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A generalization of entropy using traces
on von Neumann algebras (*)
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Section A :

Physique théorique.

ABSTRACT. - We show that a normal faithful semi-finite trace on a

von Neumann algebra can be used to define the entropy of a positive ape-
rator with trace one. The usual definitions of the entropy in both classical
and quantum statistical mechanics can be obtained as special cases of
our definition for an appropriate choice of algebra and trace. We discuss
the properties of this generalized entropy. In particular, convexity and
subadditivity inequalities are proved. Counterexamples to those proper-
ties which are not true in general are also given.

I. INTRODUCTION

A number of useful properties are known for the entropy of both classi-
cal and quantum systems ([1]-[6]). Thus far each case has been considered
separately with different definitions, proofs, etc. We will give a more gene-
ral definition of the entropy which includes all the usual statistical mecha-
nical systems as special cases. We then consider the problem of proving
various properties which depend only on the definition of the entropy
and not on the dynamics of the system. In particular, we prove some
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358 M. B. RUSKAI

convexity and subadditivity inequalities. However, only a few « essential »
properties remain true in general and we construct counterexamples to
many others.
The physical significance of many of these properties was discussed

in a recent article [4], and will not be repeated here.
Let T be a normal, faithful, semi-finite trace on a von Neumann algebra ~.

Define a density operator p as a positive operator satisfying T(p) = 1. Then
the entropy associated with p is given by

where {E;.} are the spectral projections of p. Formally log p)
and we often write the formal expression for simplicity.

Classical systems are described by commutative algebras [7]. Although
the trace is not unique in this case, we can always choose to find a trace
so that ( 1.1 ) agrees with the usual definition of the entropy ([1 ], [4], [7]).
Quantum lattice systems are described by the algebra of bounded opera-
tors in a finite-dimensional Hilbert space, and quantum continuous sys-
tems by the algebra of bounded operators on a separable Hilbert space [7].
Again, if the trace is normalized appropriately, ( 1.1 ) agrees with the usual
definition ([2]-[5]).

In order to consider the algebras and entropies associated with diffe-
rent regions, we introduce the concept of a partial trace [8]. Suppose ~1
and ~2 are commuting subalgebras of ~ and that T2 and T are traces

on the respective algebras. Then the partial traces! 1 and i2 are maps
(not necessarily everywhere defined) from 9t into, respectively, ~2 and 1
such that :

( 1 ) If T(A) exists, ii(A) and T 2(A) are defined.

(3) If B is in ~2 , then

For simplicity, we often drop the caret and write 03C41 for 03C41. If U1 and U2
are algebras of bounded operators on separable Hilbert spaces and

it is easy to define such partial traces (by identifying U1 and U1 8&#x3E; 12
by isomorphism) and their properties have been discussed in detail [9].
Similarly we consider partial traces on commuting subalgebras ~1 , 9t~
~3 of.

Annales de l’Institut Henri Poincaré - Section A



359ENTROPY USING TRACES ON VON NEUMANN ALGEBRAS

If p &#x3E;_ 0 in 9t and partial traces into 9ti and ~2 are defined as above,
we write p - 03C112 and define

etc. Then we write S12 and S(p 1 ) -_- S 1 . Similarly, we can
define ~123. p 12 ~ 8123’ S12’ etc. It follows from ( 1. 2) that = 1

implies = 1, so that pi is a density operator if pi~ is.
A summary of the relevant properties of the trace is given in Appendix A.

The convexity and subadditivity inequalities are discussed in part II.

Some miscellaneous properties are considered in III. Counterexamples
to theorems which are true in special cases, but not in general, are given
in IV. The proofs of certain technical lemmas and the theorems in II are
given in Appendices B and C respectively.

II. INEQUALITIES

The proofs of the theorems in this section are similar to the proofs
given for the usual trace on a Hilbert space; however, a number of tech-
nical difficulties make them rather messy. Therefore, all proofs are post-
poned to Appendix C. Convexity, concavity, and weak subadditivity all
remain true. However, Araki-Lieb subadditivity [3] is true only in a weaker
form. In part IV, we will show that this weaker form is in fact the best one
can hope to do in general.

