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On relativistic multiparticle kinematics
in invariant variables

A. GHEORGHE (*), D. B. ION (*) and El. MIHUL (*)
Joint Institute for Nuclear Research, Dubna, U. S. S. R.

Ann. Inst. Henri Poincaré,

Vol. XXII, n° 2, 1975,

Section A :

Physique théorique.

ABSTRACT. - A complete system of algebraic constraints on the Gram
matrices of four-momenta and an analytic reconstruction of any finite set
of four-momenta from their Gram matrix are established. The physical
regions and phase-space volume elements in general invariant variables of
both exclusive and inclusive multiparticle processes are also given.

1. INTRODUCTION

The purpose of this work is to extend some previous analyses [1]-[6] of
relativistic multiparticle kinematics in invariant variables. The present
approach is essentially inspired by certain old algebraic results of Jacobi,
Hildenfinger, Frobenius, Gauss and Weyl.
The paper is organized as follows. In Section 2, we present two kinemati-

cal rules for the Gram matrices of finite sets of four-momenta. The first rule
gives a complete system of Gram determinantal equalities and inequalities
which guarantees that a real symmetric n x n matrix is a Gram matrix
of n four-momenta. The second rule represents a concrete analytic recons-
truction of any finite set of four-momenta from their Gram matrix.

In Section 3, we apply the above kinematical rules to a description of the
physical regions of both exclusive and inclusive multiparticle processes in
general invariant variables. As applied to this description, some algebraic
and geometric properties of the considered physical regions are discussed.

(*) On leave of absence from the Institute of Atomic Physics, Bucharest, Romania.
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132 A. GHEORGHE, D. B. ION AND EL. MIHUL

On the other hand, a convenient unified scheme for finding the ranges of
several useful sets of invariant variables is established and the phase-space
volume elements are determined with respect to this scheme.

2. KINEMATICAL RULES FOR GRAM MATRICES

We first establish a complete system of algebraic constraints on the Gram
matrices of n four-momenta.

It is convenient to start with some notations. The four-momentum q is
written as q = (qO, q) _ (qo, ql, q2, q3). The Minkowski scalar product of
two four-momenta q and q’ is given by qq’ = qOq’O - -qif (with the nota-
tion (q)2 = qq for the Lorentz square of q).
The Gram matrix of the four-momenta q 1, ... , qn is defined by

If U = (uij) is a real symmetric n x n matrix, the minor of U with all
rows and columns deleted except for the i 1, ... , ih th lines and ji , ... , jh th
columns is denoted by

We also use the following notations :

where, for any real number a, sgn a = 1 if a &#x3E; 0, sgn a = 0 if a = 0, and

sgn r:1 = - lifa0.
Let us now state the following rule :

RULE 1. Let U be a real symmetric n x n matrix. Then the following
statements are equivalent:

a) there exist n four-momenta such that U is their Gram matrix;
b) U has at most one positive eigenvalue and at most three negative eigen-

values ;
c) r = rank U ~ 4 and in the case r &#x3E; 0 there exist some indices

il, ..., ir E { 1, ..., n ~ such that 0 and

Annales de l’Institut Henri Poincaré - Section A



133ON RELATIVISTIC MULTIPARTICLE KINEMATICS IN INVARIANT VARIABLES

Proof. Several parts of the above rule are well-known [5]. Suppose
that c) holds. Let v denote the number of all indices h such that = 0 ;
1 ~ h  r. According to a remark of Poon [5], the implication c) ==&#x3E; b)
represents Jacobi’s rule if v = 0 and Hildenfinger’s rule Moreover,
we recall that the implication c) ==&#x3E; b) for v = 2 represents a rule of Fro-
benius (for Jacobi’s, Hildenfinger’s and Frobenius’ rules see the full sec-
tion 3 from [7], Ch. X). The only remaining case is v = 3. Using (6) and the
conditions of (7), we obtain (JÏ2(U) = o~f/U) = 2014 1 and = 1.

Then (5) holds if the indices il, i2, i3, i4 are replaced by i2, i3, i4, ii, respec-
tively, and the case v = 3 is reduced to the cases v = 0 and v = 1. Hence c)
implies b).

Suppose that b) holds. Then it follows from the canonical diagonalization
of a real symmetric matrix that there exist a real orthogonal n x n matrix
Q = and a real diagonal n x n matrix D = such that U = QDQt,
~11 ~0. 0, = 0, 2 ~ i ~ 4, j &#x3E; 4 (see, for example, [7], Ch. X,
§ 5). The symbol t denotes the matric transpose. Let us denote

j - 1 - (~ i J 11/2 . - 1, ... , n ; j = 1, 2, 3, 4. Then U is the Gram matrix
of the four-momenta ql, ..., qn. Hence b) implies a).

