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A theory
of relativistic unstable particles (*)

R. RACZKA

Institute for Nuclear Research, Warsaw, Hoza 69, Poland

Ann. Inst. Henri Poincaré,

Vol. XIX, n° 4, 1973,

Section A :

Physique théorique.

ABSTRACT. - The construction of a class of indecomposable represen-
tations of the Poincare group, using the Fell’s formalism, is given. The
application of these representations for a description of unstable particles
of arbitrary spin is considered and various properties of unstable particles
are analysed.

INTRODUCTION

There exist several approaches for a description of unstable particles
based mainly on dynamical models ([1]-[5]). There is, however, a convic-
tion among many particle physicists that a proper tool for describing
relativistic unstable particles would be nonunitary representations of the
Poincare group. ,
One would first consider representations of the Poincare group in an

arbitrary topological vectors space. This problem was analyzed by Flato
and Sternheimer [6]. They showed in particular that any irreducible repre-
sentation of the Poincare group P corresponding to a positive mass m,
realized in a topological vector space is equivalent to a unitary irreducible
representation. Since representations determined by a negative or zero
mass are naturally excluded as possible candidates for a description of
an unstable particle the Flato and Sternheimer’s theorem implies that
only admissible candidates for unstable particles may be representations
of P associated with a complex mass M. Now, if a nonunitary represen-
tation is realized in a Hilbert space H then evidently the scalar pro-

(*) Supported by the National Science Foundation, U. S. A.

Annales de l’Institut Henri Poincaré - Section A - Vol. XIX, n° 4 - 1973.



342 R. RACZKA

duct (u, w), u, w e H is not conserved, i. e., (Tgu, (u, w). On the other
hand, for a probabilistic interpretation we need a sesquilinear (i. e. linear-
antilinear) form which is conserved under the action of group represen-
tation, i. e. by a simultaneous transformation of a physical system w and
a measuring device u (see Section II).
The relativistic covariance of the theory of unstable particles is of fun-

damental importance in our approach: first it compels us to remove the
concept of the Hilbert space from our framework; second, it suggests

1 2

the introduction of a pair of topological the complex
2

linear topological space 4$ contains all physically admissible wave func-
tions of a physical system corresponding to an unstable particle : the

1

complex linear topological space D contains all possible measuring devi-
ces of a physical system. The theory will be relativistically covariant if

1 2

one is able to introduce a sesquilinear form ( . , . ) in 0 x ~ such that a
1 2

representation of g - Tg = ( T g’ T g &#x3E; satisfies

1 2 1 2

A representation g - ( Tg , Tg ) in ( 1&#x3E;, I&#x3E; &#x3E; satisfying the condition ( 1 )
is called sesquilinear system (SLS) representation.

In this work we propose a group-theoretic approach based on the appli-
cation of indecomposable representations of the Poincare group. In Sec-
tion I we give a general construction of induced representations of the
Poincare group using the Fell’s formalism of SLS [7]. Next, in Section II
we construct a class of indecomposable representations of the Poincare
group. In Section III we apply these representations for a description
of unstable particles of arbitrary spin. Finally, in Section IV we present
a discussion of our results and their correlations with other approaches.
For the convenience of the reader, an account of Fell’s theory of SLS
representations is given in Appendix A.

I. NONUNITARY INDUCED REPRESENTATIONS
OF THE POINCARE GROUP

We shall now construct a class of nonunitary representations of the
Poincare group which might correspond to unstable particles. We shall
use the Fell-Wigner-Mackey technique of sesquilinear system of repre-
sentations. For the convenience of the reader we exhibit the basic proper-
ties of SLS representations in the Appendix A. Let G be the Poincare

group G = P = T4 [S] SL(2, C), and let K be the closed subgroup of P
1 2

such that G/K has an invariant measure. Let k - Lk = ( Lk, Lk &#x3E; be a
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343THEORY OF RELATIVISTIC UNSTABLE PARTICLES

1 2

finite-dimensional SLS representation of K in the vector space 4$ = ( ~, ~ ~.
If ~ u, w ~ e 4$ then the sesquilinear form ( . , . ) can be written as

and the SLS representation Lk , by definition, satisfies

Now let D(G) be the vector space of functions ( u(g), w(g) ~ on P with
values in 0, such each component u;(g) or ws(g), i, s = 1, 2, ..., dim L,
is an element of the Schwartz space of infinitely differentiable functions with