THEOREM 1 (Concavity). - Let p, p’, p" be density matrices with

and let S, S’, S" be the corresponding entropies. Then

In the next two theorems, we use the partial trace and reduced density
matrix formalism introduced above.

THEOREM 2 (Weak Subadditivity) :

THEOREM 3 (Araki-Lieb subadditivity) :

Vol. XIX, n° 4-1973.



360 M. B. RUSKAI

Two additional theorems, which were known for commutative algebras,
have recently been proven ([4], [5]) when ~ is the algebra of bounded ope-
rators in a separable Hilbert space. Unfortunately, the proofs are indirect
in infinite dimensions and these results cannot be proven with the tech-
niques used here. However, we believe they are true and state them as
conjectures. Recent results of Epstein [10], which give new proofs of the
convexity theorems of Lieb [11] ] which were used to prove these conjec-
tures [5], do generalize to finite traces von Neumann algebras. Therefore,.
one can prove these conjectures for finite traces. However, the semi-finite
case is unclear.

CONJECTURE 1 (Strong Subadditivity) :

CONJECTURE 2. - The function from the set of density operators into R
given by P12 -+ (S 1 - S12)(P12 is convex.
The closely related Wigner-Yanase-Dyson ([4], [11]) conjecture is true

even for semi-finite trace. Since the proof is identical to Lieb’s [11] ] we
will not repeat it here. 

’

THEOREM 4. - If 0 ~ p, r  1, and 0  p + r  1 then the function

from the set of positive operators in ~ into R is concave in C &#x3E;_ 0.

III. NORMALIZATION AND POSITIVITY

Many of the entropy inequalities proven previously depend on the fact
that the norm of a density matrix is _ 1. Unfortunately, this is not true
in general. r(p) = 1 and p &#x3E;_ 0 do not imply I 1. On the contrary,
if 8l is a factor of type II, {!! p II : p ~ 0, r(p) = 1 } is unbounded ( 1 ). Fur-
thermore, we will provide examples to show that virtually all inequalities
which use the fact that II p II  1 are not true in general.
We begin by considering the conditions under 1 and

the conditions under which S(p) is positive or negative. Note that although
the condition (a) does not hold in general (in fact it implies the existence
of minimal projections), it is satisfied in certain relevant cases, namely
by the usual trace on a Hilbert space and by an appropriate choice of
trace for the commutative algebra of diagonal operators on a Hilbert space.

(1) To prove this, note that in a factor of type II, there exist projections, E, with arbitra-
rily small trace, e, and let p = (1/E)E.
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361ENTROPY USING TRACES ON VON NEUMANN ALGEBRAS

THEOREM 5:

Proof :
( 1 ~ Note that the following proofs are trivial :

It then follows from the spectral theorem that

This proves ~ =&#x3E; ~ / =&#x3E; g, h.

(3) Finally, assume that (a) holds. Let (ak) be a sequence of numbers
increasing to II let { E(~,) ~ be the spectral projections of p, and

Then pFk and T(Fk)  1 implies

Thus Jim ~= !!p !~ 1.

One might wonder if there is any connection between ~03C112~ and ~ pi ~.
In general there is not. If M = 8li 0 N2, with both factors of
type II ~ , then

is unbounded (2). The best one can do is the following theorem. Unfortu-
nately, the hypotheses can only be satisfied if 1 and T 2(12)  1,
so the result is not of much interest.

(Z) Let E1 be a projection with arbitrarily small and E2 a projection with 
Let P12 ~ E2.

Vol. XIX, n° 4 - 1973. 1 (
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Proof. - Let (J be a sequence increasing to ~03C11~, E(h) be the spectral
projections of and .Fk = 1 - E(Ctk):

Therefore 03B1k ~ [03C41(Fk)]-1/2n for all k, n.
Since [zl{Fk)]-1~2" can be made arbitrarily close to 1,

IV. COUNTEREXAMPLES

We have already remarked that many properties of the entropy in spe-
cial cases are not true in general. We now give a list of counterexamples.
Most of the inequalities we consider are drawn from [3] and [4].

