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Section A :

Physique théorique.

ABSTRACT. - On the basis of Gleason’s theorem it has been proved
that a hidden-variables model of standard quantum mechanics is impos-
sible except for the case of quantum systems describable in 2-dimensional
Hilbert space. Two actually existing models of hidden parameters

for a spin ~ particle have been analyzed. It has been demonstrated

that " hidden pure states 
" of this models are nothing but probability

measures on the logic associated with 2-dimensional Hilbert space.
The unusual richness of the set of probability measures in question
enables us to construct many similar models, one example of such a
construction is given.

1. INTRODUCTION

Since the advent of the quantum theory it has been accompanied
by the hidden variables hypothesis. The latter expresses the dissatis-
faction of some theoreticians with the actual interpretation of the quantum
mechanics. However, the term " hidden-variables interpretation of

quantum mechanics 
" does not mean the same in the pronouncements

of adherents of the actual form of quantum mechanics and those of
supportes of the hidden variables idea. We have abstracted in section 2
a rigorous formulation of what opponents of " deterministic 

" 

interpre-
tation of quantum mechanics mean by a hidden-variables model of usual
quantum theory. We are able to prove in a simple and direct way
that it is impossible to construct such a model for systems requiring
description in a Hilbert space of dimension greater than two. The proof
is based on the Gleason theorem [3] which is not valid for the case of
2-dimensional Hilbert space. This case is investigated and we demons-
trate that the set of all probability measures on the logic £2 of
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2-dimensional Hilbert space Je2 is rich in non-regular measures, i. e.
non-describable in terms of density matrices in Je2. Two actually

known models of hidden variables for the spin 2 1 particle (Bell [I], Kochen
and Specker [5]) are analysed in detail and proved to be based on this
unusual richness of Jll2. Moreover, we have constructed a new model
of this type and suggested a possibility of constructing a large number
of similar ones. It seems to indicate such constructions to be vain.
In Jll2 one may find also other types of measures. For instance, we

prove that states of the " drop of non-hilbertian quantum liquid "
- the fictitious " physical system 

" invented by Mielnik [6], may be
regarded as some probability measures on ~2.

2. THE HIDDEN VARIABLES PROBLEM

The " logical 
" 

approach to quantum mechanics is particularly useful
to discuss the hidden variable problem. A fundamental notion of this

approach is the logic £ of the system, i. e. the set of all elementary
measurements (yes-no measurements) feasible on the system. It is

commonly accepted that the logic is an orthomodular complete ortho-
lattice isomorphic to the lattice of all orthogonal projectors in a complex
Hilbert space æ (we have neglected purely technical peculiarities related
to superselection rules). Elements of the logic £ will be denoted :

a, b, c, ... and corresponding projectors in 3e : Qu, Qb, Q~., ....

" Logical 
" relations in .e can be translated to familiar relations in

the set of all projectors in ~. Thus the partial ordering a ~ b in
means Qa Qb = Qb Qa = Qa, i. e. the closed linear manifold corres-

ponding to Qa is contained in the closed linear manifold corresponding
to Q~. The orthocomplementation a - a’ is realised in Je by the
involutive mapping Qa - Qal = I - Qa, with I; the unit operator

The lattice meet a /B b of a, corresponds to the projector
with the proper subspace equal to the common part of closed mani-

folds associated to Qa and Qb. The lattice join a V b = (a’ /B b’)’
thus = I - The closed linear manifold corresponding to

is the one spanned by proper subspaces of Qa and Qb. The lattice J:

is complete, in particular : /B a = 0, ~/ a = e, with Qo = 0, Qe = I.
Atoms of .e are in correspondence to projectors on 1-dimensional sub-
spaces of Je.