In order to prove the implication a) =&#x3E; c), we introduce certain

orthogonal bases for the linear subspaces of the Minkowski space. The basis
{ ei, ... , ed ~ is called a standard basis if the four-momenta el, ..., ed

satisfy the following relations :

where h, h’ = 1, ..., d and 1,0,1}. There exists a standard basis
for any nonzero linear subspace N of the Minkowski space. Indeed, if N is
d-dimensional, then there exists an orthogonal basis {f1, ...,fd} for N such

1)2, h = 1, ..., d - 1 [8]. It is easy to see that if two four-
momenta are linearly independent and their scalar product is equal to zero,
then at least one of these four-momenta has a strictly negative Lorentz
square. Then we can define ei = fl if ( fi)~ = 0 and eh = ( fh)2 I -1~2 f~ if
either h &#x3E; 1 or h = 1 and ( fl)2 ~ 0. Therefore { el, ..., is a standard
basis for N. Notice that if E  0, then (q)2  0 for any q E N. Hence e = 1
when d = 4 (in this case N is the whole Minkowski space of four-momenta).
It is clear that d  4.

Suppose that U is the Gram matrix of the four-momenta ql, ..., q~.
Let N be the linear space spanned by the four-momenta ..., qih, where

il, ..., ih e { 1, ... , n ~. If ... = ~ = 0, then U = 0 and it is obvious
that the implication a) =~ c) is trivial. Therefore we can suppose that d &#x3E; 0.

Let { el, ..., be a standard basis for N. We introduce the d x d matrix
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V = 1  j, jf  d, and the h x d matrix T = 1 ~ k  h,
1 6 j 6 d, defined by

The Gram matrix of the four-momenta qii, ..., qih is U’ = TVTt. If
..., qih are linearly dependent, then it is obvious that

(- 1)h-1 det U’ = 0. Moreover, we have rank U’ 6 4 and,
in particular, r = rank U ~ d 6 4. If qil, ..., qih are linearly independent,
then h = d, det T # 0, and (8) implies (el)2. In the case

r = h = 4 one obtains = det V = 1 and (6) holds. If r &#x3E; 1,
we choose il, ..., ir. e{ 1, ..., n ~, 1  r’ ~ r such that 0
and consider that h E ~ 1, ... , r’ - 1 ~. Then the four-momenta ..., qir,
are linearly independent and the linear space N’ spanned by ..., qih d 1
admits a standard basis {~, ..., el2+ 1 ~ with ~il , , , ih + 1(LT) - (e1~2- Since
N is a subspace of N’, el is a linear combination of ~i, ..., and (8)
implies (ei~2 &#x3E; (el)2. Hence (5) holds for the choice r = r’ .

Suppose next that r = r’ &#x3E; 2 and = 0. It is clear that

(qi1)2 = qi1qi2 = 0. Since qii and qi2 are linearly independent, we have
(qz2)2  0 and (7) also holds. Hence a) implies c) and Rule 1 is proved.

Let In denote the space of all Gram matrices of n four-momenta. Any
Gram matrix U satisfies both assertions b) and c) of Rule 1. Moreover, it
follows from the proof of the implication a) ==&#x3E; c) that

for any ...,ir,E{ 1, ... , n } such that 0.
The space In is completely defined by the polynomial equalities and ine-

qualities given by (5)-(7) and the condition rank U ~ 4. If n &#x3E; 4, the last
condition is equivalent to the following kinematical constraints of Asri-
bekov [2] :

where 1  ...  i5  n and 1 6 ji 1  ... n.

According to a result of Weyl, any identity with respect to the coefficients
of U is a consequence of (11) (see, for example, the full section 17 from [9],
Ch. II). Moreover, according to a result of Kronecker [10], the condition
rank U = r is equivalent to the following relations :

for some it, ..., ir E{ 1, ..., 
Annales de l’Institut Henri Poincaré - Section A
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Hence a real symmetric n x n matrix U which satisfies ( 12) for r  4 and
the relation 0 for a choice of the indices il, ... , ir E ~ 1, ... , n ~
is a Gram matrix of n four-momenta if and only if (5), (6), and (7) hold.
We recall that Rule 1 for any Gram matrix with positive diagonal coeffi-

cients has been obtained by Omnes [1] and Byers and Yang [3].
The reconstruction of a set of four-momenta from their Gram matrix

is given by the following rule :

