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Green’s functions

for theories with massless particles
(in perturbation theory)

Philippe BLANCHARD (1) and Roland SENEOR (2)

Ann. Inst. Henri Poincaré,

Vol. XXIII, n° 2, 1975,

Section A :

Physique théorique.

ABSTRACT. - With the method of perturbative renormalization deve-
loped by Epstein and Glaser it is shown that Green’s functions exist for
theories with massless particles such as Q. E. D., and /L ~2" : theories.
Growth properties are given in momentum space. In the case of Q. E. D.,
it is also shown that one can perform the physical mass renormalization.

RESUME. - A l’aide de la methode de renormalisation perturbative deve-
loppée par H. Epstein et V. Glaser on montre l’existence des fonctions
de Green pour des theories comprenant des particules de masse nulle
telles que l’électrodynamique quantique et les theories ~: ~2". On
donne des proprietes de croissance dans l’espace des moments. Pour
l’electrodynamique, on montre qu’il est possible d’effectuer la renorma-
lisation de la masse à sa valeur physique.

I. PRELIMINARIES

1. Introduction

Notations are those of [1]. Any change will be explained.
It has been shown in [1] that for in Y(1R4) the various field ope-

(1) C. E. R. N., Geneva and University of Bielefeld (W. Germany).
(~) C. E. R. N., Geneva and Centre de Physique Théorique, Ecole Polytechnique,

Paris.
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148 P. BLANCHARD AND R. SENEOR

rators g) exist as tempered valued distributions
on the domain Di 1 and possess aU the required properties in the sense
of formal power series in the The nth order expansion coefficient of such
an operator is of the form

which we denote, shortening the notation

We want to show that the « adiabatic limit » when

A being a constant, of the vacuum expectation value of (I .1.1 ), always
exists in the sense of tempered distribution in the variables X.

In fact, in order to recover after the limiting procedure all the proper-
ties of Green’s functions we need to study the adiabatic limit of the vacuum
expectation value (v. e. v.) of the nth order expansion coefficient of pro-
ducts of T products:

which will, from now on, be shortened in

In particular, v. e. v. of T products, retarded and advanced functions, and
Wightman functions can be expressed in terms of such monomials (I .1.2).

2. The starting point

The starting point in the study of the adiabatic limit for operators as
(I.1. 3) is to study F-(X, Y) = (0, Y 1 (9(X)O) =  Y 1 (9(X) &#x3E; and to
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149GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

compare it with F+(X, Y) = ( Y t (Q is the vacuum state). F +
and F- have respectively advanced and retarded support properties
relative to the Y variables

More Dreciselv

for a least a mapping u : ( 1, ..., I Y I) - (1, ...JXD. (1’~-~)
Those two cones are opposite, closed and pointed at the origin.
On the other hand, using the « arrow calculus » it can be shown that

the « absorptive part » can be written:

F+(X, Y) - F-(X, Y)

where the sum extends over a finite number of commutators.
Now, noticing that a monomial yi i ... I can be expressed

as commutators of advanced (or retarded) products with respect to the Y’s,
of order (in Y) less or equal to n, we see that, knowing Y i [or Y J 
for I Y  n, the absorptive part (2.3) is known for I Y [ = n.

Remark. - At this level, Epstein and Glaser [2], adding the spectral
condition and its consequences in momentum space, are able, in the case
of a minimal non-vanishing mass, to deduce the existence of the adiabatic
limit.

However, in the case of a particle with a zero mass, troubles appear in
the use of the spectral condition. Before going on let us give a more precise
meaning to : « adiabatic limit ».

3. The adiabatic limit

DEFINITION. - A distribution T E 9"(~N) satisfies an adiabatic norm
oj’ degree 5, i~ f ~ 0  5 and if ~ there exist constants C ~ 0, M ~ 0 such that
j’or every ~p E 9’(~N) one has

From this definition follows Lemma 1.

LEMMA 1. - If a distribution T E satisfies an adiabatic norm
(I 3 . 1 ), then for every tp(x) E the adiabati c limit

exists and is a distribution in cp of the form given by (3 . 2), where L is a constant
inde pendent of qJ.

Vol. XXIII, n° 2 - 1975.



150 P. BLANCHARD AND R. SENEOR

Proof: In order to prove the existence of the adiabatic limit is suffices
in view of

to prove the existence of the integral for 8 = 0. In fact, we will show that

( T(x), :1] is absolutely integrable at ~ = 0.

We have

Now, applying (1.3.1)

which, therefore, is integrable since b &#x3E; 0.

