J. Manuceau
A. Verbeure

The theorem on unitary equivalence of
Fock representations

<http://www.numdam.org/item?id=AIHPA_1972__16_2_87_0>
The theorem on Unitary Equivalence of Fock Representations

by

J. MANUCEAU

Faculté des Sciences Saint-Charles, 13-Marseille 3e (France)

and A. VERBEURE

Instituut voor Theoretische Fysica, Universiteit Leuven (Belgium).

ABSTRACT. — We prove that two Fock states \(\omega_J \) and \(\omega_K \) (not necessarily gauge invariant) on the CAR-algebra are unitarily equivalent if and only if \(| J - K | \) is a Hilbert-Schmidt operator. We calculate explicitly the norm difference \(\| \omega_J - \omega_K \| \).

Let \((H, s) \) be a separable Euclidean space and \(J \) and \(K \) complex structures on \((H, s) \), i.e.

\[
J^+ = - J; \quad J^2 = -1, \quad K^+ = - K; \quad K^2 = -1.
\]

Consider the operators

\[
P = [J, K]^+; \quad Q = [J, K]^- \]

and let \(P = U \upharpoonright P \), \(Q = V \upharpoonright Q \) be their polar decompositions, \(| Q | \), \(| P | \) and \(U \) commute with \(J \) and \(K \); consequently the dimension of \(\text{Ker } P \) is even or infinite; \(Q \) is a normal operator, therefore \(V \) can be chosen such that \(V^+ = - V, \ V^2 = -1 \). The same notations as in [1] are used : \(\mathfrak{a} = \overline{\mathfrak{a}} (H, s) \) is the CAR-algebra and \(\omega_J \) is any pure quasi-free state on \(\mathfrak{a} \); \(J \) satisfies : \(J^+ = - J, \ J^2 = -1 \).

THEOREM 1. — Let the operator \(P \) be diagonalizable [i.e. \((\psi_i)_{i \in \mathbf{N}} \) orthonormal basis of \(H \) such that \(P \psi_i = \mu_i \psi_i, \ \mu_i \in \mathbf{R} \) (reals)], then there exists a family of subspaces \((H_n)_{n \in \mathbf{N}} \) of \(H \) invariant under \(J \) and \(K \) such that :

(i) \(H = \bigoplus_{n=0}^{\infty} H_n; \)
(ii) \(\dim H_0 \) and \(\dim H_1 \) is even or infinite, \(\dim H_n = 4 \) for \(n \geq 2 \);
(iii) \(P = \sum_n \lambda_n p_n \), where \(P_n H = H_n \); \(\lambda_0 = -2, \lambda_1 = 2 \) and \(-2 < \lambda_n < 2\) for \(n \geq 2 \).

Proof. — Let \(F = \ker Q \); \(F \) and \(F^\perp \) (orthogonal complement of \(F \) for \(s \)) are invariant for \(J \) and \(K \).

(a) Suppose \(F^\perp = \{ 0 \} \); then \(JK = \frac{P}{2} \) is unitary and Hermitian, there exists a decomposition \(F = H_0 + H_1 \) such that \(P = -P_0 + P_1 \), where \(P_0 \) and \(P_1 \) are the orthogonal projection operators on \(H_0 \) respectively \(H_1 \), which are invariant under \(J \) and \(K \) and therefore \(\dim H_0 \) and \(\dim H_1 \) is even or infinite.

(b) Suppose \(F = \{ 0 \} \), let \(H_\alpha \) be subspaces of \(H \) such that \(\Phi H_\alpha = \lambda_\alpha H_\alpha \). Because \([P, J]_- = [P, K]_- = 0 \), the subspaces \(H_\alpha \) are invariant for \(J \) and \(K \). Remark that \(P^2 + Q^+ Q = 4 \), \(Q^+ Q = |Q|^2 \); therefore \(|Q| \) has the same proper subspaces \(H_\alpha \) as \(|P| \). Let \(|Q| H_\alpha = \mu_\alpha H_\alpha \), then \(\lambda_\alpha^2 + \mu_\alpha^2 = 4 \) for all \(\alpha \). Take any \(\psi_\alpha \in H_\alpha \) and consider the subspaces \(H_{\psi_\alpha} \) generated by the real orthogonal set \(\{ \psi_\alpha, V \psi_\alpha, J \psi_\alpha, JV \psi_\alpha \} \). It is clear that \(H_{\psi_\alpha} \) is a real subspace invariant under \(J \) and \(K \) of dimension four.