It will become apparent that only those properties which are independent
of the normalization of the trace will remain true in general. Thus, if there
do not exist projections with arbitrarily small trace, it will be possible
to renormalize the trace so that the inequalities remain true. For factors
of type II, however, this is not possible and one can always find a density
matrix for which the inequalities are false.

It is worth noting that the normalization of the trace affects both the
definition of S and p. If ? = ~.~ then i(p) = 1 implies p = ( 1 /~,) p satisfies
r(p) = 1. Thus S(p) ~ S(p) = r(p log p) - log A.
We now give our example. By appropriate choice of algebra one can

make a, b, c anywhere in (0, oo).

EXAMPLE. - Let

and

Let Ei, E2 , E3 be projections in, respectively, ~1’ ~2 ~3 ~ such that:

Let p123 = abc(Ei 0 E2 0 E3).
Then, for example

Annales de /’ Institut Henri Poincaré - Section A
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and

The relative entropies are, for example

and

Thus they have the following properties:

and

and

and

and

and

( 10) Suppose abc = 1. Then

but

unless

and

Vol. XIX, n° 4 - 1973.
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We note that equality in (3) implies that conjecture 1, strong subadditi-

vity, is satisfied in this example for any choice of a, b, c. At first glance ( 11 )
might appear to contradict conjecture 2 since the logarithm is concave;
however a convex combination of such density matrices does not give a
density matrix of the same form. On the contrary (S1- 0 P2) = - S2’
Thus if ~2 == P1 Q9 P2 and p12 - Pi @ P2 , conjecture 2 follows from theo-
rem 1, i. e. the concavity of S2 .

V. CONCLUSION

One of the reasons for studying entropy inequalities is that they can then
be used to prove the existence of the infinite-volume limit of the entropy

per unit volume ([1 ]-[4]). Unfortunately, we can not do this here. The proof
in [3] depends on the inequality S2  S2 3 + S12 which we have shown
to be false in general. A proof of the existence of the infinite-volume limit
would therefore seem to require a general proof of the strong subadditivity
conjecture ([1 ], [2]).

In our counterexamples, those inequalities which fail do so because

the algebra contains projections with arbitrarily small trace. This problem
does not affect conjectures 1 and 2; on the contrary, we have already remar-
ked that they are true if the trace is finite. Furthermore, they are true for
traces on a separable, infinite-dimensional Hilbert space, but a « direct »
proof has not been given. The proof in [5] uses the finite-dimensional result
and a special limiting process. Thus, we are convinced that these conjec-
tures are true for semi-finite traces, but the techniques used here are ina-

dequate for proving them.
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APPENDIX A

A trace t on a von Neumann algebra, 21, of operators on a Hilbert space H is a function,
defined } and extended to the 2-sided ideal, whose positive part
isM~={A:A&#x3E;0 and t(A)  oo }, with the following properties: 

.

We will be primarily interested in traces with the following additional properties.

(A.4) (normal): If {A,} is a bounded increasing net of positive operators, then

(A. 5) (semi-finite) (~): IfA&#x3E;0 and !(A) = oo, then there exists a B such that 0  B  A
and !(B)  oo.

(A. 6) (faithful): r(A) = 0 and A &#x3E;_ 0 ~ A = 0.

One can then show that i has the following useful well-known properties (4):

(A. 8) A - (AB) is ultra weakly continuous for A in 2t, B in M. In particular if Ak is a
bounded net converging to A strongly, then lim r(AB) if B is in M.

(A . 9) T(A*B) 12  T(A*A)T(B*B) if A*B is in M.

(A. 10) There exists a family, (x~), of vectors in H such that

(A .11 ) ) if Ain9t,BinM.

Recently [13], the following useful theorems were proved:

(A. 12) (Golden-Thompson inequality) T(~°)  ’t’(eA!2eBeAl2)
if (a) A, B are self adjoint operators, bounded above, and

(b) A + B is essentially self-adjoint.
Further, if ’t’(aA)  00 or ’t’(eB)  oo then 

(~) This definition of semi-finiteness is valid only for normal traces.

