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Théorie

des deformations de structures

J. F. POMMARET

Ann. Insl. Henri Poincaré,
Vol. XVIII, no 4, 1973,

Section A :

Physique théorique.

ABSTRACT. - in a former paper [3] we have shown how to modify
some results obtained by M. Janet in 1920 in order to relate them with
the modern formal theory of systems of partial differential equations.

Instead of looking at orthonomic passive systems, we shall consider
only formally integrable involutive systems. This leads us to introduce
the f ollowing formally exact complex, called physical sequence 1

E and Fp (p = 0, 1, ..., n) are vector bundles over the Coo manifold X
with dim X = n.
8 is the solution sheaf of the homogeneous equation UJ u = 0.

..., u)n determined by ~, are formally integrable involutive first
order partial differential operators.

In accordance with the later result, we have been able to relate the
truncated sequence obtained when forgetting OJ :

with the second Spencer’s sequence :

For some physical reasons that justify a posteriori the name given
to P (0), the later process seemed to us fundamental when studying
pseudogroups in general.
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286 J. F. POMMARET

However, all the authors, and in particular Spencer, develop technics
in order to describe the first and second Spencer’s sequences that are
related to the equations defining a pseudogroup.

Following a quite different way, we use our physical sequence and
the ideas of E. Vessiot [2] forgotten after 1903. Contrary to Cartan’s
one, the method to be used there will be that of differential invariants.
The definition we give of structure generalises that of geometrical object.
We show that, to every sequence :

defining the infinitesimal equations of a pseudogroup F acting on X
with T (X) = T, we can associate a sequence :

defining the infinitesimal equations of the pseudogroup r normaliser of r
in Aut (X). k is also formally integrable involutive (of order q + 1).

Let us now forget the initial cell 1

where eo is a first order formally integrable, finite type, partial diffe-

rential operator, and define  p as the solution sheaf of the transverse

operators Fp  Gp. We get the diagram :

We then introduce the idea of de formation, generalising the one

proposed by Spencer that was only related to the cohomology of the
complex P (0) alone.
We generalise the Jacobi’s identities between the structure constants

of a Lie group, getting the bilinear relations :

where the c are some constants characteristic of a given structure.
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287THEORIE DES DEFORMATIONS DE STRUCTURES

If we consider, as in example I, a Lie group as a particular case of
pseudogroup, we find again the classical deformation theory of Lie

algebra structures.
This leads us to generalise in the following way the theorems that

can be found in the algebraic case.
If Hp (P) is the cohomogy at Sp of the sequence :

we get in particular (cr. examples I, I I) :
- A sufficient condition of rigidity for a structure is Hi (Y) = 0.
- A sufficient condition of formal integrability for every cocycle

e Zi (r) is H2 (r) = 0.

One should note the change of grading with respect to that of the
algebraic case. (Hochschild cohomology.)

It is possible to get similar results in the case of intransitive

pseudogroups and subpseudogroups. We get in particular an easy
criterium, when looking only to the infinitesimal equations, in order

to know if  ~ 0393 is a normal subpseudogroup of r.
As an exercise we invite the reader to show that it is possible to

deform the pseudogroup

in the pseudogroup :

In fact, the laws of physics are expressed by systems of p. d. e. invariant
under an arbitrary change of coordinates, in a sense that we will make
precise.
For this we extend the preceeding results in order to study the systems

of p. d. e. invariant under a given pseudogroup r acting on Y, with
arbitrary base space X.
Such a system is called automorphic and can be written :

This gives rise to the non linear commutative diagram :
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288 J. F. POMMARET

where, in local coordinates

Now it is natural to think that the w (x) must satisfy some compati-
bility conditions (S) and we may introduce a class of systems of p. d. e.
called structured systems.

Finally we show that the trick of forgetting the initial cell, as

described above, leads to another process called contraction, that gives
all the systems (S) from the knowledge of the bundle 1i - X.
Example III shows that the set of Einstein gravitational equations

is such a system and gives a new sight on the cosmological constant A.
It is a pleasure to express my deep sense of gratitude to professor

A. Lichnerowicz for this personal interest and to professor D. C. Spencer
for many helpful conversations.

INTRODUCTION

A. Einstein ecrivait en 1954, a propos de la theorie relativiste du

champ non symetrique :
« Des theories du champ plus compliquees ont souvent ete proposees.

Elles peuvent etre classees d’apres les traits caracteristiques suivants :
(1) Accroissement du nombre de dimensions du continuum. Dans ce

cas, on doit expliquer pourquoi le continuum est apparemment limite
a quatre dimensions.

(2) Introduction de champs d’un genre différent (par exemple un
champ vectoriel) en plus du champ de deplacement et son champ tensoriel
correlatif (x). ,

(3) Introduction d’equations de champ d’un ordre superieur de

differentiation. 
,
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289THEORIE DES DEFORMATIONS DE STRUCTURES

A mon avis, de tels systemes plus compliques et leurs combinaisons,
devraient etre pris en consideration seulement s’il existe des raisons
de physique experimentale de proceder ainsi. »

Cette classification reste encore valable aujourd’hui mais il faut

cependant noter que toutes les theories actuelles reposent sur une utili-
sation commune du calcul tensoriel ou d’autres methodes classiques de
géométrie différentielle.

Ce faisant, on semble oublier que la forme des equations du champ
de gravitation n’a ete donnee par Einstein qu’en 1915, apres huit annees
de tatonnements, au cours desquelles il dut meme faire appel au mathe-
maticien Grossmann pour se familiariser avec le calcul tensoriel.
On peut alors se demander si, au lieu de continuer ~ puiser dans un

arsenal de moyens connus, une voie toute différente des precedentes
n’existait pas dans la recherche d’un outil mathematique nouveau.
En particulier cet outil devrait generaliser la notion de structure

riemannienne, faire appraitre, independamment du contexte tensoriel,
les notions de contraction, de variance, enfin nous permettre de retrouver
naturellement les equations de gravitation linearisees, sans le secours
d’aucun postulat physique.

C’est cet outil qui sera brievement presente puis illustre par des

exemples concrets..
La redaction de cet article a ete volontairement simplifiée mais’ on

suppose connu [3]. Une exposition rapide de la theorie generale sert de
modele a trois exemples que nous avons traites en details, pensant en
cela etre utiles au lecteur physicien.
Nous exposons tout d’abord quelques-unes des motivations d’ordre

physique qui nous ont conduit a developper une theorie des deformations
de structures.
Le point de depart est un exemple simple donne par Inonu et Wigner

pour illustrer le principe de la contraction des groupes de Lie et de leurs
representations (1953).

Il montre comment on peut passer du groupe de Lorentz inhomogene :

au groupe de Galilee inhomogene :

Les generateurs du premier groupe sont :

Ils satisfont aux relations de commutation :
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290 J. F. POMMARET

Posons

Ceci equivaut a changer la base de l’algèbre de Lie considere.
Les nouvelles relations de commutation sont :

Lorsque c - 00 on est amene a chercher un groupe dont les gene-
rateurs satisfont aux relations de commutation :

On peut prendre par exemple comme generateurs :

L’interet de ces manipulations reside dans le fait que les algebres
qui peuvent etre contractees dans une algebre donnee par Ie processus
ci-dessus doivent etre recherchees parmi les algebres obtenues en

deformant la dite algebre, comme cela resulte des travaux de
Gerstenhaber (1964) et d’autres.

Cette deformation sera introduite par 1’intermediaire d’une pertur-
bation Ct (co = c) de ses constantes de structure, c~ ~, ensemble de
nombres satisfaisant au relations

La contraction consiste a observer sur les constantes de structure
l’effet d’un changement de base dependant d’un parametre f, singulier
pour la valeur t = 0.
On sait que ces methodes ont obtenu un certain succes en physique

mathematique, mais il semble que l’intérêt qui leur est porte diminue
auj ourd’hui.
On remarque maintenant que l’idée d’une deformation d’un groupe

de Lie par 1’intermediaire d’une perturbation de ses constantes de
structure peut etre envisagee grace au troisieme theoreme (reciproque)
de Lie.

Si l’on songe alors qu’un groupe de Lie est un cas particulier de
pseudogroupe, c’est-a-dire de groupe de transformations x ~ y = f (x)
solutions d’un systeme d’equations aux derivees partielles, une premiere
idee consiste a generaliser les methodes precedentes et, en particulier
la notion de structure.

