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Section A :-

Physique théorique.

ABSTRACT. - In this article a procedure is discussed for obtaining
solutions to Einstein’s field equations in a region of space-time bounded
by a null hypersurface on which hold the junction conditions proposed
by O’Brien and Synge. Other formulations of null hypersurface condi-
tions are shown to be inappropriate.

SOMMAIRE. - Dans cet article une methode est proposee pour obtenir
des solutions des equations d’Einstein dans une region limitee par une
hypersurface nulle OÙ sont obtenu les conditions de raccordement

proposees par O’Brien et Synge. D’autres formulations des conditions
sont montrees d’etre inappropriees.

1. INTRODUCTION

The junction conditions which must hold at a hypersurface, S, of

discontinuity in General Relativity have been formulated in several
ways, but these formulations have been shown [9] to be equivalent in
the case when S is not null. The purpose here is to discuss the situation
when S is a null hypersurface.

Suppose that ds2 is the metric of four-dimensional Riemannian space-
time defined by (1) :

(1) Latin indices i, j, ... take values in the range 1-4 and Greek indices a, ~, ...
in the range 1-3. Thc convention of summation over repeated indices is used.
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78 E. H. ROBSON

where gij, g~~ denote the covariant, contravariant components of the
metric tensor, and that a three-dimensional null hypersurface, S, is
defined by the equation

where a is a constant. The condition that S is null may be expressed by

The components of the covariant normal to S and its covariant deri-
vatives are denoted by Ni and Nilj, respectively.

First consider what restrictions are placed on the metric tensor, gij,

and its partial derivatives, ~gij ~xk, by the condition that the first and second
fundamental forms [5], defined by

should be continuous at S for arbitrary dxi consistent with the condition

When S is defined by equation (2) Ni has components (0, 0, 0, 1)
so that condition (4) states dr = 0, and the continuity of the forms ds2
and C is equivalent to the continuity of the quantities and

N(xj~(o:,P=l,2,3). Now the quantities are defined by the

equations

where are the Christoffel symbols of the second kind, and consequently
they are continuous at S if and only if the quantities defined by

are continuous at S. Since g~~ is zero it follows that the continuity
at S of (and hence of N exl [3), is assured provided are continuous at S.

In other words, the first and second fundamental forms are continuous
at S if and only if the components, = 1, 2, 3), are continuous
at S. These appear to be extremely weak conditions on the metric
tensor and are not investigated further.

O’Brien and Synge [6] suggested that all the components, of the

metric tensor and the following four combinations of derivatives
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79NULL HYPERSURFACES IN GENERAL RELATIVITY THEORY

of the metric tensor

= 1, 2, 3), should be continuous across a null hypersurface defined
by equation (2). It is shown, in section 2, that these conditions impose
restrictions on the energy-momentum tensor, and in section 3, that
they give sufficient data on S to admit solutions to Einstein’s field equa-
tions.

2. ENERGY-MOMENTUM TENSOR

AT NULL HYPERSURFACES

It is shown in this section that if the metric tensor, and the expres-
sions (5) are continuous at S then the components, Ei (i = 1-4),
of the Einstein tensor are continuous at S, and consequently, through
the field equations, the components, Ti (i = 1-4), of the energy-
momentum tensor are also continuous at S.

As a simplification, and without loss of generality, the further condi-

tion that the partial derivatives (i = 1-4), are continuous at S

may be assumed since a coordinate transformation, which does not
alter any tensor quantities at S, may be introduced to impose this condi-
tion even when S is null [9].

It is worth pointing out that the continuity of the four combinations
of partial derivatives (5) still allows some discontinuities in the six

derivatives (a, - 1, 2, 3).

Before considering the possible discontinuities in the components
of the Einstein tensor the following preliminary results are derived.

Taking the partial derivatives of the expressions (5) with respect to xY,
it is observed that the following expressions must be continuous at S,

The contravariant components ga-j are defined by the following
system of equations

where a1; are the components of the Kronecker delta function.
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Differentiating these equations with respect to rl’ derives the following
equations

"’ .v: i 1 _.

Using these and equations (7), it is easily seen that the expressions (6)
may be written as follows

and these must be continuous at S.

