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Physique theorigue.

ABSTRACT . 2014 The treatment of « definite material schemes » in relati-
vistic hydrodynamics by Lichnerowicz ( 1955) is extended to magneto-
hydrodynamics. The new field equations imply that the energy density
is conserved along a Born rigid flow and the magnitude of the magnetic
field vector is constant along an essentially rotational flow. In class one
space-times the scheme degenerates to definite magnetofluid scheme (DMS)
i. e., a self-gravitating definite material scheme in magnetohydrodynamics
with the magnetic field vector as an eigenvector of the stress-energy ten-
sor With conformally flat class one space-times the DMS is compa-
tible while the perfect magnetofluid scheme (Lichenerowicz, 1967) is not
compatible. When the space-time admits a motion, Tab for DMS has
Segre characteristic [3 1] ] or the eigenvectors of Tab are invariants of the
group. When T~ of DMS has the Segre characteristic [3 1 ], Ricci collinea-
tion along the stream lines implies motion but Ricci collineation along
magnetic lines implies motion only if the magnitude of the magnetic
field is an invariant of the group.

2 INTRODUCTION

Modern astronomical discoveries have stimulated keen interest in the

applications of relativistic gravitational fields to astrophysics. Since 1962,
the belief that strong gravitational fields may provide the clue for quasars,
for violent events in nuclei of galaxies, for death-by-collapse of very massive
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stars and for the periodic burst of radio sources has gained momentum
(Thorne, 1968). Indeed the occurrence of magnetic field in solar winds
(Parker, 1964), spiral arms (Hewish, 1963) and sunspots (Wilson, 1968)
emphasize the necessity of relativistic magneto hydrodynamics for the

development of astrophysics.
Perfect fluid schemes are too ideal to describe the astounding complexity

of astrophysical systems. It is necessary to study more realistic schemes.
In fact self-gravitating non-perfect fluid schemes were initiated by Lichene-
rowicz ( 1955) for hydrodynamics. It is imperative to extend this treatment
to magnetohydrodynamics for application to astrophysical systems. The
aim of this paper is to propose such a scheme.

3. FIELD EQUATIONS
FOR DEFINITE MATERIAL SCHEMES

IN RELATIVISTIC MAGNETOHYDRODYNAMICS

The field of a symmetric stress-energy tensor Tab in a domain of space-
time is known as an energy scheme. When Tab admits a time-like eigenvector
then it is called a normal tensor and the scheme is known as a normal scheme.
A normal scheme with positive eigenvalue corresponding to time-like

eigenvector is said to be a material scheme. When the quadratic form
associated with it is positive definite, the tensor T~ is said to be positive
definite. In this case the energy scheme is called as a definite scheme. The
eigenvalues of Tab with respect to the metric tensor gab (with signature -2)
are given by the equation

where

and S1, S2, S3, S4, are the eigenvalues corresponding to the eigenvectors Va,
Wa, Na, Up respectively. Now interpreting the time-like eigenvector as a
flow vector with density as the corresponding eigenvalue we have the
expression for Tab as

Tab = 03C1UaUb + p1VaVb + + 

where pa = - Sa (oc = 1, 2, 3) are the partial pressures. This represents
definite material scheme in relativistic hydrodynamics (Lichnerowicz, 1955).
We define the stress-energy tensor for a self-gravitating thermodynamical

arbitrary fluid with infinite conductivity and constant magnetic permea-
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191DEFINITE MAGNETOFLUID SCHEME IN GENERAL RELATIVITY

bility (i. e., the stress-energy tensor for definite material schemes in relati-
vistic magnetohydrodynamics) as

where

Here p is the energy density, pa (oe = 1, 2, 3) are the partial pressures,
H’‘ is the magnetic field vector, r is the matter density, E is the internal
energy density, i is the enthalpy, S is the entropy, U’‘ is the 4-velocity and

pz = p3 - p we recover Lichnerowicz’s (1967) expression for
the stress-energy tensor for a thermodynamical perfect fluid with infinite
electric conductivity and constant magnetic permeability viz.,

But when 0 we obtain Lichnerowicz’s ( 1955) field equations for
definite material scheme in relativistic hydrodynamics as

The Hawking-Ellis ( 1968) energy condition which is satisfied by all
known forms of matter and all predicted equations of state, is