Remarque. - L’utilisation des pseudogroupes en physique est souvent
liee a 1’etude de la derivee de Lie d’un tenseur w par rapport a un
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champ de vecteurs ç. En eflet, si

et les transformations z- exp (f ~) x telles que (~) ~ = 0 forment
donc un pseudogroupe.
Malheureusement, apres les travaux de pionniers de Lie (1895), Engels,

Medolaghi, seul Vessiot en France essayait d’etudier directement les

equations de définition des transformations finies et infinitesimales d’un
pseudogroupe, tout en conservant la meme optique que ses predecesseurs.
Apres un article, publié en 1903 dans les Annales scientifiques de l’Éeole
.Normale S’uperieure, ses idées tombèrent dans l’oubli.
On notera que ce travail, reposant sur une utilisation de la theorie

des sytemes e. d. p., telle qu’elle etait developpee a 1’epoque etait donc
fort imprecis.
Peu apres, Cartan (1905) obtenait tout une serie de resultats fonda-

mentaux grace a l’utilisation de sa theorie des systemes differentiels exte-
rieurs. Ces methodes etaient generalisees par Guillemin et Sternberg (1966)
dans le cadre de la theorie formelle des systemes e. d. p. developpee
par Spencer, Quillen, Goldschmidt. On peut resumer brievement ces

travaux en disant qu’ils explicitent la premiere et la seconde suite de
Spencer (complexes différentiels) grace a l’introduction de formes exte-
rieures generalisant les formes de Maurer-Cartan de la theorie des

groupes de Lie.

Parallèlement, Spencer ( a partir de 1957) elaborait une theorie des
deformations des structures analytiques puis des r-structures (r = pseu-
dogroupe continu transitif). Par analogie, une variete est dite munie
d’une r-structure lorsque ses fonctions de transitions sont des trans-
formations d’un meme pseudogroupe r.

On peut alors formuler les trois remarques suivantes :

(1) Ces techniques de géométrie differentielle semblent presenter un
caractere beaucoup plus general que les techniques algebriques prece-
demment decrites. D’autre part, en relativite générale, le champ de

gravitation etant interprete par une metrique developpable en 1, on
cherche a decrire les lois phhsiques par des systemes d’equations aux
derivees partielles dependant de parametres. On postule seulement la
necessite de retrouver les analogues de la physique classique pour c - oo.

Il est donc tentant de chercher a introduire les techniques precedentes
en physique.

Pourtant on constate que la notion de r-variete, et donc de
r-structure, n’a pas de signification physique, en ce sens que Fon ne
la rencontre que tres rarement dans des theories physiques. A u contraire,
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la caractéristique de toute description d’un phénomène physique est, par
abus de langage d’ailleurs, de ne pas dépendre du srdsteme de coordonnees
employe (exemple : tensoriatite, covariance).

(2) Une critique beaucoup plus grave etait celle du manque de simpli-
cite; le lecteur physicien qui voudrait etudier ces travaux peut jeter
un coup d’ceil sur l’ouvrage de SPENCER et KUMPERA [4], Lie equations,
I (Princeton University Press, 1972) qui represente la version la plus
recente des theories de deformations de r-structures. II s’apercevra
tout de suite de la difficulté de traiter des exemples, meme simples,
avec de telles methodes.

(3) Enfin, l’existence d’un lien entre la theorie des deformations de
r-structures et la theorie des deformations de structures d’algebres
de Lie, bien qu’ayant ete pressentie par de nombreux auteurs (Spencer,
Gerstenhaber, Piper, 1967), n’a en fait jamais ete trouvee.

II fallait donc tout d’abord simplifier la theorie formelle des sys-
temes e. d. p., outil fondamental de toute recherche portant sur l’étude
des pseudogroupes en general.
Nous avons ete guides en cela par deux idees maitresses :

(1) La relativite generale, et par la meme toute theorie unitaire,
repose sur l’utilisation d’un certain nombre d’identites. Ce seront par

exemple les identites de divergence provenant des identites de Bianchi.
De plus, on sait que la determination d’un tenseur quasilineaire en les
derivees secondes des g;j tel que..., a été effectuee par Cartan long-
temps apres que le dit tenseur ait ete considere par Einstein. Enfin,

le develo pp ement limite en c 1, etranger a tout contexte de calcul

tensoriel, permet de n’utiliser que des sytemes e. d. p. lineaires, mais
ceci pour des raisons purement physiques.

II etait donc important de trouver un formalisme ou apparaissent
naturellement les notions de courbure, d’identités de Bianchi, de déve-

loppement en - ? ..., ceci dans le cas particulier de la géométrie
riemannienne.

(2) Les seuls travaux anciens dans lesquels des identites etaient

introduites semblaient etre ceux de Janet (1920) sur les systemes e. d. p.
Malheureusement les methodes rencontrees dependaient du systeme de
coordonnees. Cependant quelques lignes sur la construction d’une chaine
de systemes e. d. p., en nombre egal a celui des variables independantes,
chacun d’eux representant les conditions de compatibilite du precedent,
faisait presager d’un certain lien avec les theories formelles modernes.

Ce lien etait expose dans une « these de 3e cycle » dont le titre etait :
Étude interne des systèmes d’equatiorts aux dérivées partielles (Institut
Henri Poincare, février 1972). La partie theorique de cette these etait
publiee [3].
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On montre comment il suffit de remplacer la notion de systeme ortho-
nome passif par celle de systeme formellement integrable et involutif,
tout en conservant les methodes de Janet, pour obtenir un precede
« operationnel », permettant d’aborder tout systeme e. d. p. et ne

dependant pas du systeme de coordonnees.
Dans le cas de systemes lineaires, la chaine de systemes devient un

complexe dnferentiel de longueur finie que l’on appelle suite physique
pour des raisons que cet article justifiera a posteriori (!), en accord avec
la premiere des idees maitresses.

Cette suite physique semble donc jouer un role preponderant, a

l’exclusion de la premiere et de la seconde suite de Spencer. On montre
meme comment elle peut etre reliee a la seconde suite, par oubli de

1’operateur differentiel initial.
Ce processus semblant fondamental comme cet article le precisera,

nous etions persuades que l’utilisation de cette suite physique apres
oubli de 1’operateur initial, devait jouer un role clef dans F etude des

pseudogroupes.
Et pourtant, aucun des travaux modernes ne la fait apparaitre

directement.
Nous sommes sortis de cette impasse en reprenant F article de Vessiot

et en le modifiant d’une maniere analogue a celle qui nous avait servi
pour l’article de Janet.

Ceci nous conduisait a introduire un objet mathematique nouveau
nomme structure. De même que dans notre premier travail nous étions
conduit aux termes de suite physique, de meme la notion de structure
generalise en quelque sorte tres largement la notion de structure rieman-
nienne qui en devient ainsi un simple cas particulier comme ces pages
le preciseront. Enfin l’utilisation de la suite physique permet d’intro-
duire un concept de déformation different de celui de Spencer qui se
ramene a un cas particulier.
On peut d’abord noter la simplicite et Fhomogeneite des techniques

employees.
De plus, si Fon cherche ce que devient cette theorie dans le cas

particulier d’un groupe de Lie, on s’aperçoit qu’elle redonne exactement
la theorie des deformations de structure d’algebre de Lie.

Les moyens utilises, tels la consideration d’invariants differentiels,
sont donc fort eloignes de ceux de Cartan ou de Spencer. (En fait, pour
l’instant, nous n’avons pu trouver aucun lien direct avec ces deux theories.)
Par exemple, les n formes de Maurer-Cartan a n variables deviennent n2
fonctions associees a n2 invariants differentiels, la notation matricielle
n’intervenant que pour des raisons de simplicite.
Nous avons ensuite cherche a generaliser les notions de variance et

de contraction, telles qu’elles apparaissent dans le cadre du calcul
tensoriel.
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Etant donnee une application (reguliere) X -4- Y, nous montrons qu’a
tout pseudogroupe r agissant sur Y (~ X) on peut faire correspondre
une structure au-dessus de X, dite structure induite. L’hypothèse d’invo-
lution est fondamentale dans la demonstration de ce fait. Nous intro-
duisons pour cela des systemes e. d. p. aulomorphes, c’est-a-dire
invariants par l’action de r sur Y, l’espace de base X restant arbitraire.
Nous sommes alors amenes a considerer certains systemes e. d. p.

formellement integrables et involutifs, lies a la donnee d’une structure
au-dessus de X. De tels systemes sont appeles systèmes structures. Ils sont
caracterises par la commutativite d’un diagramme plan.
Dans I’exemple III nous montrons que les equations de la gravi-

tation d’Einstein constituent un tel systeme.
En tant que structure mathematique, le tenseur gij (x) n’intervient

q ue p ar les 2014201420142014’ fonctions q ui Ie representent localement, la

notation tensorielle n’etant conservee que pour des raisons de simpli-
cite. Le pseudogroupe considere, que l’on oublie par la suite (I!), est

defini par les equations de Killing. Il se trouve que les linearisations
introduites naturellement dans le cadre de notre theorie generale sont

justement celles qu’on rencontre en 1 c en relativite generale. L’existence
de conditions de compatibilité (intégrabilité formelle) pour les equations
de Killing introduit un espace a courbure riemannienne constante.