Thus, by a well-known theorem, the adiabatic limit is a tempered dis-
tribution S:

Now, we want to estimate

For simplicity we treat the case when b  1. Then (1.3.3) can be written

The first term is bounded by

and

Annales de l’lnstitut Henri Poincare - Section A



151GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

The second one is bounded by

Therefore,

and taking the limit E - 0

Now, let us choose a fixed element h(x) E g(~N) such that h(o) = 1, and
apply this inequality to ~(x) = We get

Setting L == ; S, h ~, this proves the lemma.
The definition given here for the adiabatic norm in position space coin-

cides with the one given in momentum space in [2]. This equivalence is
shown in the mathematical appendix.
However, the existence of a massless particle will force us to work not

only with adiabatic norms like (1.3.1), but also with norms like

where D - 1 measures the lack of convergence towards an adiabatic limit.
Equivalently, to such norms correspond, in momentum space

as can be shown following the techniques developed in the mathematical
appendix.
Having given a precise meaning to what we call an adiabatic limit, we

can now present the principle of the proof.

4. The principle of the proof

The proof is based on a double inductive procedure acting on the length
I X of X and on the length Y j of Y. Let us go into details.

Let s and n be two fixed non-negative integers and suppose that for

we have proved the existence for Y i [or Y ~ (9(X)] of an adiabatic
norm (in Y), (1 . 3 . I ).

Vol. XXIII, n° 2 - 1975.



152 P. BLANCHARD AND R. SENEOR

The method requires two steps.

and have to show that it satisfies the adiabatic norm.
Let us remark that this difference is expressed (1.2.3) with monomials

of only two types :
a) there are only the y’s; then the length is less than n;
b) there are y’s and x’s; then I X = s and the length of the y’s is less

than n, thus only a part of the inductive hypothesis is useful.
Second step. - We have to recover ( Y i (9(X) &#x3E; [or ; Y ,~ ] from

the absorptive part. This is accomplished as in [1] through a cutting pro-
cedure (with a suitable Lu function), and we have to show that  Y i (9(X) &#x3E;
satisfies the adiabatic norm (in Y).

Let us make another remark. Cases 0 and 0 will appear
to be quite different. When X ~ = 0, we have support properties in all
the variables and the cutting procedure is exactly the one described in [1].
But when 0, we only have support properties in the Y’s and these
properties depend on the X’s (as parameters), therefore, the cutting pro-
cedure has to be modified. On the other hand, when I X = 0 we can restrict
ourselves to connected terms, since at each order (starting from I Y = 1 ),
the vacuum contribution (as intermediate state) can be neglected in the
absorptive part. But for 0, ( (9(X) &#x3E; and  Y i (9(X) &#x3E; have no
reason to be connected; however, in the absorptive parts (2. 3), the vacuum
contribution, as intermediate state, can be neglected and we have always
to deal with connected products.

5. Outlines

There are two parts. The first one deals, in a relatively complete way,
with the case of Q. E. D. or similar theories. No gauge conditions are used,
however, Stora [3] and the authors have shown that it is possible to
construct T product satisfying such kind of conditions. The second one is
related to ~: c~ 2" : theories where 0(X) is a zero mass field, which is treated
as an example to show how such methods can be extended to other cases.

II CASE OF QUANTUM ELECTRODYNAMICS

1. Introduction

1.1 NOTATIONS

The notations are nearly the same as in [1]. However X being a set of
variables {x1,...,x|x| }, j(X) will be the set of indices which numbers
the x variables.

Annales de 1’Institut Henri Poincaré - Section A



153GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

We also denote by T(X, Y) any kind of Steinmann monomial of the
form yi 1~.. I (9(X) where (9(X) is a product of T products. This
notation is due to the fact that any such monomial can be expanded in
a sum of T products and what we will say applies to each term.
To specify the theory we define as in [7] ] multi-indices r = (r1, ..., rn),

r; = (r; , rf , r~) where
1 is associated to 03C8} fermion fields2 is associated to 03C8 

fields

3 is associated to A photon field;
and r{ = (a(, = 1 or 0 and a~ are the spinor or tensor indices (here
ll{ = 1, 2, 3, or 0).
An operator Tr(X) with a{ = 1 can be understood as « coming » from

a Lagrangian at point xi which is a derivative of the interaction Lagrangian

= ~ with respect to the /~ field.
u

We can also represent graphically the vacuum expectation value ( T,.(X) ~
3

of Tr(X), I X = n, as a « diagram » with n vertices external
lines : more precisely, with i = 1

As a tempered distribution in the relative variables ( is singular
at the origin of order

as it was shown in [1].
Remark also that in Q. E. D. the only diagrams which are singular at

the origin with 0 are

where 2014 stands for photons and - for fermions.

According also to Furry’s theorem, (T~(X) ~ vanishes identically

Vol. XXIII, n° 2 - 1975.



154 P. BLANCHARD AND R. SENEOR

We will now present briefly which kinds of difficulties occur when we
are dealing with massless particles.

