (3.7) the following relation is deduced

Exactly as the concept of promeasure extends the concept of Radon
measure the concept of analytic functionals of exponential type will be
generalized in the following manner :

(3.16) ANALYTIC PROFUNCTIONALS OF EXPONENTIAL TYPE

Let Z be a complex Hilbert space and let be the family of finite
dimensional complex subspaces of Z. The space Expcyl (Z) of cylindrical
entire function on Z with exponential growth can be considered as the induc-
tive limit of spaces Exp (Zj). Then Expcyl (Z) can be equipped with the
lim topology. The space Exp’cyl (Z) of analytical profunctionals of exponen-
tial type is defined as the dual of Expcyl (Z). Equivalently, is the
space of linear forms T on Expcyl (Z) whose restrictions to each Exp (Z)
are represented by an element of Exp’ (Z~). The result of the action of T on
03C8 ~ Expcyl (Z) is symbolically written in the form

Vol. XXVIII, n° 1 - 1978.