(4) See [12] : Proposition 1, p. 82; Theorem 2, p. 88; Corollary, p. 85; Theorem 8, p. 106.
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(A. 13) (Holder Inequality): If 0  a  1,

(A . 14) (Peierls-Bogolyubov Inequality): If t(eA)  oo, and B is a self-adjoint
operator, bounded above and associated with 2i, then:
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APPENDIX B

Some technical lemmas.

LEMMA 1. - Let A, B be fixed elements of M+ and ~(0, ex)) the space of coo functions on
~(0, (0) with compact support. Then there exists a unique positive measure db) such that

for all cp, ~(0, oo).

Proof. - Let = Then

(i) is a bilinear functional on ~(0, oo);
(ii) if) is positive since if cp &#x3E; 0;

w(cp, p) = 0;

(iii) #) is separately continuous in each variable. Since t(cp(A)] and  00

and convergence of CP0153 - rp in ~(0, oo) - 0, pro-
perty (A. 8) implies 

Thus, it follows from the Schwartz nuclear theorem that there exists an unique distri-
bution T on ~(0, oo) @ ~(0, oo) such that T(cp 0 #) = ~). Now suppose 6~ is a net

in ~( - oo, oo) such that bE &#x3E;- c [ - E, E], and 6~ = 1. Then (see e. g. [14],
p. 166). T is the limit of the regularized distributions, "
which, since (JJ is positive, are positive functions.

Thus, T is a positive distribution and [14] (p. 29, Theorem V) can be identified with a
positive measure ~ on ~(0, oo) Q9 ~(0, oo) such that

Lemma B. 1 can be used to provide a generalization of Klein’s inequality (J[7], Theo-
rem 2.5.2) as follows: If f, g are positive functions ~(0, oo) it then follows from Lemma 1 that

(B.2) 0  f | (da db),f’(a)g(b)[a log a - a log b - (a - b)]" " 
= log A - A log B - (A - B)]g(B)).

Now replace f in (B. 2) by an increasing sequence tending to f"{a) where

Then f’~(A) --~ f"(A) strongly and it follows from (A. 8) that

Vol. XIX, n° 4 - 1973.
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Similarly, repface g in (B. 3) by an increasing sequence

g~(b) tending. to gm(b) where grn(b) :

Then g’(B) and (log B)gl(b) are both bounded nets converging strongly to gm(B)
and (log B)gm(B) respectively. Thus

LEMMA B. 2. - If A, B are bounded self-adjoint operators with 0  A  B, then:

(a) A 1/2 (log A)A 1/2  A 1/2 (log B)A 1/2.
(b) A 1/2 (log B)A 1/2 is a bounded self-adjoint operator.

(c) ( - log B + log ~~ B ~~)I~zA~~2 is a bounded operator where (log B)A 1/2 is defined
to be 0 on the null space of A.

Proof - Let ~(x) = range of x;
~(x) = domain of x

(i) We show ~(A1~~) c 9l(BI/2). If C &#x3E; 0 and x E ~(C)1,  x, Cx ~ = 0. There-

fore Jl(A) c 9f(B) and we can assume without loss of generality that

Now suppose x is in H and y is in .@(B -1/2).
Then

Therefore y -~  ~’~2x, B-1~2y ~ is continuous for all x in H. Therefore (B-1~2)* is defined
on A 1/2 x. Since (B- ~~2)* - B- l2.

(ii) It follows from the spectral theorem that if C is a bounded positive operator, then
C1/2 (log C)C1/2 is a bounded self-adjoint operator with

Furthermore 9l(C1/2) c:  (log C). (See e. g. [15], p. 165, problem 5. 10.)
(iii)  x, log (A + EI)x )   x, log (B + eI)x B Vx in H. (See e. g. [7], Theorem 2. 5.8).
Now suppose x ~ !Ø(A -1/2). Then it follows from the spectral theorem and Jensen’s

inequality that i

 ~ so (B.5) converges to 0 as ~ ~
Then x ~ ~(A" ~~) and the above argument implies
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Since ~(A1~2) c ~(B-1~2), E ~(B-1~2) and a similar argument gives

Thus

which proves (a).
(iv) To prove (b) and (c) note that if jj xjj = 1,

LEMMA B. 3. - Let A E H 1 Qx A 1 - z2(A), and = the null space x. Then

c 

Proo~f: - Let E be the orthogonal projection on Then 0 = AlE = 
Therefore

and EAE = 0 since L 12 is faithful.

