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Section A :

Physique théorique.

ABSTRACT. - In this article, we develop from a variational formulation
the field equations, jump conditions across a discontinuity surface and
nonlinear constitutive equations for a magnetized elastic medium with
finite deformations in the frame of the general theory of relativity.

RESUME. - Dans le present article, nous généralisons dans le cadre de
la relativité générale, la théorie des milieux continus déformables en inter-
action avec le champ magnétique donnée precedemment dans le cadre de
la relativité restreinte [6]- [25]-[27]. Le milieu continu considéré est un milieu
solide élastique sujet a des deformations finies et en interaction avec les
champs gravifique et magnétique. Un principe variationnel qui suit la

formulation que Taub [12] a donnée pour le schema fluide parfait est employe.
Toutes les equations du champ (equations d’Einstein, conservation de

1’impulsion-energie, equations de Maxwell dans un milieu matériel, conser-
vation du flux d’entropie) en découlent ainsi que les conditions de saut
a travers une surface de discontinuité. Comme dans le travail de Taub,
il est montré que cette derniere ne peut etre variée indépendamment du
parametre thermodynamique. Les lois non-linéaires de comportement
sont également obtenues a partir d’un potentiel, l’énergie libre de Helm-
holtz qui est écrite sous forme invariante, ceci généralisant la contrainte
habituellement imposée par le principe d’indifference matérielle en mécanique
classique des milieux continus.

ANN. INST. POINCARÉ, A-X V-4 20
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CONTENTS

INTRODUCTION

Looking back at the early developments of relativistic continuum mecha-
nics, we find two avenues along which attempts have been made to gene-
ralize classical concepts (those of small velocity physics) : (a) the study of
perfect fluids whose scheme is well-adapted to the applications of general
relativity (GR) in the large i. e., to cosmological problems and more recently
to the study of more localized phenomena such as the gravitational collapse;
(b) the study of elastic media in special relativity (SR) [7]-[~] which raised
the question of the definition of a rigid body motion in SR (the latter
question being posed as well in GR [5]). As far as the fluids are concerned.
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from then on, we note further studies, to name a few: viscous 
fluids in

SR 6]-[9], perfect fluids in GR [10]-[12], viscous fluids in GR [11], [13]-[14].

general relativistic MHD [73]-[7~], fluids with spin in SR [17].
General models of continuous materials in interaction with external

fields and endowed with internal degrees of freedom have been proposed

by Sedov et al. [18]-[19]. Yet, given the difliculty of obtaining large velo-

cities for material media, the study of solids in SR and GR has been much

less extensive. However, we note two recent approaches to elasticity in

GR by Rayner [20] and Synge [21], the latter being, per se, 
a theory of

hypoelasticity. Furthermore, a revival of interest came with the better

understanding of classical continuum mechanics based on the consideration

of finite deformations and non linear constitutive equations (e. g., non-

Hookean solids, non-Newtonian fluids). These latter concepts have been

extended to SR and GR with a proper presentation of kinematics and

deformation fields [22]- [24], [6] and applications to different continuous

media : magnetized solids in SR [6], [25], magnetoviscoelasticity in GR [2~

magnetized solids with electronic spin in SR [27], polar media in SR [27]-[28];
wave fronts have been studied in nonlinear elastic solids in SR [29] and

GR [30].
In this article, we propose to extend the theory developed in Ref. [6]

and [25] to GR. Therefore, we shall deal with a nonlinear elastic medium

in interaction with the gravitational field and with electromagnetic fields.

We use a variational principle whose formulation follows that of Taub for

perfect fluids [12] and the general formulation of variational principle

given in Ref. [27]. All the field equations (Einstein’s equations, conser-

vation of stress-energy-momentum, Maxwell’s equations, conservation of

entropy flux) as well as the corresponding jump conditions across a discon-

tinuity surface are obtained. The nonlinear constitutive equations for

this nondissipative medium are derived from the free energy since the latter

is considered to be the potential relevant to the theory. This potential
is written in an invariant form after introduction of ad hoc invariant argu-

ments. The expose as a whole follows the formulation of modem continuum

mechanics.
The raison d’être of this article is twofold: (a) it is of course of pure

theoretical interest to see if such an extension to GR is easily carried out;

(b) it happens that some astrophysical objects whose study resorts to GR,
such as neutron stars [31], present a thick solid crust of which the outer

portion resembles terrestrial matter except that it is 1018 times more rigid
than steel and much more incompressible. It is much easier to jiggle
this matter than to compress it. However, the magnetic field is very intense.
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and somewhat 1012 times stronger than that of the earth and the smallest
distortion of the crust has drastic effects as to this field and leads to real

« neutron star-quakes ». A theoretical scheme as the one developed below,
though involved, should apply to this category of phenomena.