(La determination de la conslante caractérisant un tel espace est done au

fond tout a fail analogue a celle des constantes de structure d’un groupe
de Lie, en ce sens qu’elles résultent d’un mlme processus mathématique.)
L’espace plat est seul deformable en un espace a courbure non nulle.
Nous justifions le nom de suite physique en faisant apparaitre succes-

sivement dim X, le nombre de gij, le nombre de composantes du tenseur
de Riemann-Christoffel, le nombre d’identites de Bianchi, etc., ce qui
nous permet de calculer tres rapidement les nombres precedents.
Le fait que les equations d’Einstein constituent un systeme structure

est important puisque cela nous permet d’interpreter le role de la

constante cosmologique A par le biais de la commutativite d’un dia-
gramme plan.

I. - THEORIE DES DEFORMATIONS

Generalites

L’histoire des recherches sur la theorie des pseudogroupes peut etre
resumee par le schema suivant :
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Le travail de Vessiot [2] a ete oublie apres sa publication en 1903.
Au lieu de generaliser les equations de Maurer-Cartan, comme cela
etait fait par Cartan grace a la theorie des sytemes de formes diffé-
rentielles exterieures qu’il avait aussi creee, Vessiot utilise les ressources
de la theorie des invariants différentiels. Cependant, parce qu’il faisait
reposer son travail sur la theorie des sytemes e. d.p. qui etait tres peu
connue a son epoque, de nombreux resultats sont fort imprecis.

1. Equations d’un pseudogroupe
A. La premiere partie de notre programme a consiste a modifier la

theorie de Janet de facon a Faccorder avec les travaux modernes sur
Fetude formelle des systemes e. d. p. La difficulté majeure etait que
cette theorie dependait du systeme de coordonnees. Nous indiquons dans
une these de 3e cycle recemment publiee [3] qu’il suffit de remplacer
les mots orthonome passif par ceux de formellement integrable, involutif
pour sortir de ce mauvais pas.

Si E - X (ou F - X) est un fibre vectoriel au-dessus de X, variete Coo
avec dim X = n, nous noterons aussi par E (ou F) le faisceau de germes
de sections Coo au-dessus de X. Cette convention sera valable pour tous
les fibres introduits par la suite. En fait, le contexte indiquera toujours
clairement lorsque des differentiations sont en jeu.
T = T (X) sera le fibre tangent au-dessus de X.

Soit E 201420142014~ F = Fo un operateur differentiel d’ordre q formellement
integrable et involutif, tel que la suite suivante soit exacte (equations
libres) :

fh

Suivant Janet, nous construisons la suite physique :

ou les Fp sont des fibrés vectoriels définis a un isomorphisme pres.
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ø est le faisceau des germes de sections de E - X, solutions des

equations (~) : u’~ u = 0.
@ sera appele faisceau solution de c0.

..., OJn sont des operateurs différentiels du premier ordre, formel-
lement integrables et involutifs.
Comme le suggerait ce resultat, nous avons pu relier la suite tronquée :

obtenue en oubliant ~, avec la seconde suite de Spencer :

B. Notre seconde intention etait de modifier la theorie de Vessiot en
introduisant l’hypothèse d’involution selon les memes lignes que
ci-dessus.

Soit Y une copie de X; considerons la variete fibree 
Nous utiliserons les coordonnees locales des jets et la notation
multi-indicielle avec I = pi + ... + sera la source et y Ie
but pour toute application : ~-~==/’(:r). En particulier :

Suivant en cela Lie [2], nous montrons que les equations finies d’un
pseudogroupe (continu transitif) r peuvent etre mises sous la forme

ou w’r (x) est la valeur de U‘~ (y, y~) pour y = x.
Les U (y, y~) sont les invariants differentiels d’un certain systeme

complet 03 que l’on construit en cherchant le q° prolongement d’un
changement de but infinitesimal. La principale propriete des U (y, y~)
est que, lors d’un changement de source ~ 2014~ x’ = (p (x), ils se trans-

forment entre eux suivant la loi

Les transformations finies u’ = G (u, sont celles d’un groupe de
Lie ? lorsque l’on considere les (p~ comme des parametres (pas toujours
essentiels). On montre aisement :

PROPOSITION. 2014  est transitif si et seulement si 0393 est transiti f.
Aux transformations

ou les sont maintenant les fonctions de transition de X, on peut
associer la fibration H - X.
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Les equations finies (non lineaires) de r peuvent etre representees
par la suite non lineaire :

Si nous linearisons les equations precedentes en prenant

nous obtenons les equations infinitesimales de r que l’on peut traduire
par la suite lineaire :

Suivant Vessiot, nous montrons que U (y, y~) = w (x) peut etre ecrit
sous la forme

Alors, et cette remarque est tres importante, si Fon appelle (u) .2014~
les generateurs inimitesimaux de ~, les equations infinitesimales de r
peuvent etre ecrites sous la forme

2. Conditions de compatibilité

La remarque precedente montre que les coefficients des equations
de (~) sont des fonctions de x par l’intermédiaire des M (x) pour les

(I J. ~ 1) et des pour les ~.
On peut montrer que, si la partie algebrique de la condition d’invo-

lution, est remplie par certain w (x), elle le sera par tous. En parti-
culier, si l’on remplace w (x) par Wt (x) avec Mo (x) = m (x), si la condition

algebrique d’involution est vérifiée pour t = 0, alors elle sera vraie

pour toute valeur de t (assez petite).
En ce qui concerne l’intégrabilité formelle, il nous faut considerer le

premier prolongement de (~). Nous supposons desormais, pour plus de
simplicite, que r est transitif. Il nous suffit donc d’examiner seulement les
coefficients des (1 + 1) ecrits sous la forme d’une matrice :

dans laquelle nous poserions u = w (x).
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Utilisant maintenant la theorie des sytemes d’equations invariants
par les transformations d’un groupe de Lie, on peut montrer que 1’inte-
grabilite formelle de (03A3) implique certaines conditions de compati-
bilite pour les w (x), que l’on ecrira :

et ou il faudrait poser u === CD (x).
Le nombre total de ces conditions est egal a dim F1. Ce resultat,

independant du systeme de coordonnées, est beaucoup plus precis que
celui de Vessiot et resulte de l’introduction de Fhypothese d’involution.
Les c sont des constantes, independantes du systeme de coordonnees

par construction, et ainsi définies globalement sur X. Elles consti-

tueront, avec les zeros, la structure du pseudogroupe.
DEFINITION. 2014 Un pseudogroupe sans conditions de seconde espece

sera dit amorphe.
Si on introduit la derivee totale :x:

B

Si donc on pose

on doit alors écrire :

avec les dim Fi conditions :

c’est-a-dire OJ1 Q - 0 lorsque = Q.
1 1

Si deux pseudogroupes r et r’ sont semblables, c’est-a-dire s’il existe

une transformation x’ = cp (x), y’ == cp (y) telle que r’ = cp o r o cp-l on
montre aisement qu’ils ont la meme structure.
Nous avons donc ainsi une premiere generalisation de la structure

d’un groupe de Lie, d’une facon toute différente de celle de Cartan.

De plus on peut montrer simplement que les identites de Jacobi

peuvent etre generalisees en les conditions bilineaires :
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Pour cela, nous nous servons seulement du fait que, (I) etant un
systeme formellement integrable et involutif, est aussi un systeme
formellement integrable et involutif.