1.2 DIFFICULTIES

As we have seen in the preliminaries, the method consists in finding
properties of the difference

for [ Y X! [ = ,s, knowing the properties of ( Y i 1F(X) ) for I Y I ~ 11 - 1
and s.

Now consider one of the commutators in (II. .1. 1 ). It is a sum of terms
of the form

with 0.

According to the Wick’s theorem each term is a sum of terms like

By going into momentum space we will see more easily their structure.
Using the invariance by translation one defines the Fourier trans-

form p) of  Tr(Y, X) ~ by

if I Y I = n and I X = s ( ~ 0). When s = 0, one chooses qn to be the omitted
variable.

(~) From now on, omitting the spinor indices, we will use r) instead of ~.

Annales de 1’Institut Henri Poincaré - Section A



155GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

Then (II.1.2) becomes, up to a ~~4~ function

with Y’ ~ = v, Y" ~ - ,u, ~c + v = n and (i 1, ..., is a mapping
of (1, ..., j) into (1,...,~+5-1).
One sees in this formula that, due to the b~4~ function, tr(q, p) is a dis-

tribution which « vanishes » for I  m if one of the intermediate states
(or particles) has a mass m J which is non-zero. In this case one can easily

be convinced that, tested the distribution p) f ( p)dp
satisfies an adiabatic norm in the q variables. 

Therefore, we should distinguish two cases whether there is or not a

massive particle in the intermediate states. Going back to position space,
we must therefore control the behaviour at infinity in the y’s variables

1.3 THE SPINOR CALCULUS

All estimates are related to the coefficients in the y matrices expansion
of the different quantities which appear in the theory, and, therefore,
except in Section 4, we omit any reference to the spinor indices.
To estimate a given term (spinorial quantity) we can take any of the

norms used in matrix calculus. Here, for simplicity, we take an upper
bound of the coefficients. For example, in any estimate (*), 5~(p; m)(p + m)
will be replaced by C3 + ( p ; tn)( 1 

2. Diagrams with photon external lines only

We first define an index of divergence (infra-red) which measures, in
momentum space, the behaviour at the origin (or at infinity in position
space) for such diagrams. We then deduce a norm which takes into account
this behaviour and show by induction that it is satisfied by the absorptive
parts and preserved by the cutting procedure.

2.1 THE INDEX

We require from this index to be compatible with a) a renormalization

(~) ~(p;~)=0(po)~ -~).

Vol. XXIII, n° 2 - 1975.
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at the origin of the photon self-energy and of the photon-photon scattering
diagrams; b) the internal structure.

Let us explain this last point. Suppose a diagram G is made of two dia-
grams G1 and G2 linked by I intermediate photons

Roughly, the behaviour at the origin (in momentum space) will be the
product of the behaviour at the origin of G1, G2 and of the phase space.
This last quantity behaves like ~,2I-4. The index will be the worst of the
number we get in this way by looking at all internal possible connected
structures. Noting D(G) the index of G, we shall get

therefore, the index D(G) has to satisfy

According to this definition D(G)  0 means that G diverges at the origin.
If now we specify statement a) by a’) the photon self-energy has to vanish

twice at the origin, a") the photon-photon diagrams have to vanish at the
origin, we arrive at the result (perhaps not the best)

where p is the number of external lines (here photon lines). With the exam-
ple of Figure 1

and

since I ~ 1 (we work with connected products !).

2.2 THE INDUCTION AND THE NORM

We are dealing with vacuum expectation values (v. e. v.) of operators Tr(Y)
with rij = 0, i = 1, 2, j = 1, ..., |Y|. These v. e. v, are tempered distribu-
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157GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

tions depending on relative variables. We choose the following set

çj = = ~ ’ - ’J I ~ I (ÇIYI = 0 and when we will speak about
the ç variables we omit and note the v. e. v. by Fr(ç) of F(~). The induc-
tion will run on the length of Y I.

INDUCTION HYPOTHESIS. - Let 1 Y I be less than n, r~ = 0, i = 1,2,jEJ(Y);
then for each distribution Fr(ç) there exist three constants, C, K, E, K &#x3E; 0, E &#x3E; 0

arbitrari l y small such that for any cp E 1 »

In formula (II. 2. 3), the fact that max (0, D) results from the hypo-
theses a’) and a") of 2.1. Indeed, for the self-energy D = 2, and 2,
means that the Fourier transform of Fr( ç) vanishes twice at the origin.
In the same way, for the four-photon diagrams D = 1 and I ex I ~ 1 means
that the Fourier transform of Fr(ç) vanishes at the origin. This is explained
with more details in Appendix B.
One can check formula (II . 2 . 3) for low orders. For example, when Y = 2,

the only photon diagram which will enter in the construction of terms of
order three, is the photon self-energy. But, in momentum space, it is ana-
lytic in a neighbourhood of the origin; it has, therefore, -an--adiabatic limit
which, after renormalization, can be chosen to be zero; the same can be
done for the first derivatives, Therefore, it satisfies, at infinity, in position
space, the growth indicated in formula (II .2.3). At the origin, the growth
results from [7].
Our next step is to show that, starting from the induction hypothesis,

the adiabatic parts satisfy (II . 2 . 3) for I Y = n.