Now consider the possible discontinuities at S in the components,
of the Riemann tensor when g~~ is zero and the O’Brien-Synge

conditions hold at S. From their definitions (see for example, [12]),
it is easily seen that, at S, Rzpys may be expressed as follows

where [C] denotes terms continuous at S, and [ij, k] are the Christoffel
symbols of the first kind defined by

Using this definition the following expressions for may be obtained

Similarly, some of the other components of the Riemann tensor at S

may be expressed in the following way

where it has been assumed here that 03B4g4i ~x4 ‘ (i = 1 - 4), are continuous at S.
VOLUME A-XVIII - 1973 - N° 1



81NULL HYPERSURFACES IN GENERAL RELATIVITY THEORY

Also when g44 is zero, the components Rw of the Ricci tensor may
be expressed as follows

Furthermore the components Et of the Einstein tensor may be written

Thus, substituting from equations (7) and (8) into equations (9), multi-

plying the resulting equations by - 2 1 summing over (3 and y
«(3, y = 1, 2, 3), and using the result that the expressions (5) are conti-
nuous at S, the following equation may be derived

Using the result that the expressions (6’) are continuous at S, it may
be seen from this that the component E1 of the Einstein tensor is conti-
nuous at S.

Similarly, the components Ef (y = 1, 2, 3), of the Einstein tensor
may be written

Again, substituting from equations (7) and (8) into equations (9), multi-
plying the resulting equations by summing over (3 (~ = 1, 2, 3),
and using the result that the expressions (5) are continuous at S, the
following equations may be derived

Using the condition that the second set of expressions in (6’) are

continuous, it follows that these equations may be written

where B0153 (~ = 1, 2, 3), are defined by
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i.e.

However, since when g’~~ is zero,

it follows that Ba (a = 1, 2, 3), are zero, and consequently that the compo-
nents Ey ( y = 1, 2, 3), of the Einstein tensor are continuous at S.

3. NULL HYPERSURFACES

AND EINSTEIN’S EQUATIONS

Suppose on a null hypersurface, S, defined by equation (2) and bounding
a region, V, of space-time, the components, y//, of the metric tensor,
the combinations (5) of the partial derivatives of the metric tensor
and the components Ti of the energy-momentum tensor are given.
The purpose of this section is to show how the ten independant Einstein
field equations, defined by ~~

where x is the gravitational constant, may be solved in V.

Following Synge [12], it is assumed that the six components
= 1-3), of the metric tensor and the four components,

T: (i = 1-4), of the energy tensor are to be determined in V from the
field equations when and Tf are chosen in V and the above values

are prescribed on S through the junction conditions. ( The choice of g~i
in V is subject to the restriction that they are continuous at S. The

derivatives d g’;‘ may or may not be continuous at S).
Notice that (5) constitute only f our combinations of the six first

derivatives Therefore, to obtain a solution, the field equations

must determine two equations f or these first derivatives at S as well

as the values of the second derivatives of the metric and

the first derivatives of the energy-momentum tensor 20142014 at S.
Consider then the six independent equations included in the follo-.......... v ar wrw.a va

wing (2) :

(2) Recall that the four equations El = - x Ti are satisfied identically at S.
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83NULL HYPERSURFACES IN GENERAL RELATIVITY THEORY

Using t to denote terms which do not include second derivatives with
respect to x4 of the metric tensor, these equations may be expressed
as follows :

since g*~ is zero. These, in turn, may be conveniently expressed by

where the derivatives and and the quantities T;" occur in the~ ~ ’

expressions ~, and A, (~ == 1-4), are denned as follows :

None of the’second derivatives $§ §§/ occur in the J
It must be made clear that there are precisely six independent equa-

tions in the set (10), and so if explicit expressions are found for the four
combinations, A~, at S in terms of the gO and Ij from any four of them,
it necessarily follows that there remain two other independent equations
in the set into which these expressions may be substituted to give two
equations between the values of gij and lf at S. These serve as the two

required relationships for the (a, 13 = 1, 2, 3).
It is now shown how explicit expressions for Ai (i = 1-4), may be

obtained from equations (10). Two cases arise.

First, suppose none of the (a = 1, 2, 3), are zero at S. Then the

following equations from (10) give Ai (i = 1-4), directly :

Second, suppose at least one of g4.(I. (a = 1, 2, 3), is zero at S. Without
loss of generality it is assumed gv is zero. Then the following equations
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may be obtained from (10) :

and these can always be solved for Ai (i = 1-4), provided the following
condition holds

However, when g14 is zero, the left-hand side of this is just the deter-
minant and so the inequality must always hold in this case.

Thus, it may be concluded that unique expressions for A~ (i = 1-4),
can always be found from four of the six independent equations (10).
These expressions may be substituted into the two remaining equations

of the set (10) to obtain two partial differential equations, E, in 

and known functions at S. Because these equations, E, in general,

involve the terms 2014- at S it follows that their solutions for 

at S will, in general, involve arbitrary functions of 

Having obtained at S from these equations the other four equa-

tions in (10), i. e. equations (12) or (13), may be used to determine the
values of Ai (i = 1-4), directly in terms of these arbitrary functions of x.’.
This done, the four equations

may be differentiated with respect to x’ and the values of at S may

be found-again in terms of the arbitrary functions of XI.
In this way the first derivatives with respect to x’~ of all the surface

data may be found in terms of arbitrary functions of xY.
. 