The second basic constituent of the quantum theory is the set of
states Ð with elements x, ~ --;, .... Any state is a probability measure
on the logic E. The Gleason’s theorem states that any such measure
on a logic of projectors in Hilbert space 3e with dimension greater than 2
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is describable by means of density matrix, i. e. is a state in the sense
of von Neuman. Thus the set of all probability measures on the logic ~
associated with the Hilbert space of dimension greater than 2 is identified
with the set ~ of states, and pure states are in 1-to-1-correspondence
with 1-dimensional subspaces of Je (we have neglected again super-
selection rules). The set S possesses many regular properties, for
instance it is o-convex, order-determining and separating.

Quantum mechanics is a statistical theory, it provides us only with
statistical predictions about possible outcomes of measurements. If
a E ¿) and A - a quantum observable, then the expectation value for
A-type measurement on the system in state a is denoted by a (A). This
number is in general different from any proper value of A even if a is
a pure state, and one cannot predict with certainty the result of a single
measurement. This " indeterministic 

" feature of the quantum mecha-
nics leads to the concept of hidden variables. Generally, neither oppo-
nents nor adherents of the idea of hidden variables state precisely the
exact meaning of this concept. Now we should like to formulate what
the term " hypothesis of hidden variables 

" 

means in pronouncements
of opponents of this idea. We follow implicit or explicit assumptions
contained in papers of Jauch and Piron [4], Kochen and Specker [5]
and others.

A successful introduction of hidden variables to quantum mechanics
means that :

(i) There exists a classical statistical theory with the phase space Q.
Elements of Q are regarded as hidden pure states of the considered quan-
tum system.

(ii) Any hidden pure state is " dispersion-free ", i. e. it has
the property that an expectation value w (A) for any observable A is
equal to some of proper values of A.

(iii) " Usual 
" 

quantum states ~ are described as some distributions
of density of probability on the space Q (classical mixed states).

(iv) " Usual 
" 

quantum observables are described as some Borel

functions Q - R with R - the real line (classical observables).

(v) " Usual 
" 

quantum expectation values are identical with corres-
ponding values calculated in the classical (hidden variables) formalism.

(vi) The above mentioned replacement of quantum observables by
Borel functions on Q is of such a type that corresponding imbedding
of the logic £ into the Boole’ an logic associated with Q preserves partial
ordering, orthocomplementation and joins of compatible elements
in £.
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These requirements have their justifications. The first five reflect

the common meaning of the " classical re-interpretation 
" of quantum

mechanics, proclaimed by the hidden variables hypothesis. The last

requirement mirrors a widespread opinion that such properties of the
logic £ as partial ordering, orthocomplementation and joins of compa-
tible elements are directly supported by experiments and must be

preserved in any form of quantum theory.
There exist some refutations of the hidden variables hypothesis in the

above (or stronger) sense. However, all those impossibility proofs
may be criticized (see e. g. [1]), therefore we propose a new one. The

main advantage of our demonstration is simplicity and evidence.
Let us consider a hidden variables model of a quantum system descri-

bable in a countably-dimensional complex Hilbert space and let w denote
a hidden pure state in this model. This state is a probability measure
on the classical Boole’ an logic associated with the phase space Q. By (vi)
the state w determines also a probability measure w on ~. The measure w

associates to any element of ~ the value 0 or 1 (by (ii)). Let al denote
an atom such that co (a,) = 1. In the set t1 of all atoms of ~
there exists a maximal subset of pairwise orthogonal atoms cfi, a2, ....

Obviously w (a;) = 0, i = 2, 3, .... If a dimension of the space X is
greater than 2, then the Gleason’s theorem forces the measure GD to be
described by means of some density matrix pw in ac. It is easy to see
that the only density matrix p with property

Thus p~ = Qat but evidently there exists in ;Je an atomic projector Q
such that Tr (Qat Q) ~ 0, 1. The conclusion is : the possibility of

hidden variables model (in the above sense) is contrary to the Gleason’s
theorem.