RULE 2. - Consider a Gram matrix U E In with rank U = r &#x3E; 0. Then
there exists a choice of the indices il, ..., ir E { 1, ..., n ~ such that either

7~ 0, h = 1, ..., r, or there exists k E { 1, ..., r - 1 ~ satisfying
the following conditions:

Consider an orthogonal n x n matrix O = such that either O = 1

for 0, h = 1, ..., r, or

Then the matrix U’ - ÔUÔt satisfies the relations o-il .. , ih(U’) ~ 0,
1 h  r. Moreover, U is the Gram matrix of the four-momenta qt, ..., qn
defined by 

’

where j = 1, ... , n ; h = 1 , ... , 4, and the following convention is used:
- = = 1 f h = 1. Here ( 0 1, 2, 3) is a

permutation of(0, 1, 2, 3) such that h = 0 = - 1
and h  if h  h’ ; # o.

Proof. 2014 Since r &#x3E; 0, we can choose the indices ji, ... jr E { 1, ... , n )
such that Gj1...jr(U) # 0 and for h &#x3E; h’. We now
show that there exists a permutation (ii , ... , ir) Of(j1’ ... which satisfies

Vol. XXII, nO 2 - 1975.
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the conditions of Rule 2. According to Rule 1 c), the argument divides into
two cases :

Case I. - Suppose that J # 0, h = 1, ... , r. Then we choose
i~ = j~, h = 1, ... , r.

Case II. - Suppose that there exists k E { 1, ... , r - I ) such that
= - 1 if 1 K h  k and = 0 if k  h K r. Since

G # 0 it follows that there exist two indices h’, h" E { k, ... , r )
such that t -./.. 0 jh". We choose h e ( 1 ... , } .sue a h...jk-tjh’ -r- an lh’  lh". e c oose ’h = lh 1 E ,..., r ,
h’, h" # h, and ik = jh’, ik+ 1 

= jh" ik = jh", 1 
= jh’) if (- 1)k.

is negative (resp. positive). Note that from the identity

(u) _ ~ (D) jGii..ik-iik+i(u)j2i i - 

( l 6 )
it follows that 03C3i1...ik+1(U) = 1. Then (5) implies 03C3i1...ih(U) = 1 if k  h K r .

If k is as in Case II, using (1 3), we obtain

0,1  h  r. Straightforward computations starting
from (15) show that U’ = j, j’ = 1, ..., n (see, for example, the
Gauss algorithm from [7], Ch. II, § 4). Then by (14), we obtain U = 
i, i’ = 1, ..., n, and Rule 2 is proved.
We remark that the implication c) =&#x3E; a) of Rule 1 follows from the proof

of Rule 2. Then from the proof of Rule 1 excepting the implication c) =~ b),
we obtain a direct proof of Jacobi’s Hildenfinger’s and Frobenius’ rules.

Let Inr denote the set of all Gram matrices of rank r belonging to In.
Consider the set of all matrices U E Inr such that 0 for a choice
of the indices i 1, ... , ir e{ 1, ... , n ~ (in the case r &#x3E; 0). Then Rule 2 shows

h = 1, ...,r; ~e{ 1, ...,~}; 7 ~ forh’  h, is a set of

nr - 2 1 r ( r - 1) independent kinematical variables with respect to Inr. Accord-

ing to (15) and the identities

we can choose the independent variables U j j, U ihj with /!=l,...,r2014 1;
j e{ 1, ..., n ~ ; j ~ if h’  h. But the Gram matrix U can be recons-
tructed from these variables only if the signs of i ~r(U’), 1  j  11,
j # ii, ..., ir, are known (see also Rohrlich’s dichotomy from [4]).

Finally, any representative of a Gram matrix is given by the following
completion of Rule 2:

RULE 2’. - For any matrix U E In and four-momenta ql, ..., qn such
Annales de l’Institut Henri Poincaré - Section A
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that U is their Gram matrix, there exists a standard basis ~ el, ..., such

that one of the following decompositions holds :

where d(0  d  4) is the dimension of the linearspace spanned by q 1, ..., qn ;
r is the rank o f U, each ~ i is a real number, = for r = d
and q h-2i for r = d - 1 witlz q1, ..., qn given by Rule 2. The sums from
the r. h. s. of ( 19) and (20) are dropped if r = 0.