Vol. XIX, n° 4 - 1973.
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APPENDIX C

Proof of Theorem 1. - For simplicity, define p = p ~ II and similarly for p’, p".
(a) Let A = p’, B = p in Klein’s inequality (B. 4).

Then

Note that F increases ultrastrongly to F, the projection on 9l(p’), and Gm increases ultra-
strongly to G, the projection on (p).
When (X #- 0.

Therefore F  G.
Now

and

Since ap’  p, it follows from Lemma 2 that (p’)’f2 log p(p’)1/2 and (- log p)li2(p’)1/2
are bounded operators. Thus

Therefore, it follows from (C .1 ) and (C. 2) that

Multiplying by a and combining this with the corresponding expression for p" one gets:

(b) Let A = ap’, B = p in Lemma B . 2,

Combining this with the corresponding result for ( 1 - a)p" and

one gets

(c) The last result follows from the fact that
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Proof of Theorem 2 :

(a) We first note that it suffices to prove the theorem under the assumption ~(~12) == { 0 }.
Although this assumption can not be satisfied in general, it suffices to prove the theorem
for 03C112 in the algebra Q1Q2UQ1Q2 where Q; projects on the range of p;(i = 1, 2). Let

Then

Furthermore, Lemma B. 3 implies { 0 } also. Since Theorem 1 implies

it suffices to assume

(b) We note that inequality (2.5) is unchanged if the partial traces are renormalized

Thus, it suffices to prove the theorem under the assumption that II p12 ( I  I and II ~ 1.

Thus one can assume without loss of generality that - log /?~ 2014 log PI and - log p2
are all non-negative.

(c) Use (B.1) with A = pi~ and B = pip2. Since pi and p2 commute and we have
assumed r~(p;) = { 0}, log B = log pl + log p2 is a densely defined self-adjoint operator.
Thus 

’

where

and

Since the inequality is true for all k, I it is true in lim lim. We consider each term sepa-
rately using properties (A. 4) and (A. 8) repeatedly as in the proof of Theorem 1.

where we have used the fact that

is a monotone increasing net if G~ is an increasing net of projections and - log B &#x3E; 0.

(h) Combining limits gives

Proof of Theorem 3 :

(i) Let a denote any subset of { I, 2, 3 }. We can again assume without loss of genera-

Vol. XIX, n° 4 - 1973.
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lity that = { 0 }, II  1, and - log p~ is non-negative. In particular, it suffices
to prove

(ii) We again use (B. 1 ) but with A = P 123 and

where

and are the spectral projections of PIX’ Note that = { 0 implies that log pZ3
and Xf are densely defined. Since p231 = 0, log p23 + X03C91 is a densely-defined self-

adjoint operator. Since Wi2 is bounded, log B£w is a densely-defined self-adjoint operator
and BEw can be extended to a bounded operator on all of QI Q2Q3H.

(iii) We proceed as in Theorem 2, taking limits as k, I -+ oo and then take limits as E, co -+ 0.
Only the terms involving BE,w [i. e. parts (e) and (g)] will be different.

(iv) Changes in part (e): Define positive measures p, l1y on ~(0, oo) such that

and

where K~ = 1 a; - Recall that we have assumed that - log B &#x3E; 0 and note that

sup. ~p compact implies that - log B~(2014 log B) is a bounded operator which implies

Now

Thus, is uniformly bounded. Furthermore

Since sup. qJ is compact,

and /~y -~ /~ in the vague topology ([76], [77]). Since the vague topology is compact in the
unit ball
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Thus

since

(v) [Changes in part (g)] : First note that it follows from the « Golden inequality » (A . 12),
that

since ~3 exp X~ is in M+. Thus it follows from (A. 8) that

From (C. 17) above we then find
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