In the above proof we have neglected superselection rules. In a

general case we conclude that the existence of the hidden variables
model forces the set of atoms c1 to be equal to the set ai, a2, a3, ... ;,
i. e. the considered system must be a " classical " one (but with a coun-
table set of pure states).
Some adherents of the deterministic re-interpretation of quantum

mechanics understand the term of " hidden variables model " in a diffe-
rent way. That is why there exists such a model [2] contrary to our
result.
The only possibility of a successful realisation of the hidden variables

model (as defined above) is in the case of the system described in 2-dimen-

sional Hilbert space (e. g. spin observables and spin states of a spin 1
particle). Now we shall analyse this interesting case.
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The logic associated to the 2-dimensional Hilbert space ðe2 is

composed only of the set of atoms t12 and two elements 0, e. The

set of all probability measures on consists of all functions a :
- [0, 1] such that a (0) = 0, a (e) = 1 and

for every atom a There exist in measures non-describable
in terms of density matrices in e. g. the measure assigning
values 0, 1 to some pair of orthogonal atoms and value 2 1 to the other
elements of Among these non-regular measures there are some
with properties corresponding to hidden pure states. Namely any
function oo: - { 0, 1 ). with property (1) satisfied for every pair
of orthogonal elements in may be interpreted as dispersion-free state
on J?2 and conversely. Functions of this kind will be called 0, 1-functions
(or 0, 1-measures) on 
The mentioned features of ~2 and J!c2 suggest the possibility of construc-

tion of the hidden variables model for a spin 2 1 particle. ° We shall examine

two actually existing models of this type ([1], [5]) and prove that they
are essentially based on the unusual properties of Jn.2.

3. HIDDEN VARIABLES MODELS FOR SPIN ~ ~ PARTICLE
The first model (satisfying conditions formulated in section 2) of

hidden variables for spin observables and spin states of a spin ~ particle
was proposed by Bell [1].

" Usual " quantum states are in this case represented by spinors ~
forming the 2-dimensional Hilbert space Quantum observables are
represented by Hermitian 2 X 2 matrices :

with s, the unit 2 X 2 matrix; Vi (i = 1, 2, 3), Pauli matrices; u,

x; (i = 1, 2, 3), real numbers. Hidden states in Bell’s model are labelled

by spinors ~ and a real parameter )., 2014 ~ ~ ~ ~ ~’ If ~ ~ ~ = ( 0 then
the measurement of observable A in the hidden state gives with
certainty the proper value of A
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t

with x J = (xl + x; ~ x~)’, sign X = + 1 if X ~ 0 and - 1 if X  0,

The " usual " quantum state determined by spinor If is described as

uniform (over 03BB) mixture of hidden states with - 1 203BB 1 2.
In the case of v = 0 1 we have obtained the familiar quantum expec-
tation value

We shall demonstrate that hidden states of Bell’s model are probability
measures on The 2 X 2 Hermitian matrix (2) is a projector on a

1-dimensional subspace of if u = 1 2, ] x ) I - 1- Thus the set is

in I-to-1-correspondence with the set of all points of the sphere S of

radius 1 in the 3-dimensional Euclidean space (l, X2, Orthogonal
atoms are represented by opposite points of S.

An application of the formula (3) to atoms of ~2 (i. e. to observables
satisfying the condition u =- ? I x = 2 1 leads to

with a Thus

and the condition (1) is satisfied by Bell’s hidden states. This means
that states are 0, 1-measures on .~, and belongs to Jll2.

Thus Bell’s hidden states are probability measures and differ
from " usual " quantum states in the property that they are not repre-
sented by density matrices in The existence of such type of meausres
is compatible with Gleason’s theorem, because this theorem holds for
Hilbert spaces of dimension greater than 2.
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The second hidden variables model for spin 2 1 was proposed by Kochen
and Specker [5]. Now we shall examine this construction.

Matrices of trace zero in ~2~ form 3-dimensional Euclidean space with
the unit sphere S2 corresponding to matrices with proper values ± 1.
If A denotes a 2 X 2 Hermitian matrice with proper values vi, V2 (vi ~ v~),
then

is a matrix with proper values + 1 corresponding to A. In this manner

we associate with A a point on S2.