3. Pseudogroupe normalisateur

Imaginons que nous cherchions des sections X voisines de la
, ~ , , 

M

section initiale X. Le probleme de la deformation, que l’on retrou-
vera plus tard, consiste a comparer le pseudogroupe rt, s’ il existe, avec
le pseudogroupe r.

Les conditions finies d’existence seront :

et si nous ecrivons :

nous devrons resoudre :

1 1

Les Fp n’etant definis qu’a un isomorphisme pres, le probleme majeur
en theorie des deformations sera de particulariser, d’une fagon inde-
pendante du systeme de coordonnees, la section de Fi - X qui pourra
s’ecrire ~x, dans un systeme de coordonnees particulier.

L’idee clef consiste a resoudre ce probleme en introduisant le pseudo-
groupe f normalisateur de r dans Aut (X) et certains diagrammes
plans et tridimensionnels.

Utilisant les resultats de notre these de 3e cycle, nous mettrons (I)
sous sa forme résolue, exprimant les dérivées principales en fonction des x
et des dérivées paramétriques. Les coefficients sont maintenant 1 pour
les derivees principales et, pour les derivees parametriques, des fonc-
tions des w (x) et 2014~ parmi les q uelles nous prendrons le nombre

maximal de fonctions libres. Ceci nous permettra de determiner toutes
les sections donnant Ie meme pseudogroupe f, en resolvant le systeme
non lineaire :

On peut montrer que ce systeme est equivalent a un systeme de Pfaff
ferme et que la solution générale en est : ’
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transformation finie d’un groupe de Lie 9 qui commute avec toutes les
transformations de (6 (!b et  sont dits reeiproques).

Posant

on demontre enfin que le systeme non lineaire :

donnent les equations finies, sous forme de Lie, du pseudogroupe r
normalisateur de r dans Aut (X).
On representera cette construction par le diagramme :

qui deviendra, en posant

et linearisant :

Le fait que (I) soit formellement integrable et involutif peut etre
exprime au moyen de sa forme resolue et determine ainsi certaines

conditions de compatibilite pour les 7r (x) qui ne jouent donc qu’un

role d’intermediaires. Prenant 7r (x) = P ( u, .- ) ceci se traduira par
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des relations sur les u, parmi lesquelles :

systeme dont (I) est une consequence directe.

DIAGRAMME TRONQUE :
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4. Diagrammes

Utilisant la propriete trouvee pour eo, on peut montrer au moyen
du diagramme tridimensionnel ci-joint que 6J est un operateur diffé-

rentiel d’ordre q + 1, formellement integrable et involutif.

On remarquera cependant que l’application

n’est pas toujours surjective.
On completera la cellule initiale par le diagramme :

est le faisceau solution de chaque operateur transverse Fp  Gp.
Comme notre these de 3e cycle le suggerait deja, 1’idee clef consis-

tera a oublier la cellule initiale pour obtenir le diagramme commutatif :

rest lie aux transformations de g qui ne changent pas la structure
der.

~o est lie aux parametres infinitésimaux de g.

~, est lie aux constantes C.
1

Ceci est pratiquement tout ce dont nous avons besoin pour exposer
maintenant notre theorie des deformations.

5. Theorie des déformations

A. GÉNÉRALITÉS. (Pour ce qui suit, se reporter aux exemples I et II.)

Nous avons vu que cj (x) = g (w (x), a) donnait le meme pseudo-
groupe r que w (x).
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DEFINITION. 2014 Si nous prenons w (x) au lieu de 03C9 (x) pour décrire T,
nous dirons que nous avons change la marque de r.

Ainsi un meme pseudogroupe peut etre obtenu sous differentes marques
et chaque marque determine une structure particuliere.
Nous allons maintenant définir le type d’un pseudogroupe.

ANALOGIE. - Lorsquel’on choisit une voiture, on s’interesse en general
seulement a son type.

Ceci sera vrai pour nous aussi. Nous nous interesserons aux pseudo-
groupes en regroupant sous le meme type tous les pseudogroupes
semblables a un pseudogroupe donne.

w

DEFINITION. 2014 Une structure au-dessus de X sera une section U X

satisfaisant aux conditions de compatibilite deja formulées.

Remarque. - Si 1’on se donne un systeme e. d. p. dont les solutions
sont les transformations d’un pseudogroupe r agissant sur X, nous
avons montre comment construire 1L - X.

Reciproquement, a toute section ’tl X satisfaisant a des conditions
de compatibilite appropriees, on peut associer un systeme e. d.p. tel

que le precedent. Ces systemes peuvent decrire des pseudogroupes
identiques, semblables, différents qui seront dits generaux.
Une structure ainsi définie et une r-structure sont donc tres diffe-

rentes, mais elles proviennent toutes deux d’un meme pseudogroupe
continu (transitif) r dit speciat (c f. exemples).

Si nous fixons la marque, tous les pseudogroupes d’un meme type
auront la meme structure. Cette situation sera schematisee par le dessin
ci-dessous :

w
Imaginons maintenant une section ’tL i) X, Coo en t, voisine de la

, , ~ , 

w

section initiale  X et telle que Wo (x) = w (z). Pour obtenir un
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pseudogroupe rt on doit vérifier :

avec

Il est cependant difficile d’etudier directement ces conditions finies

sauf dans des cas particuliers.
Nous etudierons donc les conditions au premier ordre :

Pour ce faire, définissons

La condition precedente devient

Remarque. - La definition de Zi (Y) est celle du faisceau solution

du systeme e. d. p. :

La partie 4 nous permet de montrer que ce systeme du premier ordre
est formellement integrable et involutif, de meme que celui qui définit F.
En coordonnees locales, la condition C E Zi (F) est equivalente aux

1

conditions lineaires :

La condition pour qu’un element de ~o appartienne a f peut
s’ exprimer par des relations lineaires entre les parametres infinitésimaux
d’une transformation infinitesimale de 9 exprimee sur la base formee

par ses generateurs.
Maintenant, la condition C E B1 (r) determine les C comme combi-

1 1

naisons lineaires de ces memes parametres.
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On peut donc dire que la condition @1 (F) represente une
1

condition algebrique greffée sur une condition de resolution provenant

Considerons maintenant deux cas particuliers :
10 Déformations a la Spencer : La condition D1 SZ = 0 est nécessaire

1

pour resoudre c0g = ~2. Mais nous avons montre qu’un tel systeme doit
1

etre resolu pour savoir si deux pseudogroupes de meme structure sont
semblables.

Enfin nous savons que pour resoudre le probleme d’equivalence
locale il faut etudier l’exactitude en Fo de P (@) ou, celle de S2 (O) en
Cl ([4], [5]). 

2~ r est un groupe de Lie (c f. exemple I) : La condition algebrique
devient celle que l’on obtient en linearisant les identites de Jacobi,
alors que la condition d’exactitude est exprimee par le troisieme
theoreme (reciproque) de Lie.
On retrouve la théorie des deformations d’algèbres de Lie.
Nous allons maintenant montrer que les conditions de rigidite et les

obstructions a la deformation peuvent s’exprimer d’une façon analogue
a celle du cas algebrique. Les methodes sont cependant tres différentes,
bien que les resultats soient les memes.

B. CONDITION DE RIGIDITE

DEFINITION. 2014 Une structure sera dUe rigide si elle ne peut être déformée
en une aulres tructure d’un type di f ferent.

Remarque. - Comme on l’a vu, il revient au meme de parler de

pseudo-groupe.

THÉORÈME. 2014 Une condition suffisante de rigidité est

On notera le changement de graduation par rapport au cas algebrique.

C. OBSTRUCTIONS A LA DEFORMATION

Nous utiliserons l’artifice suivant :

Considerons la suite physique P (Ot) avec t suffisamment petit.
Alors dim Fp (t) = dim Fp et différentiant
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on obtient

Prenons t + r au lieu de t et ecrivons :

Si est une deformation en t de M, sera une deformation en ’t’

DEFINITION. 2014 Un cocycle Ce Zl (f) sera dit (formellement) inté-

grable s’ il existe une déformation (formelle) ct de c, telle q ue = C.
En coordonnees locales on a

mais

Ainsi :

Observant les termes en tv (v &#x3E; 1), on obtient :

THÉORÈME. 2014 Si H2 (Y) = 0, alors tout cocycle E Zi (Y) est formel-
lement intégrable.
On notera le meme changement de graduation que precedemment.

Exemple : un pseudogroupe simple (au sens de Lie) est rigide.