Comparing the four combinations Ai of second derivatives defined

by equations (11), with the four combinations (5) of first derivatives,
it is observed that the next stage, (and each subsequent stage), in the
solution procedure, i. e. finding the second, (and higher), derivatives
with respect to z4 of the surface data, is precisely the same as the first
stage outlined above. Arbitrary functions of xY are introduced as each

higher derivative is obtained.

VOLUME A-XVIII - 1973 1
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It is worth noting that if the Lichnerowicz j unction conditions [4],
stating that the components, gij, of the metric tensor and all its first

derivatives, ~gij ~xk, should be continuous at S, were imposed, then the

surface data would be over-prescribed, since the set of equations (10)
would constitute a set of six equations in the four unknowns Ai (i = 1-4).
These, in general, would not be consistent since the values Tx are chosen
arbitrarily in V.

Example. - As illustration of the foregoing procedure consider the
following metric

where are functions of u only. Let S be a null hypersurface, defined
by

where a is a constant, and separating space-time into two regions V L
and V2 defined by

Suppose Vi is a flat space-time region so that in Vt (14) is the Nlinkowski
metric given by [1] :

where cpo, po are constants.

According to the above procedure the functions gH and Tx may be
chosen freely in V2, and an interesting choice for Tf is that they are all
zero except T~ i which takes the form

where A is a function of u. This form of energy-momentum tensor may
be interpreted [13] as an electromagnetic plane wave progressing in the x
direction (the function A being the only non-zero component of the
electromagnetic potential). The functions may be chosen, for
example, to be the same in V2 as in V1, i. e. cp may be chosen to have
the form (16)in V2 as well as in V1-
For the metric (14) the condition that the combinations (5) of the

first derivatives should be continuous at S imposes no restriction at
all on the function (3. The other junction conditions require the compo-
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nents TI (i = 1-4), to be zero at S and (3 to have the value (5o + In a
at S.

The only non-trivial field equation in the set (10) is the following

which may be expressed as

This, being a first order differential equation for ~, may be solved subject
to the boundary conditions that j3 equals (3o + In a when u = a, whenever

the function A is chosen. ( Since it is assumed in this example that 03B2
is a function of u only no terms involving occur

in this equation. Even so, the value of-atS is arbitrary up to a sign.)
When (o has the form (16), a particular choice for the function A

is given by

where c is a constant. This leads to a solution of equation (17) (when x
is put equal to 8 ~r) given by

Notice if 2014 were chosen to be continuous at S the equation (17) would
be inconsistent except when A were chosen to be constant.

Finally, the left-hand sides of the equations

may be evaluated and the components Ti in V2 obtained. It turns out,
in fact, that all the components T~4 are zero in V2 no matter what choice
is made for the function A. (This last remark is easily verified from
the conservation laws

remembering that T4i are zero on S, and that the solutions are indepen-
dent of x, y and z.)
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4. DISCUSSION

If in the procedure outlined in section 3 the values of T; at S and
of Tf in V are all chosen to be zero, then it follows from the conservation
equations that all the components of the energy-momentum tensor in V
must be zero, i. e. a vacuum solution is obtained thereby.
Many authors have studied the initial value problem for vacuum fields..
Bondi et al. [2] and Sachs [10] when discussing the asymptotic behaviour

of such fields implicitly assumed the existence of discontinuities in the
first derivatives of the metric tensor at null hypersurfaces (the arbi-
trary functions being the « news » functions).
The possibility of first order discontinuities at null hypersurfaces

(bearing no singular matter distribution) was shown by Papapetrou
and Treder ([7], [8]) to be consistent with the vacuum equations. Propa-
gation equations for these discontinuities (which are equivalent to the
equations E discussed in section 3), were explicitly obtained.
The arbitrary functions introduced by equations E cannot be fixed

without knowledge of the solution off the null hypersurface, S. In the
vacuum case, Sachs [11] has determined unique solutions by giving
the metric on a second null hypersurface and on its intersection with S.
Choquet-Bruhat [3] has constructed unique solutions of the vacuum

equations in harmonic coordinates when the metric and its first derivatives
are given at the apex of the null cone formed by S. (The harmonic
coordinate condition corresponds to choosing g;; in V.)
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