In fact positive definite character of T~k implies

at a point in Minkowski space and hence

Here (X, /3, ~ are the projections of H’‘ along Vk, Wk, N"‘ respectively.
Incidentally we observe that Einstein spaces are not compatible with

definite material schemes in relativistic magnetohydrodynamics (hence
Vol. XX, n° 2 - 1974.
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forth we call this scheme as general scheme), in particular, and with any
material schemes in general. For, in Einstein spaces (Eisenhart, 1960)

Consequently we have

and this violates the condition (3.9) and hence any material scheme is

incompatible with Einstein spaces.

THEOREM . A necessary condition that definite material scheme in
relativistic magnetohydrodynamics be embeddable in a 5-dimensional
Minkowskian space-time is that the magnetic field vector is one of the

space-like eigenvectors.
Proof 2014 If the Riemannian curvature tensor can be expressed as (Eisen-

hart, 1960)

and

then the space-time ds2 - embedded in a 5-dimensional Min-
kowski space. Let

By virtue of (3.13), (3.14) and Einstein’s field equations we have

where  = From equation (3.2) we get

Comparing (3. 15), (3.16) we have

which completes the proof. This theorem leads us to the consideration
of special schemes described in the next section.

4. DEFINITE MAGNETOFLUID SCHEMES

DEF. A definite magnetofluid scheme is a definite material scheme in
retativistic magnetohydrodynamics when the magnetic field vector is along
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193DEFINITE MAGNETOFLUID SCHEME IN GENERAL RELATIVITY

one of the space-like vectors of the tetrad. It follows that the stress-energy
tensor for definite magnetofluid scheme (DMS) is

when Hk is along Vk. The form of Ricci tensor is

For the sake of simplicity we use the following notations:

By using this notation we get an elegant form of R~k as

« STRESS BALANCE » EQUATION. 2014 As a consequence of the Bianchi
identities we have

as the equation of continuity and

characterising the differential system of stream lines.

MAXWELL EQUATIONS. For definite magnetofluid scheme Maxwell
equations (3.3) reads to

Consequently we have

CONFORMALLY FLAT CLASS ONE SPACE-TIME. From equations (3.15)
and (4.1) we get

Vol. XX, n° 2 - 1974.
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It has been shown by Pandey and Gupta (1970) that if the space-time is
conformally flat and class one then

Therefore equations (4.12) give

From (4.14) we note that for perfect magnetofluid where 
we get 2m = /H/2 = 0. We conclude that a perfect magnetofluid scheme
is incompatible with conformally flat class one space-times while def-inite
magnetofluid scheme is compatible and has Segre characteristic [3 1].

5. PARAMETERS OF SPACE-LIKE
AND TIME-LIKE CONGRUENCES
IN DEFINITE MATERIAL SCHEME

In definite material schemes only two types of congruences exist viz.,
time-like congruence determined by Uk and three space-like congruences
represented by VB Nk. Here we describe the parameters associated
with Uk and Vk by following Greenberg’s ( 1970a, 1970b) formalism

where

The vectors WB Nk, and U‘ should satisfy the transport laws

Consequently we observe the following relations

Annales de l’Institut Henri Poincare - Section A



195DEFINITE MAGNETOFLUID SCHEME IN GENERAL RELATIVITY

By virtue of Maxwell equations the first two relations are satisfied (vide
equations (4.8), (4.9)).
We consider the tetrad vectors (the Latin index denotes coordinate

suffix and Greek index denotes tetrad suffix).
The identification

provides the relationship between the parameters and

We readily get the following results :

(i) Born rigid flow is characterised by :

(ii) An essentially rotational flow is characterised by

(iii) An essentially shear flow is characterised by:

(iv) An essentially accelerating flow is characterised by

(v) An essentially expanding flow is characterised by

SPECIAL FLOWS. 2014 In expansion-free flow equation (4.5) leads to

Hence in the case of Born rigid flow we have

Thus for definite magnetofluid scheme energy density is conserved along
a Born rigid flow while in the case of perfect magnetofluid scheme it is
conserved along an expansion-free stream lines.
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In the case of essentially rotational flow we have

so that (4.11) leads to

i. e. the magnitude of the magnetic field vector is constant along an essen-
tially rotational flow.
The uni, f ’orm flow defined by

is incompatible with definite magnetofluid scheme. This can be established
in the following way : the Ricci identity yields for uniform flow

by virtue of (4.3) and (4.4). But this contradicts the condition (3.12).