6. Pseudogroupes intransitifs, sous-pseudogroupes

Apres avoir lu les pages précédentes, le lecteur averti pourra faci-

lement traiter ces sujets en effectuant la recherche des equations finies
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et infinitésimales et des structures correspondantes, dans les cas

suivants :

II. - SYST~MES STRUCTURES

(Pour tout ce qui suit on se reportera aux exemples II et III.)
Nous allons tout d’abord generaliser certaines des constructions

precedentes, en particulier la méthode diagonale [3].
Pour cela nous construirons de façon explicite le fibré vectoriel :

Dans le diagramme commutatif

nous avions :
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conformement au dessin :

On rappelle alors la construction classique des fibres normaux, en
définissant N (w) m Fo = Fo (X) par le diagramme commutatif :

On a de même le diagramme commutatif :

et, pour les différents fibres introduits, en coordonnées locales :

Fi bre Base Fibre

L’injection T (X) - 3* T (XxY) devient

l’autre est triviale. Le triangle
superieur du diagramme precedent est donc commutatif. De plus on
remarquera N (3) = T (X) [exactement Jo (T (X))].
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Ce qui precede est donc implicite lorsqu’on parle de linearisation.
En particulier, lorsque l’on cherche a determiner les invariants diffe-

rentiels, on remplace les variables (x, 03BE) par (y, on). Les x jouent alors
un simple role de parametres. La determination du groupe de Lie 43

revient donc a examiner comment se transforment entre eux ces inva-
riants différentiels, lors d’un changement de parametrage. La seule

propriete utilisee [~ ~x, ~ (y)~ ~y] =0.
Il revient au meme de supposer que l’on se donne 03A3 (Y) au-dessus

de Y, c’est-a-dire que l’on releve la structure consideree, au-dessus de Y.
II suffit pour cela de changer legerement les notations de la premiere

partie, en introduisant la suite non lineaire :

a partir de laquelle on construit la suite physique :

Les coordonnees de T (Y) etant (y, on peut utiliser encore les
methodes de la premiere partie, en imaginant desormais

En particulier on peut etudier les prolongements jusqu’a l’ordre q de

la transformation infinitesimale 0 d + ~(y) ~ ~y lorsque ~ (y) est une

transformation infinitesimale de f (Y). Un systeme libre maximal
d’invariants differentiels, s’il existe, sera par exemple U (y, r~ p).

Considerons maintenant une application y = f (x) que
l’on etendra a l’application :

et qui permettra de determiner la valeur des invariants dinerentiels
pour y = f (x). On s’interessera au systeme e. d. p. :

DEFINITION. 2014 On appelle systeme automorphe vis-à-vis de r (Y),
un système e. d. p. tel que si y = f (x) est une solution, alors y = ( f (x))
est aussi solution, lorsque y ~ y’ = (y) est une transformation d’un

pseudogroupe r (Y).
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II est facile de voir que le systeme (A) est automorphe vis-a-vis de r (Y)
dont les equations finies 8, (Y) sous forme de Lie sont Uy (y’, = (y).
Nous allons montrer que ce systeme (A) est aussi formellement integrable
et involutif, lorsque les w (x) vérifient certaines conditions de compa-
tibilite (S).
A cet effet, rebaptisons les variables independantes ..., ym-n,

ym en y1, ... , 1&#x3E;&#x3E;n-n’ ... , xn dans les equations finies E (Y).
D’apres leur construction, les U (y’ peuvent etre consideres comme
des invariants différentiels de r (Y), ne contenant que des derives de
classe ~ (m - n). Les variables non multiplicatrices sont alors a choisir
parmi les zi, ... , xn. Ce sous-systeme est donc involutif a son tour,
d’apres la propriété source de l’involution. II sera formellement inte-

grable si les w (x) vérifient les conditions de compatibilite relatives
aux Wy ( f (x)) particuliers auxquels ils sont egaux dans ce systeme de
coordonnees. L’hypothese d’involution garantit ensuite cette propriete
dans n’importe quel systeme de coordonnees. On remarquera, en conse-
quence, que U (y, depend de y par 1’intermediaire des Wy (y).

Puisque [03BE (x) ~ ~x, ~ (!/) . = 0 les U (y, yh ) se transforment entre eux
sous l’effet d’une transformation x- x’ = cp (x), ce qui permet de

construire, comme dans la premiere partie U - X a partir du groupe
de Lie 5. De cette facon. le systeme (S) est invariant par le premier
prolongement des transformations infinitesimales :

Plus generalement les transformations :

permettent ensuite, par linearisation, de construire l’application intra-
variante

Par un changement de coordonnees locales convenable on se

placera dans la situation ou l’application x ~ y = f (x) est telle que
yi = 0, ..., ym-n = 0, ym-n+1 = ~t, ..., ym = xn et on utilisera le fait que

pour etudier la partie d’ordre q de (A).
Dans &#x26; (Y) ou ~ (Y) 1’hypothese d’involution permet de determiner

de façon intrinseque le nombre maximal de derivees principales d’ordre q,
de classe m, m - 1, ..., m - n + 1, m - n, ... que l’on peut calculer
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en fonction des y et des derivees parametriques. On peut rassembler
ces derivees en commenqant par y’m puis y"n-1, .... On obtient alors
la partie d’ordre q de I I (X) en ne conservant qu’une sous-matrice
de la matrice relative a la partie d’ordre q de I (Y). D’apres la propriété
but de 1’involution, ~ - ~ (X) satisfait aussi a la condition algebrique
d’involution et on peut alors utiliser les constructions de la premiere
partie pour determiner les conditions de compatibilite I = I (X). Pour ce
faire on sera conduit a chercher le nombre maximal d’équations inva-
riantes par le premier prolongement de la transformation infinitesimale

i x d + i Parmi celles-ci se trouvent en particulier

celles qui constituent le systeme (S) et donc (S) C (I).
Certaines conditions (c f. exemple II) doivent etre imposees aux My (y)

pour que, lorsque les conditions de compatibilite pour les Wy (y) sont
verifiees, on ait (S) - (I). Dans ce cas :

DEFINITION. 2014 De telles structures sont dites covariantes.

Remarque. - Alors qu’au cours de la premiere partie on pouvait
intervertir le role de x et y, dans la seconde partie cela devient impos-
sible mais la propriete fondamentale d’involution, nous permet de
ne pas faire intervenir le systeme de coordonnees. Cette relation,
originale, entre involution et covariance nous parait être la clef de toute
application a la physique mathématique.

Nota : Une telle definition sera modifiee ulterieurement.
Par analogie avec la theorie des formes differentielles exterieures on

peut traduire la propriete de covariance par la commutativite d’un

diagramme plan.
THÉORÈME. 2014 La condition nécessaire et suffisante pour que la struc-

ture donnee soit covariante est que l’on ait le carré commutatif :

Nous resumons ci-dessous ce qui precede :
STRUCTURE AU-DESSUS DE Y : 1

Wy doit verifier les conditions de compatibilite I (Y).
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SYSTEME AUTOMORPHE (A) :

w doit verifier les conditions de compatibilite (S) ~ (I).

STRUCTURE AU-DESSUS DE X : 1

’U ==E iu. (X) et w~ doit verifier les conditions de compatibilite (I) = I (X).

Remarque. - Les diagrammes precedents existent aussi lorsque n  m.
On vient de voir que le systeme automorphe ainsi construit induisait

une structure au-dessus de X, a partir d’une structure donnee au-dessus
de Y. On peut donc encore, suivant un precede deja rencontre, oublier
ce systeme, pour ne plus considerer qu’une structure au-dessus de X,
comme dans la premiere partie. Le systeme (S) est alors un systeme
formellement integrable, involutif et invariant par le premier prolon-
gement de la transformation infinitésimale :

DEFINITION. 2014 De tels systèmes e. d. p. sont dits systemes structures.

Remarque. - On a rencontre plus haut l’association :

Systeme automorphe (A) - Systeme structure (S).

Nous ne savons pas si 1’existence d’un srdsfeme structure est conditionnée
par une telle association.

Exemple : La solution generale des equations d’Einstein dans le
vide n’est pas connue.
Le systeme (I) des conditions de compatibilite est, par construction,

un systeme structure maximal. (S) est donc un sous-systeme du

systeme (I).