. 1 2

compact support. Denote by 4Y = ( 1&#x3E;, I&#x3E; &#x3E; the vector space of all func-

tions  u(g), w(g) ~ E D(G) such that

and

The symbol « C » denotes the operation of taking the contragradient
2

[i. e. for a bounded operator X in 0: XC == (X*)-1]. The vector space of

functions satisfying the conditions (1.3) and (1.4) can be easily constructed.
Indeed, if ( u(g), w{g) ~ E D(G) then

and

satisfy the conditions (1.3) and (1.4), respectively. It is evident from Equa-
tion (1.5) [resp. (1.6)] that w(g) = 0 [resp. û(g) =0] if g ~ SK where S
is the compact support of the function w(g) [resp. u(g)]. Hence if

has a compact support on G/K. Consequently the sesquilinear form

is well defined.
1 2

The action of the SLS representation TL =  TL, TL &#x3E; of P in the
1 2

space 4$ = ( 0, D ~ is given by the left translation

Vol. XIX, n° 4 - 1973.



344 R. RACZKA

The sesquilinear form (1.7) is conserved by the representation g - T;.
Indeed using Mackey decomposition g = bgk, where bg belongs to the
Borel set B c G(B - G/K) and k E K one obtains (g == Xg, G/K - X) :

Because u(g), w(g) E Co(G/K) the map g - (u, TLgw) is continuous. Conse-
quently the map g - TLg = TLg, TLg&#x3E; is an SLS representation of P in the

1 2 2 2

C, induced by the SLS representation k - Lk = ( Lk, Lk ).
The formulas (1.8) and (1.9) give the action of induced representa-

1 2 1 2

tion  T, T ) in the space ( 1&#x3E;, I&#x3E; ) of functions defined on the group mani-
fold. In many applications it is more convenient to have a realization directly
on the function space on the homogeneous space X = G/K. This can be
easily calculated; in fact, using Mackey decomposition g = bgkg and the
condition (1.3) one obtains that the map w(g) - Lkg w(g) represent the
map from space of functions defined on group manifold to the space of
functions defined on the coset space X -= G/K. The transformed func-

2

tion. is mapped onto

Hence,

Consequently selecting a definite stability subgroup K of G and its arbi-
trary representation k - Lk one obtains an explicit realization of the

2

induced representation TL of G by formula (1.11). Similarly we have

1 2

Consequently, an SLS representation g - T~ =  T~ &#x3E; of G induced
by a representation k - Lk of a closed subgroup K of P is realized in the
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345THEORY OF RELATIVISTIC UNSTABLE PARTICLES

1 2

space 4jX) = ( 4jX), 4jX) ) by formula (1.11) and (1.12). The sesquilinear
1 2

form ( . , . ) on x is given by the formula

1 2

where u E 4jX), w e 4jX), and is an invariant measure on X = P/K.
The whole formalism can be directly applied to an arbitrary locally

compact topological group G. In the general case it is only necessary

to put in front of formulas (I .11 ) and (1.12) the factor repre-
B /

senting the square root of the Radon-Nikodym derivative of dp on X.

II. DESCRIPTION OF UNSTABLE PARTICLES

There is so far no satisfactory definition of an unstable particle. Hence
it seems most reasonable to use as a guide a phenomenological description.
An unstable particle is experimentally determined as an object with the
following properties :

(i) It has a definite spin J and a definite space parity P.
(ii) It has a mass distribution or equivalently it has a definite decay law.

The decay law is for most particles exponential i. e. p(t) ~ e-rt. However,
it was suggested in some cases, as for instance for the A2 meson, that a decay
law might be an algebraic-exponential of the form 
In what follows we mean by an isolated unstable particle one which is
under the influence of forces causing the decay only.
We shall construct in this section a class of nonunitary representations

of the Poincare group P by means of which we can reproduce all properties
possessed by the phenomenological unstable particle.
We begin with a determination of the stability subgroup K of the Poin-

care group P. We showed in the Introduction that by virtue of the Theorem
of Flato and Stemheimer an unstable particle -might be only determined
by a complex mass M. A complex mass determines a complex orbit ~
in the space of complex momenta p = k + iq for which p2 = M2. The
stability subgroup Gp of a vector p e W is the subgroup T4 0152J Gk n Gq .
Putting k in the rest system and setting q = (qo, 00, q3) by a proper rota-
tion, we conclude that in general Gp = T4 Q U( 1 ). Since we want to

have a definite spin J as a quantum number characterizing an unstable
particle we must have Gk n Gq = SU(2): this is only possible if q = ~,k.
Hence It is convenient to write p = Mv where M = Mo - i(r/2)
and v = (vo , u) is the relativistic four-velocity = 1 ).