1. PRELIMINARIES

1.1. Geometry.

Let V4 be a four-dimensional riemannian manifold of normal hyper-
bolic metric gap (a, f3 = 1, 2, 3, 4) of signature ( +, +, + , - ). The square
of the element of lenght reads :

where x" (a = 1, 2, 3, 4) are the coordinates in V4. Locally Eq. (1.1)
can be written in the pseudo-Euclidean form

where the «/ are a system of linearly independent Pfaff forms.
We call (2)) a closed domain of V4. Its frontier (3~) is considered to be

regular i. e., smooth enough to allow the use of vector and tensor analysis.
A 3-dimensional regular hypersurface (E) included in (D) or intersecting (~)
will be considered later on. (E) is supposed to admit locally a Gaussian

parametrization x" = x"(a’), (i = 1, 2, 3). Its positive normal is denoted

by n".
On V4, the grJ.{J are C1, piecewise C3 (cf. Ref. [77]). In the sequel all

greek indices (small or capital) take the values 1, 2, 3, 4. Latin indices

assume the values 1, 2, 3. The summation convention is used troughout.
Parentheses around a set of indices denote symmetrization and brackets
denote alternation. Commas or symbols a are used to denote partial
differentiation; semicolons or symbols V are used for the covariant diffe-
rentiation with respect to the metric gap e. g., A being any tensorial quantity,
we write : 

rpy are the Christoffel symbols of the second kind constructed from gaPA
g denotes the determinant of gap, c is the velocity of light in vacuum and
K is a constant proportional to the Newtonian gravitational constant k
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(usually K = R is the Ricci scalar curvature and is the

fourth order curvature tensor. We have:

The Einstein-Cartan tensor is written :

1.2. The motion.

The motion of one particle or infinitesimally small element of continuous
matter in V4 is entirely described by the mapping

which admits the particular representation

where XK are a set of Lagrangian coordinates in E3 once known for each
particle, r is a monotonically increasing timelike parameter defined along
the path or world line of the particle labeled (XK). It is chosen to be

the proper time of (XK). From (1. 9) is defined the 4-velocity u°‘ of a particle.
It is a 4-vector of constant magnitude such that

The operator 2014 = generalizes the notion of total time derivative

of classical continuum mechanics.

The operator of projection or projector P03B103B2 onto the hypersurface v1
orthogonal to (CXK) at a point M of (CXK) is defined according to :
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and satisfies the two properties

Given a 4-vector field defined at M, we have :

1.3. The deformation field

(see Ref. [6], [28] and [27]).

The direct and inverse gradients of the motion are respectively defined
by:

The last quantity is well-defined since (1.9) can be solved for XK and T,
XK and T being independent. Hence,

The tensors and XK,a are two-point tensor fields. In a rest frame,
they reduce to their classical analogues since

Then one can construct the relativistic Green deformation tensor CKL
, ~ 

- 

i ~and its reciprocal CKL

If bx" is an infinitesimal increase in x0153 corresponding to an increase 5X~
of XK, it is trivial to show that, with
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(8s*) is therefore a measure of an infinitesimal length element of Vi. It is

this quantity which must be kept constant when a rigid body motion « à la »
Born is defined..

1.4. The electromagnetic field.

We call F and M respectively the electromagnetic field two-form and the

magnetization or polarization two-form. If dx03B1 denotes the basic one-forms

and A indicates the exterior product, F and M are given by :

The electric displacement-magnetic field intensity 2-form G is then defined
as :

It is of interest to introduce duals of these forms by the formulas :

reciprocally

with

where ~a~y8 is the permutation symbol. The symbolism ( ..., ... )
indicating the inner (or contracted) product, it is interesting to consider
the two following invariants:

They respectively represent the magnetic energy in free space per unit

volume and the magnetic doublet energy per unit volume in matter up to
a sign. Furthermore, we define the magnetization 2-form per unit of proper
mass and the invariant :fKL constructed from F :

In Eq. (1.26), p is the so-called invariant relativistic density of matter.
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1.5. Thermodynamics.