Remarque. 2014 La section ’U (X) 1z X qui intervient dans la construc-
tion de Fo (X) doit satisfaire aux conditions de compatibilite deter-
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M

minees dans 1’etude de 6 (X) alors que dans la section X prece-
demment rencontree, ne devait satisfaire qu’a certaines de ces conditions
constituant. (S).

Par linearisation, en tenant compte de la remarque precedente, cette
propriete se transforme en l’existence d’un carre puis d’un diagramme
commutatif :

(c f. exemple I I I ou la premiere cellule traduit la construction des

equations d’Einstein et la seconde la construction de la divergence a
partir des identites de Bianchi.)
Un tel diagramme caracterise donc un systeme structure.

Nous allons donner quelques precisions sur de tels systemes (dans le
cas simple ou rest transitif) en utilisant la theorie classique des

systemes d’equations invariants par un groupe de Lie.

Le systeme (S) comprend tout d’abord un sous systeme (S~) forme

des equations S* (u, ~u ~x) = 0 fixant le rang de la matrice :

Le rang de la sous-matrice L (u) est egal a dim Fo. Le rang maximal
de la sous-matrice Inv (u) est determine par le fait que la condition

algebrique d’involution ne doit entrainer aucune relation entre les u
seulement. Or le nombre maximal d’équations invariantes est egal a

(n + 1) dim Fo 2014 (dim Fo + rg Inv (u)) = n dim Fo - rg Inv (u);

il est donc plus petit que dim F, et on retrouve dim S, L dim F1. Posant
(S) = (S*, S**), on ecrira symboliquement (S*) c (I~). Il faudra ensuite

ajouter aux equations precedentes des equations formees en egalant a
zero des fonctions libres des invariants du systeme complet obtenu a
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partir de en tenant compte de (S*). La presence des vecteurs

Inv (u) permettra, comme dans la premiere partie, d’écrire ces

equations sous la forme S u, c quasi lineaire en -r- ? avec
(S**) ~ (I**).

Nous ne savons pas, pour l’instant, donner des conditions nécessaires ou
suffisantes pour que de tels systèmes soient involutifs.

Par contre, nous allons indiquer une consequence importante de cette
propriete, qui generalisera le processus de contraction tensorielle

(c f. exemple II).

Imaginons une structure covariante au-dessus de Y et un systeme
structure S (Y).

D’apres cette structure au-dessus de Y on induit une structure au-
dessus de X en considerant, parmi les invariants Uy (y’, certains
invariants ou les derivations sont effectuees seulement par rapport
à lJna-n+1 = ..’ 7jilt = xn et que l’on notera U (y, rd~,) en supprimant
la ponctuation des variables dependantes.
Symboliquement on sait que I (X) C I (Y) et S (Y) C I (Y).
Prenons S (X) = I (X) n S (Y) pour satisfaire a S (X) C I (X). Nous

allons montrer que S (X), ainsi construit, est bien un systeme e. d. p.
formellement integrable et involutif.

Tout d’abord la condition algebrique d’involution est remplie
puisque S (X) est ainsi construit a partir de S (Y) involutif de la meme
maniere que I (X) a partir de I (Y) involutif.

Imaginons maintenant que par derivations par rapport a x1, ..., x~~
(y-~~, ...,y~) et eliminations, on puisse deduire, a partir des equa-
tions S (X), d’autres equations du premier S (X). Puisque
S (X) C I (X) formellement integrable, ces equations C I (X). De meme,
puisque S (X) S S (Y) formellement integrable, ces equations C S (Y).
Elles appartiennent donc a I (X) n S (Y) = S (X) ce qui est contraire
a Fhypothese.

C. Q. F. D.

Nous montrerons dans un prochain travail que la theorie de Gallois
classique est un cas particulier de la theorie d’integration des systemes
automorphes.
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EXEMPLE I : GROUPE DE LIE

PREMIERE PARTIE

Nous savons, d’apres les theoremes fondamentaux de Lie, que les

axiomes de la structure de groupe permettrent d’ecrire les equations
finies du groupe sous la forme de Lie :

Les equations infinitesimales generales correspondantes sont alors :

Posant x~ (x) ~~~ (x) = of leur forme resolue devient

II n’y a que des conditions de compatibilite de seconde expèce :

Posant wk = wf (x) dxl elles sont equivalentes aux equations de
Maurer-Cartan bien connues :

Nous obtenons ensuite les identites de Jacobi entre les constantes de
structure :

Alors que, suivant Cartan, on considere en general les wf (x)
comme n 1-formes différentielles, dans notre theorie nous considerons n2
fonctions de x, exprimant en coordonnees locales une section parti-
culiere d’un certain fibre au-dessus de X.

L’ecriture avec un indice en haut et un en bas est seulement plus
simple.
On construit la suite physique : _
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avec

Remarque. - On peut (ce n’est pas evident 1) demontrer l’exactitude
de P (0).
Le systeme

devient ici :

Les conditions de compatibilite pour les 7r sont :

On determine le groupe de Lie g de la facon suivante

Sa transformation finie la plus generale est donc :

et l’on conclut aisement a l’identité de notre theorie de deformation

et de la theorie des deformations d’algebres de Lie.

SECONDE PARTIE

Le systeme e. d. p. du premier ordre definissant rest automorphe,
de groupe (de Lie) fjrSg. D’apres la remarque precedente, la suite P (Y)
correspondante est donc exacte. Les suites P (U) et P (2.) ont donc

meme cohomologie, sauf peut-etre en Fu et Go, ce qui justifie, a posleriori,
1’oubli de la cellule initiale.

CAS PARTICULIER. - Considerons un pseudogroupe contenant toutes
les translations. Il est donc transitif, et ~ = Cte doit etre solution des
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equations infinitésimales (03A3) de la page 13. Mais alors il faut = 0

soit w (x) = Cte. Maintenant, puisque les Fp ne sont définis qu’a un
isomorphisme pres, ~9, et par suite cDi, ..., peuvent etre considérés
comme des operateurs differentiels a coefficients constants. Les suites P (0)
et P (E) sont donc exactes et le probleme d’equivalence locale peut
etre completement resolu pour une telle structure [5].

EXEMPLE II

Pour ne pas alourdir l’exposition de cet exemple, nous donnons seule-
ment, tres brievement, les expressions propres a cet exemple, en regard
de la denomination qui leur correspond dans la theorie generale.
Nous detaillons par contre certains calculs plus specieux.

PREMIERE PARTIE

1. equations d’un pseudogroupe :

PSEUDOGROUPE SPECIAL r :

EQUATIONS FINIES SPÉCIALES (forme resolue) :
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Verification de l’intégrabilité formelle et de l’involution :

LINEARISATION : on pose

EQUATIONS INFINITESIMALES SPECIALES :

SUITE PHYSIQUE : 1

dimensions :
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Verification de I’integrabilite formelle et de 1’involution :

Verification de l’intégrabilité formelle et de l’involution :

Premier prolongement de la transformation infinitesimale du but :

Cas ou elle est une transformation infinitesimale de r :
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Determination des vecteurs 8 :

Recherche des 3 + 9 - 4 = 8 invariants differentiels libres :

Pour des raisons de symetrie des calculs, on introduira

Les neuf invariants diflerentiels ci-dessus sont lies par la relation

Remarque. - La situation est la meme que dans le cas complexe
analytique ou l’on a J~ - - 1.

VOLUME A-XVIII - 1973 - N° 4



321THEORIE DES DEFORMATIONS DE STRUCTURES

EQUATIONS FINIES SPÉCIALES (forme de Lie) :

GROUPE DE (fonctions de transitions de - X) :

On veriiie :
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ceci lorsque :

EQUATIONS FINIES GENERALES : Elles sont obtenues directement a
partir des equations finies de  donnees plus haut. Nous ne les ecrirons
donc pas. Par linéarisation, on obtient :

EQUATIONS INFINITESIMALES GENERALES : 1

Remarque. - Ces equations sont liees par une relation lineaire car
on suppose toujours :

On veriiie :
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2. Conditions de compatibilite

Nous allons chercher les conditions de compatibility pour les w direc-
tement sur les Q = 0, sans passer par la forme resolue de ces equations.
Nous obtenons tout d’abord la condition de premiere espece :

a laquelle on ajoutera :

Nous simplifierons ces relations en remarquant :

On etudiera plus loin le cas :

(1) On suppose desormais :
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Les conditions precedentes se transforment donc en

Il faut maintenant eliminer les termes en ~i. On doit donc annuler
les determinants obtenus a partir des precedents en derivant seulement
une colonne. Derivant les determinants precedents suivant une regle
connue, nous allons montrer que les (2 fois 2) = 4 conditions nouvelles
sont en fait des conditions de compatibilite de seconde espece.