Vol. XIX, n° 4 - 1973. 10



346 R. RACZKA

We usually consider in particle physics the irreducible representations
of P. It seems however that for the description of an unstable particle or
a composite system a reducible representation of P is more appropriate.
Hence we now give a general construction of nonunitary representa-
tions TL of P induced by an arbitrary nonunitary reducible representa-
tion L of K = T4 S SU(2).

Let k -  Lk, be an SLS representation of K in O = ( 4Y, 03A6&#x3E;:

where a - Na is a reducible representation of the translation group T4
and r - D’(r) is an irreducible representation of SU(2), characterized
by an integer or half-integer number J. The composition law in K :

implies that Np must be of the form where v = (vo, 0, 0, 0) is a time-
like vector and (a, v) is the Minkowski scalar product. The sesquilinear
form (u, w)L  O, 4Y ) has now the form

where i = 1, 2, ..., dim and p = - J, - J, - J + 1, ..., J - 1, J, is
the spin index.

In this work the indecomposable representations a - N~avy of T4
play an important role. The simplest example of such a representation
is given by the formula . ,

Using the induction method one may find that an n-dimensional inde-
composable representation of T4 may be taken to be in the form

Annales de l’lnstitut Henri Poincaré - Section A



347THEORY OF RELATIVISTIC UNSTABLE PARTICLES

One may construct also other classes of indecomposable representations
of T4. However, the representations (II. 5) are most important for us, since
they provide algebraic-exponential decay law [cf. Equation (II.17)].
We now give the explicit form of the. representation T~ of P indu-

ced by a generally reducible representation k ~ Lk of the subgroup
K = T4 S~ SU(2).

PROPOSITION 1. 2014 Let k - Lk be a representation of the subgroup
given by Equation (11.1) and let C(X), f= 1, 2 b e

Schwartz’s spaces D(X), where X = G/K. Then the SLS representation

of the Poincaré group P is given in the space

by the formulas

and

where X = G/K is the velocity h yperboloid X ~ { vu }, = 1, vo &#x3E; 0),
and r~ = AvA 1" is the W igner rotation, Av is the Lorentz transfor-
mation implied by the Mackey decomposition

of SL(2, C) and L" E SO(3, 1 ) is the Lorentz transformation in T4 implied
by the element A" E SL(2, C).
The sesquilinear form ( . , . ) in is given now by the formula

where i = 1, 2, ..., dim and J1 = - J + 1, ..., J - 1, J.

~’roof. - See Appendix B.

Remark. Clearly we may take instead of Schwartz’s D(X) space any
other nuclear space of C~(X) functions (e. g. S-space) for which the sesqui-
linear form (II.9) converges.
We now show that various nonunitary representations TL = 

1 2

realized in the space 0(X) = ( C(X), D(X) ~ might provide a description of
unstable particles.

Vol. XIX, n° 4 - 1973.
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1 2

Let us first give a physical interpretation for the pair of spaces  ).
According to the basic concept of Quantum Mechanics a measurement is
an operation which prescribes a number to every wave function, w; conse-
quently a measurement is in fact a functional on the space of wave func-

2

tions. This suggests to consider in our case the space C as the space of
1

wave functions and the space C as the space of measuring devices. The
2

probability amplitude in the measurement of a state w by a measuring
i

device being in the state u e 0 is then given by the sesquilinear form (II. 9).
Clearly by virtue of Equations (1.10) this probability amplitude is inva-
riant with respect to simultaneous transformations of the state w and the

measuring device u.
Consider now various special cases:

A. Scalar unstable particle.

Consider first the case of a one-dimensional nonunitary representation
of the translation group

1 . 2

Let u(v) and w(v) e C be the states of the measuring device and of the uns-
table particle, respectively, at t = 0. The time evolution of function is

given by the formula (11.6) i. e., w(t; v) = By virtue of Equa-
tion (II. 9) the probability of measuring the state w(t, v) by a measuring
device in a state u is given by the formula

(11.10) P(t) _ ~ (u(t = 0), ~2.
This is the probability that an unstable particle has not decayed at

time t.. To obtain an expression for p(t) in the rest frame of the unstable
particle we assume a measuring device in the state u(t = 0, v) in the

form u(t = 0; v) = ~~(v), where is an e-model with compact support
of the Dirac ~-function. By virtue of Equation (II. 10) we obtain the follow-
ing formula for p(t) :

This formula agrees with the conventional expression for the time-depen-
dence of probability resulting in Weisskopf-Wigner formalism.