Proof. We recall a result of Hall and Wightman [10) : if two sets of

n four-momenta {q1, ..., ..., have the same Gram

matrix U, then there exist a Lorentz transformation A, some real numbers

... , {3~ and a four-momentum m such that

Here A is identified to the matrix (039B 03BD), 0  3, such that the four-

vectors Ih = (039B0 h-1, 039B1 h-1, nuh _ 1, 039B3 h-1), h = 1, 2, 3, 4, satisfy the relations
(/i)’ = - (J 2l2 - - (/3)2 = - (A)’ = 1. fhfh’ = 0, 1 ~ h’  h 6 4,
with the permutation (,uo, pi , Ji2, ~3) of (0, 1, 2, 3) given by Rule 2 with
respect to U. Note that the four-vectors f i , fz, , f3 and f ’4 are linearly inde-

3

pendent. Aq is defined by (Aq)" = 03A3039B 03BDq03BD, 0    3, for any four-

v=o

momentum q.

Suppose that the four-momenta qi, ..., qn are determined by U as in
Rule 2 (in the case r &#x3E; 0). Then by (22), we have

where the sum over h is dropped if r = 0. If úJ = 0 or /3; = 0 for any
i = 1, ..., n, we choose eh = fh, h = 1, ..., r, and (20) holds. In the

opposite case, we set ei 1 - 03A303B2’i2)½ co and eh = fh+1, h = 1, ... , r.

i= 1

According to the proof of Rule 1 a standard basis { el, ... , ed ~ with (e 1)2 = 0
has d  3. Then (21) holds and Rule 2’ is proved.

Vol. XXII, nO 2 - 1975.
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Rules 2 and 2’ give an analytical parametrization of any n four-momenta
with respect to their scalar products, the parameters of the Lorentz group,
and the coordinates of an n-sphere (not all independent).

3. PHYSICAL REGIONS AND PHASE SPACES

Consider a set of n particles cl, ..., cn. By the spectral condition, we
attach to each particle c, a four-momentum p such that

where mi (m; &#x3E; 0) is the mass 
In order to give a general treatment for the usual choices of invariant

kinematical variables (like the multiperipheral momentum transfers squared
and multiparticle invariant masses), we introduce the following four-

momenta :

where the coefficients t ij are appropriate real numbers or functions of the
scalar products qiqj, 1 ~ ~ ~ n.
By (24), the four-momenta q satisfy (25) for some t ij only if either all

scalar products of q vanish or the linear space spanned by q 1, ... , qn has

a standard basis { el, ..., with (el)2 - 1. Then it follows from (20) that
r is the rank of the Gram matrix U of ... , qn and

if G~1...~r~U) ~ 0 and il, ..., ir e ( 1, ..., n~. Moreover, according to (20)
and to the Sylvester law of inertia, (26) holds if and only if U has one positive
eigenvalue (more details can be found in [5]). We denote by I~+ the space of
all Gram matrices U E In such that either U = 0 or U satisfies (26).

Consider now the exclusive reaction

and the inclusive reaction

We suppose that the above reactions are not forbidden. The condition of

energy-momentum conservation gives p = pn for (27) and pO  0, E S

for (28), where p = pi + p~ - p3 -- ~ ~ ~ - pn-1 i and S is the spectrum
of the invariant mass of the unobserved system from (28).
Suppose next that the (n - 1 ) x (n - 1 ) matrix T = 1  /J ~ ~ - 1,

given by (25), is invertible. According to (24) and (25) and using the Gram

Annales de l’Institut Henri Poincaré - Section A
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matrix U of the four-momenta qi, obtain the following
image of the physical region for reaction (27) (resp. (28)) in the space In _ 1 + :

respectively

The region Dn can be decomposed into the subregions Dnr = Dn n In-1r
(each Dnr consists of all matrices U E Dn with rank U = r). By Rule 1, we
have r ~ ~ = min (4, n - 1 ). The case r = 0 holds only when all masses
vanish and all four-momenta are parallel. In the case T = 1, the results of
Jacobson [6] show that each nonvoid subregion Dnr is a connected real

analytic manifold of dimension n(r - 1) - r(r + 1)/2, 1  r  ro. Dnl is
not empty if and only if U ij = 1  i, j  n, and ml + m2 - m3
+ ... + mn i= 0. Moreover, the inverse image of Dn in the space of all
n-tuples of four-momenta is an analytic manifold if and only if Dnr is empty
for r  1. These results persist if the coefficients of T are analytic functions
of the coefficients of U. Note that the closure Dnr of Dnr, 1  r  ro, is not
an analytic manifold, but it is a semialgebraic variety if the coefficients
of T are polynomials of the coefficients of U (i. e. the set Dnr consisting of
all matrices U E Dn with rank U  r is completely defined by the polyno-
mial inequalities and equalities given by Rule 1 c) and (26)). Notice also
that the boundary of the physical region Dn (n &#x3E; 4) is Dnro-1 1 and the