In general \(H = F + F^\perp \) the results of (a) and (b) prove the theorem.

Q. E. D.

Lemma. — Let \(\pi_J \) and \(\pi_K \) be the Fock representations associated with \(J \) respectively \(K \). If \(\pi_J \) and \(\pi_K \) are unitarily equivalent then \([J, K]_+ \) has \(-2\) as the only accumulation point of its spectrum.

Proof. — Let \(\{ \psi_j \}_{j \in \mathbb{N}} \) be any infinite orthonormal set of \(H \) and

\[
L_n = -\frac{i}{n} \sum_{j=1}^n (\langle \psi_j | B (J \psi_j) \rangle)
\]

then

\[
(\Omega_J, \pi_J (L_n) \Omega_J) = \omega_J (L_n) = 1.
\]

Using Schwartz's inequality, we have

\[
\| \pi_J (L_n) \Omega_J \| = 1 \quad \text{furthermore} \quad \left\| \prod_{i=1}^k B (\psi_i) L_n \right\| \leq \frac{k}{n}
\]

proving

\[
1 - \frac{k}{n} \leq \left\| \prod_{i=1}^k \pi_J (\psi_i) \Omega_J \right\| \leq 1 + \frac{k}{n}
\]
i.e. $\pi_j(L_n)$ tends strongly to one for n tending to infinity. Because π_j and π_K are unitarily equivalent $\pi_K(L_n)$ tends strongly to one on \mathcal{H}_K and therefore weakly.

Further the expression

$$\omega_K(L_n) = (\Omega_K, \pi_K(L_n) \Omega_K) = -\frac{1}{2n} \sum_{i=1}^{n} s \left(P \psi_i, \psi_i \right)$$

must tend to one for all orthonormal sets $(\psi_i)_{i \in \mathbb{N}}$ which is possible if P has no accumulation points in its spectrum different from -2.

Q.E.D.

Theorem 2. — If ω_j and ω_K are pure quasi-free states, then π_j and π_K are unitarily equivalent iff $| J - K |$ is a Hilbert-Schmidt operator.

Proof. — By Theorem 1,

$$H = \bigoplus_{n=0}^{\infty} H_n; \quad P = \sum_{n=0}^{\infty} \lambda_n P_n; \quad P_n H = H_n,$$

where $\dim H_n = 4$ for $n \geq 2$. By the lemma, $\dim H_1 < \infty$. Let $\{ \Phi_1, \ldots, \Phi_r; J \Phi_1, \ldots, J \Phi_r \}$ be an orthonormal basis of H_1 and

$$u_i = \prod_{k=1}^{r} B(\Phi_k).$$

In each $H_n (n \geq 2)$ we choose the following orthonormal basis $(\psi_n, V \psi_n, J \psi_n, JV \psi_n)$, where ψ_n is any normalized vector of H_n and let

$$u_n = B(J \psi_n) B(\psi_n'),$$

where

$$\psi_n' = \frac{1}{(2 - \lambda_n)^{\frac{1}{2}}} (J \psi_n + K \psi_n).$$

If u_0 is the unit of $\mathcal{A}(H_0, s)$, then for all $n \geq 0$ and all $x \in \mathcal{A}(H_n, s)$,

$$\omega_K(x) = \omega_j(u_0^* x u_0).$$

In order that $U = \bigotimes_{n=0}^{\infty} \pi_{J_n}(u_n)$ is an unitary operator on $\mathcal{A}_j = \bigotimes_{n=0}^{\infty} \mathcal{A}_{J_n}$ (J_n is the restriction of J to H_n) it is necessary and sufficient that

$$U \Omega_j \in \mathcal{A}_j$$

i.e.