B. Consider now the case of a scalar particle (J = 0) whose wave func-
tion w;(v), i = 1, 2, ..., dim transforms according to a reducible
representation of the translation group a - N(a,v), dim &#x3E; 1. Assum-
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349THEORY OF RELATIVISTIC UNSTABLE PARTICLES

ing now the state of the measuring device to be in the form 

where { is a vector in C one obtains the following expression for the
probability amplitude

In the limit E - 0 this gives

The explicit form of the time-dependence of p(t) depends now on the
form of the representation of the translation group. In particular if we

take the two-dimensional representation (11.4) then one obtains the follow-
ing expression :

where

It is interesting that this type of time-dependence was suggested on the
basis of experimental results for the decay of A2 meson. Notice that the
states of the form

form an invariant subspace  in C for the representation for 

by virtue of Equation (II .15) the probability p(t) has the form p(t) = a e-rt.
This provides an illustration of a phenomenon that the decay law p(t)
depends on production and on detection arrangements [cf. Equations (II. 13)
and (II. 15)]. This fact was observed in certain dynamical models by Bell
and Goebel [8] and in a different context by Khalfin [9].

In general taking an n-dimensional representation a - of the

translation group T4 given by Equation (II. 5) one obtains the decay
law p(t) in the form

where ak , k = 0, 1, ..., 2(n - 1 ), in formula (II. 17) depend on detection and
production arrangements [cf. Equation (II.13)].

It is interesting that Equation (II.17) for a decay law coincides with
the expression obtained in S-matrix theory on the assumption that a

Vol. XIX, n° 4 - 1973.



350 R. RACZKA

scattering amplitude has an n-fold complex pole (cf. [10] Equation (4.9)).
This result shows that group theory may provide a description of unstable
particle, which is equivalent to a dynamical one.

C. Unstable particle with spin.

The wave function of an unstable particle with spin J is a vector func-
tion i = 1, 2, ..., dim p = - J, - J + 1, ..., J - I, J, on the
velocity hyperboloid. Using the same arguments as above we obtain the
following expression for the probability amplitude

In the limit E - 0 this gives

This shows that the decay law for an unstable particle with an arbitrary
spin J is determined in fact by the representation a - of the trans-
lation group T4. 

III. PHYSICAL INTERPRETATION

We shall now discuss various physical aspects of the theory presented
in previous sections.

(i) We shall first discuss properties of observables in this formulation.
The global representation (II.6) allows us to calculate the explicit form

2 2

of generators in the space I&#x3E;(X) of wave functions. A generator Xk of a
one-parameter subgroup g(sk) is defined by the formula

~

where the limit is taken in the topology of ~. Clearly in the present case
2

any element of C(X) is in the domain of Xk , k = 1,2, ..., dim G.
If dim = 1 then momenta P  are expressed in terms of the follow-

ing operators 

.

The fact that momenta are complex is not surprising: this only reflects
the fact that part of unstable particles in a beam decay and therefore there
is a « leakage » of the total momentum.

Annales de l’Institut Henri Poincaré - Section A
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In the general case of reducible representation (II. 6) and (II. 5) momenta

Pu are finite-dimensional matrices of the form

Consequently the mass operator M2 = is in general not diagonal
2

in the carrier space 0. For instance in the case of two-dimensional repre-
sentation (II . 4), M2 has the form

2

In this case the invariant subspace in 03A6 consisting of elements

is an eigenspace for M2 (the corresponding states have exponential decay
2

e-rt, cf. II B): the remaining elements in C are not eigenstates
of M 2. This is another illustration of the fact that properties of unstable
particles depend on production and detection arrangements (cf II B).
The generators of the Lorentz group have the same expression as in

the theory of stable particles.
The matrix elements or expectation values of a tensor operator T~

2

acting in the space 03A6 of wave functions are defined in the following manner

2 2

Because by definition T; ITIlTg = = { a, A }, by virtue of equa-
1 2

lity T* = {T)-1 one obtains the following transformation law

i. e., the relativistic covariance persists. In particular if T is a scalar ope-
rator then its expectation values are constants of motion.

(ii) We now show the relativistic transformation law of the life-
time T = 1 /r. Consider for simplicity the case J = 0 and dim = 1.

Vol. XIX, n° 4 - 1973.
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Take the measuring device represented by a function u(v) = bE(v) in a
Lorentz frame moving with a velocity P along ~ axis and consider the
wave function w shifted to the point Aa = (At, Ax) [i. e. w(v) = 
Then the probability p(At) that an unstable particle has not decayed after
time interval At has the form

Because we want to measure in a moving frame the time interval At’ at
a given space point, 0394k’ = 0 and we have: L-10394a=((1-03B22)1/20394t, 0)
(c/~72], p. 21 ). Hence

This implies r’ = r(l - ~2)1~2. Consequently

i. e. the unstable particle in a moving frame lives longer in agreement with
the well-known experimental result.