2.3 THE ADIABATIC PARTS AND THE NORM

According to Section 11.1 I we have to find a norm for a distribution of
the form

where

Vol. XXIII, n° 2 - 1975.
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Then two cases appear: either one of the intermediate « particles » has
a non-vanishing mass, or they all have a zero mass.

a) Zero mass case
All the 43 (x ; m~) have mj = 0. The are equal to one. We

define, as in Ref. 1 ), the following set of variables

and the mappings j - u’( j) and j - u"( j).
Then, (II.2.4) becomes in this case

where F(~) stands for = By the induction hypothesis
F’(ç’) and F~~’) satisfy (II . 2 . 3). As in Ref. 1 ) there are two cases.

We apply in this case the second tensor product rule. The indices of F’
being D’ and w’ with

the indices of F" being D" and with

the indices of A+ (see Appendix A) being D’" = - 2 and ro’" = - 2, one
gets, after applying twice this tensor product rule, that (II.2.5) satisfies
(II.2.3) in the variables ç’, ~’, ~ with indices D and 60 given by

and, E &#x3E; E’ + E" and 03B4  03B4’ + b" - 1 , where E’, 3 ’ and E", b" are the num-
bers associated respectively with F’ and F" in formula ~II.2.3~.

Annales de /’ Institut Henri Poincaré - Section A
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with M = 21 + We can replace, since M &#x3E; 1, Bcz(t,17) by Ba(t, 0)
and we have the following estimate : for any 0, 0  0  1, there exists a
constant C~ such that

This results from the fact that for any 8, 0  8  1 there exists a constant A~
such that

I.V .. I ~ .I. i It) v m-w

Let now cp~~’, ç", 11) E and define as in [1] ]

According to the second tensor product rule

On the other hand

Now, we have to estimate

Vol. XXIII, n° 2 - 1975.
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with w = w’ ~- cv" + 21 - 4, E &#x3E; E’ + E" since 0 can be chosen close to
one and 0’ to zero. Then (II.2.9) is bounded by

Consider now the case when ( ç’, ~’, ~ ~ I &#x3E; 1, then (II. 2. 8) is bounded by

Using formula (II.2.2) the exponent is

since I ~ 2 and choosing 0" such that 0 + 0" = 1.
Then (11.2.8) is bounded by

Moreover, max (2/, 2/ + D’ + D") &#x3E; max (0, D) because of formula
(II.2.2) and we obtain

b) One the masses is non-zero
With the same notations as in a) and applying the first tensor product [1] ]

rule

with

and t/1 defined as in a).
Since one of the masses at least is different from zero we need better

estimates on the derivatives of R(t,1]). We set
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l3 being the number of photons, /1 + l2 being the number of fermions

Since one of the particles is a fermion Po &#x3E; m, and

Since (see [1]) is bounded by {Po)2~-48{p2 _ m2)O{Po). We need another
estimate. If one has

one can replace by

To estimate r~) one has to get a bound for

exists, for any value 0, 0  0  1, a constant Co such that

Applying this result to ~II.2.15) we obtain

Now, we can estimate

Vol. XXIII, n° 2 - 1975.
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and

Consider now

p will be fixed fater. We introduce now, a function 03BD(~), 0  v  1,

v E C’~ f~4 )~ v = 0 ~ ~~~1~~ 1 v = 1 )) q )  1 and write

with = v2(~) = 1 - and J = J’ 1 + J2.

a) Estimate with J;. We replace in this case ri) by ri) and
Jy (t) is equal to 

’

and the corresponding term in (11.2.17) is bounded by

but

with E = 1 - 0 + r/ + ~ and we can choose B &#x3E; s arbitrarily close to e.

Therefore, (II.2.20) is bounded by

Annales de l’Institut Henri Poincaré - Section A



163GREEN’S FUNCTIONS FOR THEORIES WITH MASSLESS PARTICLES

and

with

The corresponding term in (II.2.17) is bounded by

since 1 2  II ç’, ç", 11 II 2. Moreover, since the external lines are pho-2

tons and one of the internal line is a fermion, it means that there are at
least two fermions as intermediate particles. Then 03C90  6 &#x3E; D, the maxi-
mal value of which is two, and (II.2.22) is bounded by

/3) Estimate with Jy . We write Jy (t) as

and the corresponding term in (11.2.17) is bounded by

which is
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