boundary of Dnr is Dnr - 1 (r &#x3E; 2). Finally, we remark that the physical
regions of all channels crossed to (27) can be obtained by replacing
81’ ..., 8n-1 1 in (29) by ± ..., ± 1 except for the cases E 1 = ...
= 8n - 1 and 8 = - E~, j E ~ 1, ... , n - 1 ~, j ~ i, for i ~ ~ 1, ... , n - 1 }
fixed with the mass mi smaller than the sum of the masses ~J 7~ ~ i (i. e. the
decay channel of particle ci).
The region Dn _ 1 can be decomposed into the regions D:-1(M), M eS,

where each D:-1(M) is defined by the r. h. s. of (29) with mn replaced by
M. Hence any region D: - 1 (M) has the same algebraic and geometric properties
as Dn. Moreover, a similar behaviour persists for the union of the regions

with M &#x3E; M~, where M~ is the threshold mass of the continuum.

Vol. XXII, n° 2 - 1975.
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Thus if r &#x3E; 1, the region = In - 1 r (resp. its closure Dn _ 1 r) is
a connected real analytic manifold of dimension n(r - 1) - r(r + 1)/2 + 1

(resp. a semialgebraic variety) provided the coefficients of T are analytic
functions (resp. polynomials) of the coefficients of U. The closure D~ _ 1 of
D;-1 1 is the union of Dn-l(Mc) and D;-l. consists of all matrices
U E D:-1 1 with rank U  ~. Notice that the boundaries of Dn __ 1 and Dj_i 1
{n &#x3E; 4) consist of all matrices U E 1 such that either
U E or rank U  min (4, n - 1).
We now digress a little on phase-space analysis. The phase-space volume

element of reaction (27) is defined by

where P = pi 1 + p~ and the symbols d and 0 denote the usual Dirac and
Heaviside distributions.

Let us consider the following transformation of variables :

where the four-momenta Pi’ qi, qi and are linearly independent and the
four-momenta qi, q’i and q; are differentiable functions of P j, 1  j  i.
Then the Jacobian of (32) is

Here and in the remainder of this paper we shall use the notation

D(Ql, ..., Qh) for the determinant of the Gram matrix of Qi, ..., Qh.
Notice that if

is fixed at a nonzero value (y = ± 1), then (32) is an one-to-one transfor-
mation.

Suppose that _

n-2 
’

Using (32)-(35), the relation

Annales de l’Institut Henri Poincaré - Section A
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and integrating (31) over pn, (pt)2, p3q3, and pn _ 1 qn -1 i (i = 3, ..., n), the
phase-space volume element can be written as

where

The function x gives the ranges of the invariant variables. Thus, if q0i &#x3E; 0,
C~i)2 &#x3E; 0, Rule 1 c) implies

Note that if a function invariant to the connected Lorentz group is

integrated with respect to the phase-space volume element (31), then the
factor 2~’"[0(y3) + 9(- 73)] ... [8(yn-1) + 8(- y~-i)] must be included
in x. However, this factor is not necessary for the estimation of cross-sec-
tions with parity conservation.

If (P)2 is fixed, we have 3n-11 essential invariant variables 
n - 2, 3 n - 1, 4 n - 1. By Rule 2, the

scalar products of ~3,~3, qi, qi, qi (4 ~ i K n - 1 ) are functions of the above
variables. It is easy to estimate these functions in the scheme of Byers and
Yang [3] ~~3 - qi - P ~ ~=~3+.-+~-~ ~k - ~k - 1 ~
4~f,~~M20141;4~~~~2014 2) or in the scheme of Poon [5] (i. e. the

following multiperipheral scheme : q~ - Pj-1; q3 = P; qi = P 2014 p3
- ... -~-i;~ ==~2 -~3 - ". -~-i; 4 ~ ~ ~ - 2:3 ~7~ ~ - 1; 1
4  k  n - 1). Notice that (37) is a simple generalization of the phase-
space volume element of Byers and Yang [3] (see [11]-[13] for some applica-
tions to the results of Byers and Yang). Note also that (37) unifies many
usual schemes [14].

Finally, we remark that the phase-space volume element of reaction (28)
excepting the discrete part of the spectrum is given by dW
(P, m3, ..., m"-1, M ~ M~.

Vol. XXII, n° 2 - 1975.
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