(iii) The action (II. 6) of the Lorentz group SL(2, C) is the same as in
case of stable particles. Hence we can define the parity operator in the
carrier space of the unstable particle if we use the reducible representa-
tion [e. g. 0 of the Lorentz group for the construction of induc-

ing representation (I I .1 ) of SU(2).
The above results show that the description of a quantum-dynamical

unstable system in terms of nonunitary representations of the Poincare
1 2

group realized in a pair ( 1&#x3E;, I&#x3E; &#x3E; of topological spaces has all the physical
properties shared by a conventional description for stable particle given
in the framawork of Hilbert space. On the other hand the present formalism

provides a possibility of analysis of a much larger class of quantum systems;
stable systems represent a very special subclass.

IV. DISCUSSIONS

(i) The idea of using nonunitary representations of the Poincare group
as a tool for a description of relativistic unstable particles was first explicitly
formulated by Zwanzinger [13]. In a hidden form this description appears
already in Mathews-Salam approach to unstable particles [5 a]. Later
on this description was analyzed from various points of view by a number
of authors [14]. However, in all (except Simonius) works the theory was

, 
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353THEORY OF RELATIVISTIC UNSTABLE PARTICLES

presented in the framework of the one-space formalism, which was a direct
extension of Hilbert space formalism. Therefore one could not obtain a
covariant probabilistic interpretation of the theory.

(ii) We constructed in Section II only a certain class of reducible nonu-
nitary indecomposable representations of the Poincare group, namely
those which might describe unstable particles. The full classification of
indecomposable nonunitary representations of the Poincare group will
be published elsewhere. An alternative method of construction of nonu-
nitary representations of the Poincare group was given by Bertrand and
Rideau [15].

(iii) The formula (II.17) shows that even for a real mass M(r = 0)
we can arbitrarily approximate by polynomials exponential (or any other)
decay by taking sufficiently high dimensional reducible representation of
the translation group T4.
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APPENDIX A

Nonunitary representations of topological groups.
We shall present here an outline of Fell’s theory of representations of topological

groups [7].
A sesquilinear system, SLS, is a pair  C, C &#x3E; = 0 of complex linear spaces 03A6 and 03A6

1 2

together with a sesquilinear (linear-antilinear) form (.,.) x ~ such that

and

An isomorphism F between two SLS 03A6&#x3E; and  is a pair ( F1 , F2 ), where F is a linear iso-

morphism of C onto , i = 1, 2, and (F 1 u, F2w) = (u, w) for all u E 03A6, w E 03A6.
1 2

Using the sesquilinear form ( . , . ) on 03A6 x C one can define the locally convex topo-
1 1 1 2

logy 1(4Y) on 4Y, generated by functionals u -&#x3E; (u, w), u where w runs over 1&#x3E;: one
2

may define similarly the topology on D.
1 2

A SLS representation T of a locally compact group G on a SLS ~(T) == ~ 1&#x3E;, «J» is
1 2

a pair  T, T ), where
1 2

1. T (resp. T) is a homomorphism of G into the group of invertible linear endomor-

phisms (resp. ~).

3. The map g - w) is continuous on G for each M e C, and w e ~.
i

If X is a bounded linear operator in 4Y then the adjoint X* is defined by the equality

The condition 2 means that

~ 

11 1 2 122

i. e. a representation g - Tg in 4Y is contragradient to g - Tg. Clearly T = T if T is uni-
tary.

i i i

A representation T is (topologically) irreducible if 1&#x3E; has non-trivial t( 1»-closed T-stable
2 22

subspaces. [Clearly this implies that ~ has no non-trivial T-stable subspaces.]

Annales de l’Institut Henri Poincaré - Section A



355THEORY OF RELATIVISTIC UNSTABLE PARTICLES

APPENDIX B

It is well-known that the homogeneous space X = G/K, by virtue of the decomposi-
tion (II.8) can be realized as the velocity hyperboloid. The correspondence A" --i v is

given by the formula

2 2

The explicit action of T~ in can be calculated in the following manner:

The element A; 1 A A - ,  transforms v into v : consequently it represents a rotation r A E SU(2)
(Wigner’s rotation). If we use the correspondence A~ - v given by Equation (B .1 ), then the
formula (B. 2) can be written in the form

Similarly one obtains formula (II.7).
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