COVARIANT CONSTANT MAGNETIC FIELD. - When the magnetic field
is covariantly constant we have

Hence the Ricci identity implies

p - 3P + 2p1 - constant.

Equation (4. 11 ) produces 
T 1 ~C !1

i. e. the flow is expansion-free and hence by (4.6) we get

on contracting with Vk. Thus the field equations for DMS are compatible
with covariant constant magnetic field. In this case the flow is expansion-
free and the longitudinal partial pressure p along the magnetic field vector
is constant along magnetic lines.

6. GROUP OF MOTIONS
AND DEFINITE MAGNETOFLUID SCHEME

In order to comprehend the significance of the field equations governing
the self-gravitating magnetofluid scheme a usual technique is to investigate
the groups of motions admitted by the corresponding space-times. However
« the problem as to which groups of motion correspond to a given type of
gravitational field remains unsolved » (Petrov, 1969). Hence we study the
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converse problem by examining the consequences of certain symmetries
on the metric tensor as well as on the Ricci tensor.

THEOREM I. Let the space-time admits a motion. If the stress-energy
tensor T~k has not Segre characteristic [3 1] then tetrad is an invariant of
the group.

~roof. A space-time is said to admit motion when the functional form
of the metric tensor g~k is invariant under an infinitesimal transformation.

It is well-known that equation (6 .1 ) implies

For DMS the equation reads as

Hence on contracting with UlUk and using (6 .1 ) we get

Similarly contracting in succession with WtW’‘, we produce

On substituting (6.5), (6.4) in (6.3) the equation = 0 yields
"

Similarly other contractions produce

For positive pressures and density the equations (6.17) imply either

or

In the second case we have

Vol. XX, n° 2 - 1974.
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hence Tik has Segre characteristic [3 1]. Thus we conclude that if the stress-
energy tensor has not the Segre characteristic [3 1] the tetrad vectors are
invariants of the group.

Remark. 2014 In spherically symmetric and plane symmetric space-times
the tensor T~~ of DMS has Segre characteristic [3 1].

7. RICCI COLLINEATION

The infinitesimal transformations which leave invariant the functional

form of the Ricci tensor is known as Ricci collineation. Collinson ( 1970)
established the conservation law corresponding to the Ricci collineation
which can be given as

where ~k is any vector.
For « non-Zeldovich » magnetofluid Khade ( 1973) has shown that a

Ricci collineation implies motion. In this section we study the Ricci colli-
neation along the principal vectors of the stress-energy tensor for DMS.

THEOREM II. Ricci collineation along the world line implies that the
streamlines are geodesic and expansion-free for DMS,

Proof - From the definition of Lie derivative we have

From equations (4.8) and (4.9) we observe that

The Ricci collineation along Uk for DMS is expressed through

By Collinson’s conservation law (7 .1 ) we have

Equation = 0 implies
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and hence (7.5) implies

Contracting (7.4) successively with UtWk, UiNk we have

since p + 3P + 2~ 5~ 0. Thus

where p + 3P + 2~ 7~ 0. This condition is consistent with (3. 12).

THEOREM III. - In the case ~ = ~ = ~ - + b - ~2n2 ~ 0
the invariance of Ricci tensor along the flow vector implies the invariance
of the metric tensor.

Proof. 2014 By virtue of (7 . 3), (7. 8) the equation (7.4) on inner multiplica-
tion with WB WiWk, NiNk, VW, V’NB implies

We consider the special case :

first three equations of (7.9) and (7.8) give

Similarly last three equations produce

From equations (7 . 10) and 0 (7.11) we observe ’ that

and 0 hence ’ by (7.8)

Thus

Vol. XX, n° 2 - 1974.
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Remark. 2014 It may be notted that analogous to Theorem II there exist
similar theorems for the vectors Vk, W"‘, Nk. For Ricci collineation along
magnetic lines we have the conditions ~2=P3=~"~~ pi + b - a2n2 ~ 0
and 0.
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