Soit tout d’abord :

Mais, d’apres la figure :

On a

Et donc :
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On vérifie que deux seulement de ces relations sont libres. On en
deduit :

et les deux fois :

1 condition de premiere espece + 2 conditions de seconde espece,

En tenant compte de

II ne reste plus a determiner que 7 - 6 = 1 condition. Formons

pour cela :

Mais on sait que

On trouve donc la condition de seconde espece :
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Soit, au total :

Nous allons maintenant montrer que les constantes ne sont pas
quelconques mais qu’il existe entre elles deux relations (J) bilinéaires.
(On rappelle dim Fi = 7, dim F2 = 2.)

II suffit pour cela, conformément a la theorie générale, d’exprimer
que les systemes e. d. p. precedents, involutifs puisque (6) et (I) le sont,
sont aussi formellement integrables.

Exemple :

d’ofi

APPLICATION : Pseudogroupe F special :

on vérifie

(2) Considerons maintenant Ie cas
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Nous avons donc :

et en particulier 1’equation

Le pseudogroupe ainsi obtenu est intransitif.
Les conditions de compatiblite s’obtiennent alors en exprimant que

les termes en 03BEi obtenus par elimination des derivees d’ordre 1 peuvent
disparaitre en tenant compte des equations d’ordre 0.

Les conditions de compatibilite sont donc :

Mais il ne faut pas oublier les conditions de compatibilite qui
permettent de joindre les equations :

aux autres equations du systeme generalise (2) :
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On forme

et les equations telles que

Par suite :

et donc :

Ainsi trois conditions

Nous obtiendrons une condition sur les c (x)) en exprimant que
le systeme (I) des conditions de compatibilite est formellement inte-

grable et involutif :

3. Normalisateur

Nous allons determiner le groupe de Lie 9 dont les transformations
finies u - u laisseront inchange (I). On commence pour cela par

mettre (03A3) sous forme resolue, en prenant )" et dxt comme derivees

parametriques.
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Tout d’abord :

On devra donc avoir :

et donc

par suite le cas de figure :

et ainsi :

Maintenant :
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de meme :

Calculant le coefficient on doit considerer :

mais on sait que

donc :

On montre ensuite en considerant les coefficients des 03BEi dans les

expressions de ~03BE1 ~x1 et d~2 ~x1 que

Par suite :

devient, en remarquant :
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soit

On aura finalement les transformations finies 

Les generateurs des transformations infinitesimales de g sont :

5. Théorie des déformations

A. GENERALITES

Il nous faut maintenant etudier l’effet d’un changement de marque
sur les constantes de structure.

On aura par exemple :
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B. CONDITION DE RIGIDITE

Nous allons maintenant etudier Bi (Y), Zi (r) et Hi (’). Pour cela

nous allons lineariser au voisinage de la transformation identique de

Utilisant les identites de Jacobi generalisees :

Veriiions l’indusion

Du point de vue fini :
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Du point du vue infinitésimal :

C. Q. F. D.

APPLICATION. - Determination de Bi (Y) et Z1 (r) dans le cas

particulier du pseudogroupe r special : .

Cette structure particuliere est donc rigide.
Determination de r’: : 

C. OBSTRUCTION A LA DEFORMATION 
.~

Puisque dim F2 = 2, dim F, = 0, le calcul de dim H2 (r) est equi-
valent a celui du rang de la matrice définissant Z1 (f), soit :
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Nous allons rechercher une structure qui ne soit pas rigide mais qui
ne soit pas (formellement) deformable.
Nous cherchons donc une structure telle que Hi (Y) ~ 0, H2 (r) = 0.

La matrice precedente devient

En particulier, si ci = c3 (point singulier) :

On peut imaginer de prendre :

à condition de satisfaire aux conditions de compatibilite (I) :

Puisque l’on doit prendre
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il reste a satisfaire

ce qui conduit, par exemple, a prendre

Le systeme (1) devient alors (8 equations libres) :

Les transformations infinitésimales du pseudogroupe correspondant :

Ses transformations finies sont :

Les constantes de structure sont alors :

Mais dans ce cas :
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et par suite :

Nous allons verifier directement l’existence d’obstructions a la defor-

mation en posant :

Au premier ordre C3 = 0 puis au second ordre :
1

Tout cocylce E Zi (V) n’est pas forcement integrable.
C. Q. F. D.

SECONDE PARTIE

equations de r relevées au-dessus de Y :
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Premier prolongement de la transformation infinitesimale

Cas où elle est une transformation infinitesimale de r :

Determination des vecteurs ó3 :

On verifiera qu’ils forment un systeme complet. On peut donc trouver
au maximum 6 + 3 - 4 = 5 invariants différentiels libres :

Les equations du système automorphe (A) sont alors :

ANNALES DE L’INSTITUT HENRI POINCARE



338 J. F. POMMARET

La connaissance de l’application Y nous permet donc de
connaitre les (i) (x) en exprimant que y = f (x) est solution de ces

equations.
Les M (x) doivent satisfaire aux conditions de compatibilite (systeme

structure) :

Mais l’intérêt de ces manipulations reside surtout dans le fait que
l’on a maintenant induit une structure au-dessus de X. On determine

pour cela son groupe de Lie 4b (X) :

On associera a ces transformations finies les equations finies gene-
rales &#x26; (X) puis les equations infinitesimales générales 03A3 (X) suivantes :

Le pseudogroupe correspondant, agissant sur X, sera intransitif :

Posons

VOLUME A-XVIII - 1973 - N° 4



339THEORIE DES DEFORMATIONS DE STRUCTURES

Puisquel’ona

on en deduira :

Cherchons alors les conditions de compatibilite I (X) :
Tout d’abord :

Mais il faut aussi tenir compte des equations :

d’ou

On obtient finalement :
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Où les constantes (I) de structure doivent satisfaire aux identités
de Jacobi generalisees : , 

_

Maintenant on remarquera que l’on peut ecrire plus generalement :

Utilisant les conditions de compatibilite pour les My (y) on deter-
mine facilement le système structure (S) dont les m (x) doivent être solu-
tions, lorsque Wt wf + w{ + ~Y 0 :

Cependant, pour que la structure soit covariante, on doit avoir aussi
des égalités telles que 

’ 

, 

’

Le membre de gauche s’ecrira, en utilisant : :,
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en developpant et examinant les termes comportant des derivees
~2 I1secondes dxi 

Or le membre de droite ne comporte pas de telles derivees. On doit
donc avoir :

Ce cas ayant deja ete traite, le systeme structure est alors :

Mais on a

Cette nouvelle structure speciale est donc covariante puisque l’on a
alors

La relation GJy wf + = 0 caracterisera donc les struc-
tures covariantes.

SYSTÈME STRUCTURÉ

Apres avoir lu la seconde partie, le lecteur verifiera sans peine que le
systeme suivant est un systeme structure :
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EXEMPLE III : RELATIVITÉ GÉNÉERALE

A la premiere partie de la theorie generale correspond la création
et l’étude d’un espace de Riemann a partir de l’espace de Minkowski
de la relativite restreinte.
A la seconde partie correspond la recherche des equations du champ,

dans le contexte riemannien de la relativite generale.
Le developpement de notre theorie generale est donc en fait analogue

au cheminement suivi par Einstein de 1904 a 1915.

Dans tout ce quit suit, nous adoptons les notations suivantes, de
facon a montrer que l’utilisation d’indices tensoriels est une simple
commodite d’ecriture :

Les developpements limites aux différents ordres du paramètre t
seront interpretes par les majuscules correspondantes :

Exemple :

PREMIERE PARTIE

PSEUDOGROUPE SPECIAL F :

Transformations laissant invariante la metrique de l’espace de
Minkowski de la relativite restreinte :

EQUATIONS FINIES SPECIALES : 1

EQUATIONS INFINITESIMALES SPECIALES : 1

Ce dernier systeme est evidemment formellement integrable, mais il
faut le prolonger une fois pour le rendre involutif, en obtenant les
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equations

r est donc en fait un groupe de Lie dont le nombre de parametres
est

C’est donc le groupe de Lorentz inhomogene.
Utilisant les methodes de la theorie generale, on obtiendra :

EQUATIONS FINIES GENERALES : t

E QUATIONS INFINITESIMALES GENERALES : t

soit

Pour determiner les conditions de compatibilite pour les wi; (x), il
faut rendre ce dernier systeme involutif. Pour ce faire, on définit les
symboles de Christoffel :

avec wi! (x) Wlj (x) = ö et on considere, au lieu de (~) :

Remarque. - !lij et sont des tenseurs.