The phase space ~ of hidden states is chosen as S’. A quantum
observable A with two different proper values vi, V2 is represented by
function

with the " north " hemisphere of S’ with the " North Pole "

at If vi = V2 = v for some observable A, then f~ (w) = v for
every point WE S2.
The quantum state § = o 1 is described by the density of probability

function

on the phase space S2, with X;J the third coordinate of a point M.
We shall analyse the Kochen and Specker model and demonstrate

that hidden pure states w of this are also probability measures on ~2.
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Let us observe that the function f ~ given by (5) is not correctly defined.
Indeed, if we consider for example the case of A = a E then

If denotes the closed (open) hemisphere of S2, then

with a’ the orthocomplement of a in £2, contrary to the condition (vi)
of the previous section. Note that this condition is accepted by Kochen

and Specker in a somewhat different formulation. We must improve
the definition (7) of fa (~). Thus for instance, if a = 0-3, then we define

with the open hemisphere of S~; x h x2, coordinates of 

In a general case we define f a (w) in an analogous way, with the previous
change of basis in the linear space of trace-less Hermitian matrices on ~2.

It is easy to see that the function w (a) = f a (w) defined by means
of such improved functions f a (w) is a 0, 1-measure on £2 and is identical
with the Bell’s hidden state for 2, = 0 and some ’L.
Thus we have demonstrated the set of 0, 1-measures on £2 used in

the Kochen and Specker model to be contained in the analogous set
associated to Bell’s model. The more numerous set of hidden pure states
in Bell’s model enables a description of quantum states by more simple
mixtures than in model of Kochen and Specker.
The above discussed models are not the only possible ones. The

set of 0, 1-functions on is sufficiently large to enable us to construct
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plenty of similar models. For example, let us define the hidden pure
states as 0, 1-functions on ~2 labelled by spinors ’L and a real parameter

2 1  i.  2 1 ~ such that = 0, 1 .

with x:1, ?, the third coordinate and the azimuthal angle of thepoint
a on the sphere S (the sphere S was being introduced in discussion of
the Bell’s model). A simple calculation suffices to test that a quantum
states ~ corresponds to the uniform (over 7~) density of probability
distribution on hidden states ~~, 2014 ~ ~ C  ~ ~

It is evident, that one can invent many of similiar models [at least
by further splitting of the interval [0, 2 7r] in (8)]. The existence
of such a great number of possibilities suggests that similiar constructions
are futile and far from physical reality. This opinion is supported by
the impossibility of generalization of this models on quantum systems
described in Hilbert spaces of dimension greater than 2, as we have

proved in the previous section. The described constructions are possible
owing to the fact that the Gleason’s theorem does not hold for the
2-dimensional Hilbert space.
The set of probability measures on ~2 is much more diversified

than an analogous set for the case of a higher dimensional Hilbert space.
This variety is caused by the existence of the set of non-regular measures
in It is interesting to see that in one can find not only 0, 1-mea-
sures, corresponding to the hidden pure states, but also other " exotic "
measures. As an example, we shall demonstrate that states of the
" drop of non-Hilbertian quantum liquid ", the fictitious " physical "
system invented by Mielnik [6], are represented by some measures in .J1l28
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Let us consider again the " phase space " Q introduced in the model
of Kochen and Specker. We define the measure p-a on £2 as the uniform

(over Q) mixture of all measures 03C903C8,0 with property that the atom a, j

representing ’f is placed on the " north " hemisphere of S with the

,North Pole " at a. A simple calculation shows that the transition

probability between two such measures and is equal to 1 2014 -
with 0, the angle between directions defined by points ai and a2 on S
and the center of S. But that is the transition probability characte-
ristic for Mielnik’s probability space T (2, 3). Thus this space is contained
in Jll2. Measures pa have a very interesting interpretation as states

of " drop of non-Hilbertian quantum liquid "; see Mielnik’s paper [6]
for details. Probably the set contains numerous examples of similiar
" non-Hilbertian " spaces.
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