$$\prod_{n=0}^{\infty} (\Omega_{J_n}, \pi_{J_n}(u_n) \Omega_{J_n}) = \prod_{n=0}^{\infty} \frac{1}{2} (2 - \lambda_n)^{\frac{1}{2}}$$
does not vanish. But
\[\prod_{n=1}^{\infty} \left(2 - \lambda_n \right)^{\frac{1}{2}} = 0 \iff \prod_{n=1}^{\infty} \left(1 - \lambda_n \frac{4}{4} \right) = 0 \]
\[\iff \frac{1}{4} \sum_{n=2}^{\infty} (2 + \lambda_n) < \infty \iff \text{Tr} (2 + P) < \infty. \]

Otherwise \((J - K)^+ (J - K) = 2 + P, \) therefore \(\pi_J \) and \(\pi_K \) are unitarily equivalent if \(J - K \) is a Hilbert-Schmidt operator.

Conversely, suppose that \(|J - K| \) is not a Hilbert-Schmidt operator, hence
\[\prod_{i=1}^{m} \left(1 - \lambda_i \frac{4}{4} \right) = 0. \]
Let \(E_{n,m} = \bigoplus_{i=1}^{m} H_i; \) the restrictions of \(\omega_J \) and \(\omega_K \) to \(\alpha (E_{n,m}, s) \) remain pure states unitarily equivalent because if \(U_{n,m} = \prod_{i=1}^{m} u_i, \) then
\[\forall x \in \alpha (E_{n,m}, s), \quad \omega_J (x) = \omega_K (u_{n,m} x u_{n,m}^*) \]

Hence by Lemma 2.4 of [2]
\[|| (\omega_J - \omega_K) | \alpha (E_{n,m}, s) || = 2 \left(1 - | \omega_J (u_{n,m}) |^2 \right)^{\frac{1}{2}} \]
\[= 2 \left(1 - \prod_{i=1}^{m} \left(\frac{1}{2} - \frac{\lambda_i}{4} \right) \right)^{\frac{1}{2}}. \]

Denote by \(\alpha (E_n, s) \) the commutant of \(\alpha (E_n, s) \) in \(\alpha. \) By lemma 2.3 of [2],
\[|| (\omega_J - \omega_K) | \alpha (E_n, s)^c || = || (\omega_J - \omega_K) | \alpha (E_n, s)^c ||. \]
Since \(\alpha (E_n, s) \) is the inductive limit of \(\alpha (E_{n,m}, s) \) when \(m \to \infty, \) we have
\[|| (\omega_J - \omega_K) | \alpha (E_n, s)^c || = \lim_{m \to \infty} || (\omega_J - \omega_K) | \alpha (E_{n,m}, s) || = 2. \]

By lemma 2.1 of [2] \(\pi_J \) and \(\pi_K \) are not unitarily equivalent.

\textbf{Corollary.} — \textit{The representations} \(\pi_J \) \textit{and} \(\pi_K \) \textit{are unitarily equivalent if} \(|| \omega_J - \omega_K || < 2, \) \textit{and}
\[|| \omega_J - \omega_K || = 2 \left(1 - \prod_{i=1}^{m} \left(\frac{1}{2} - \frac{\lambda_i}{4} \right) \right)^{\frac{1}{2}}. \]
THEOREM ON UNITARY EQUIVALENCE

Proof. — Lemma 2.1 of [2] proves that if π_j is not unitarily equivalent with π_K, then $\|\omega_j - \omega_K\| = 2$. Otherwise if π_j and π_K are equivalent, it follows from the calculations done in Theorem 2, that

$$\|\omega_j - \omega_K\| = 2 \left(1 - \prod_{i=1}^{\infty} \left(\frac{1}{2} - \frac{\lambda_i}{4} \right)^{\frac{1}{2}} \right).$$

Q. E. D.

REFERENCES

(Manuscrit reçu le 6 juillet 1971.)