Nous allons chercher directement sur ces equations les conditions de
compatibilite de premiere et de seconde espece. Définissons d’abord la
courbure :
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Linearisant, nous trouvons :

pi (l:) est formellement integrable lorsque Rijkl est une combi-
1

naison linéaire des 

Deimissons :

on veriiie :

Linearisant, on obtient

Posons ~m = Wmr (~) ~ on remarque :

Les conditions de premiere espece sont donc :

Contractons en s et i avec pjk (x) = pkj (x) = pijki (x); on obtient

Mais on a aussi :

ce qui necessite :

ou c est une constante.
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Les conditions de compatibilite pour les (x) definissent donc un

espace a courbure constante :

Dans (I), la courbure 03C1ijkl (x) est exprimée au moyen des (x) et
de leurs derivees premieres et secondes. Il n’y a qu’une condition de
seconde espece. Nous allons determiner le nombre total des conditions
de compatibilite, en utilisant le diagramme :

dim R3 = dim R2 --- n ~n 2 -1- 1) done dim Y3 == 0

et

dim Fi = dim 6 Fo - dim 6 T

NORMALISATEUR :

On considere la forme resolue de (1) :

g, groupe de Lie, puisque r et donc  sont transitifs, sera determine
par
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La transformation finie generale de 9 est donc -

On verifie alors

ce qui a pour consequence :

ou, du point de vue infinitesimal :

L’espace plat c = 0 est donc seul deformable.

Nous allons montrer maintenant le role fondamental joue par la
suite physique, a l’exclusion de toute autre suite.
En effet, si nous ne nous contentions que de (~) pour determiner (~),

il faudrait ecrire que (S) est le systeme

Or on sait que :

Par suite, R~ 2014~ R2 n’est surjectif que pour c = 0.

Il faut donc utiliser pi (I) pour construire :

Utilisant la dérivation covariante classique et le fait que est un
1

tenseur, on a

mais
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~~,~ est donc formellement integrable et involutif V c, si :

lorsque

- Le cas c = 0 est trivial.

- Nous laissons le lecteur vérifier 1’egalite pour c ~ 0.

On traduirait aisement les resultats precedents par des diagrammes
commutatifs, conformement a la theorie generale.

SOUS-PSEUDOGROUPE : 1

Considerons :

Alors :

Le pseudogroupe des transformations conformes est donc un

surpseudogroupe defini par les equations ~~~ c (I) :

On sait que 1’etude de l’intégrabilité formelle de ce systeme fait

apparaitre les conditions de compatibilite de premiere espece :

On vérifierait aisement qu’elles sont automatiquement remplies dans
le cas d’un espace a courbure constante, comme cela etait previsible
d’après la theorie generale.
Le diagramme commutatif :
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permet alors de calculer (ce qui n’est pas evident autrement) :

soit

Nous terminerons cette premiere partie en calculant explicitement les
operateurs differentiels des suites physiques rencontrees, de facon a
utiliser ces resultats dans la seconde partie. Pour plus de simplicite,
les developpements limites seront calcules pour (x) === I) (i,j = 1,..., 4)
et on supprimera l’indice inférieuro

EQUATIONS DE KILLING : 1

On vérifie que ce systeme (I) correspondant à D est formellement
integrable mais non involutif. Le premier prolongement pi (I) introduit

les équations ~03BEi ~xj ~xk = 0 et permet de considerer un systeme du second
ordre, formellement integrable et involutif.

Un calcul simple mais fastidieux conduit aux 20 composantes de la
courbure linearisee, correspondant a 

Un autre calcul analogue permet de determiner les 20 identites de
Bianchi linearisees, correspondant a 101 :

VOLUME A-XVIII - 1973 - N° 4



349THÉORIE DES DEFORMATIONS DE STRUCTURES

Le lecteur obtiendra sans peine les 6 identites correspondant a 

SECONDE PARTIE

Par analogie avec 1’equation de Poisson, la recherche des equations
du champ devient equivalente a celle d’un tenseur différentiel Sij
des (x) :

10 du second ordre;
20 lineaire par rapport aux derivees secondes des ~x);
30 dont la divergence doit s’annuler.

On sait alors qu’un tel tenseur existe et qu’il est unique :

Les equations du champ sont alors :

en introduisant comme second membre le tenseur d’impulsion-energie
delamatiere.
La presence de la constante cosmologique A reste assez mysterieuse.

En fait, dans la plupart des applications, on linearise ces equations au
voisinage de ~~~ (x) = tout en prenant A = 0.

Ce processus, effectué pour les besoins de la cause physique, n’a
autrement aucune signification dans le contexte tensoriel.

Remarque. - S’il n’y as pas de second membre (T;j = 0), alors

03C1 = 2n n-2.
Nous allons montrer que les conditions ci-dessus sont caracteristiques

d’un systeme structure (S).
Les equations du champ sont alors obtenues directement sous la

forme linearisee :

avec la condition de compatibilite :
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Il nous suffit pour cela, d’ apres la theorie generale, de montrer

que (S), c’est-a-dire == 0), est un systeme e. d. p. formellement

integrable et involutif. On sait qu’il suffit de vérifier cette propriete
sur $1 pour un choix particulier des Wij (x) satisfaisant a (I). En parti-
culier, on prendra (x) = (~, imposant A = 0.

Puisque le systeme (S) est equivalent au systeme - n - 
Ie systeme (Z1 Fo = 0) est donc equivalent au systeme /’R/y = 0B ou
encore au systeme sous forme resolue :

On verifie les quatre identites (correspondant a la divergence) :

avec

Le systeme structure (S) doit donc etre consequence de (I). ()n en

deduit :

La constante cosmologique A s’introduit donc naturellement dans les
calculs et traduit seulement la commutativite du diagramme :

Nous savons passer, en oubliant 0), d’une suite physique P (~), a

sa suite tronquee P (~), qui est aussi une autre suite physique.

PROBLÈME. 2014 Supposons donnee une suite physique; est-il possible de
1’inserer dans une autre suite physique, plus longue ?
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Comme nous ne savons pas repondre en general, nous allons essayer
de restreindre le probleme.

Ainsi, lorsqu’on se donne un systeme automorphe (A), de pseudo-
groupe r, on peut determiner °1L - X, puis (6) suivi de (I), et on sait
que (S), en tant que sous-systeme de (I), est un systeme structure.

Un tel processus generalise la contraction utilisee en calcul tensoriel
pour obtenir les 10 equations d’Einstein dans le vide, a partir des
20 conditions de courbure constante. Il sera aussi appele contraction,
bien que le point de vue considere soit tres different.

PROBLÈME. 2014 A chaque systeme automorphe correspond un systeme
structure ; la reciproque est-elle vraie ?

EXEMPLE. - Est-il possible de determiner la solution la plus générale
des equations d’Einstein dans le vide, en utilisant seulement certaines
fonctions des xi et leurs derivees a differents ordres ?

En conclusion, il semble que la matiere apparaisse dans une suite

physique au niveau Fi (comme les constantes de structure), alors que
le champ, introduit par les m (x) de la structure, apparait, linearise,
au niveau Fo, le premier fibre E jouant le role d’un potentiel.
Nous pensons qu’il y a plus qu’une simple analogie entre les methodes

presentees dans ce travail et celles des theories unitaires. En particulier,
il faut toujours passer par des equations finies, que l’on contracte en
un systeme structure, sans savoir s’il traduit les conditions de compa-
tibilites d’un certain systeme automorphe.

EXEMPLE IV : STRUCTURE ANALYTIQUE COMPLEXE

Équations finies spéciales (Cauchy-Riemann) :

.Equations infinitésimales spéciales :
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Remarque. - Suite de Dolbeaut linéaire en coordonnees reelles avec

Équations finies generates (forme de Lie) :

Équations infinitésimales générales (2 m2) :

Conditions de compatibilité (premiere espece seulement, torsion nulle) :
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