We call" and E respectively the entropy and the internal energy per unit
of proper mass and 0 the thermodynamical temperature. The foregoing
quantities are measured by an observer following the element of matter
in its motion. The free energy density ~ per unit of proper mass is thus
defined by :

In the sequel, we consider 1/1 to be the potential relevant to the theory
and take it to be a function of and 0, i. e.,

This form assures that ~ is form-invariant under any coordinate trans-
formation x" H x" : This statement generalizes the
notion of objectivity as enunciated in classical continuum mechanics in
Ref. [32] or in special relativistic continuum mechanics in Ref. [33].
Eq. (1.29) generalizes previous forms given in 3-dimensional approaches,
e. g. in Ref. [34]. We say that (1.29) represents the free energy for a
nonlinear elastic magnetized homogeneous medium.

1.6. Discontinuities.

We call 1 the dual of unity or element of volume in V4. It reads :

The elements of surface on hypersurfaces embedded in V4 are accord-
ingly defined. For the consideration of discontinuity hypersurfaces such
as (E), we need a somewhat extended form of Stokes’ theorem, easily
provided for by the theory of distributions of L. Schwartz [35], [36] (though
the hypotheses of continuity of this theory will not be used in the subsequent
developments). If we take the divergence in the sense of distribution theory,
we have :

If there exists a discontinuity hypersurface (E) intersecting across

which the tensorial field V suffers a jump o’(V), we can write :
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where the divergence in the r - h - s of (1.32) is taken in the usual sense.
We have r(V) = [ V ] = V + - V"; 5(/) is the one-dimensional delta dis-

tribution where I is the absciss defined along the unit local normal nr, to (E),
oriented from the region ( - ) to the region ( + ). With the local parame-
trization of (E), one can write :

Thus, Eq. (1.31) can be written as :

2. THE VARIATIONAL PRINCIPLE

As time goes on, the material body (B) c E3, of boundary (-B) 
and (v-BR) in the reference configuration or Lagrangian configuration
described by the coordinates X~] sweeps out the region (D) whose boundary
is (3~), in V4, in the interval of time T = [t1, t]2 c R. With the domain (D)
of V4, we associate the following action:

2.1. What do we vary ?

The purpose of the variational principle given here in is to obtain the
complete set of field equations i. e., the Einstein’s equations, the dynamical
conservation laws (conservation of stress-energy-momentum), the thermo-
dynamical conservation law (conservation of entropy flux since the medium
considered is nondissipative), the Maxwell’s equations in matter and the
constitutive equations (for the stress-energy-momentum tensor, for the

entropy and for G). In the process, we expect to arrive at the jump condi-
tions valid across the discontinuity hypersurface (E). It is therefore clear

that, in order to get these results, one must vary the gravitational poten-
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tials gap, the particle path (CXK) in V4, the thermodynamical parameter i. e.,
0, a quantity related to the electromagnetic field and, in some way, the
discontinuity surface itself. Let us examine these different variations.

2.2. Variation of the particle path.

We set the infinitesimally small e equal to zero along an unperturbed
path (exK) and consider the mapping

Here x°‘ is the perturbed path infinitly close to The resulting

variation operator is thus immediately written 3 = 8 ~ where indicates
the Lie derivative with respect to the 4-vector field ç«. Since g«fJ depends
upon x~, the variation of the path induces a variation of gap such that:

If is a proper variation of the ga.P’s, the total variation of gap is given
by :

2.3. Electromagnetic potentials.

Maxwell’s equations in matter read [48] :

where J is the 4-vector current density. From (2.5), one deduces that F

can be expressed as :

where A is the 1-form electromagnetic potential A = Then,

Eq. (2.5) is identically satisfied from Poincaré’s lemma. Taking the

exterior derivative of (2 . 6), we get the equation of conservation of current :
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We define a time-like hypersurface r(x«) = 0 i. e.,

in all points of (E). Its unit normal in four dimensions is defined by:

Across such a hypersurface, the fields F, G and J verify the jump relations
(if there is no surface current) :

In the variational process, the equation (2 . 5) is considered as a constraint
imposed on the 4-potential A~ To deal with it, we take over the method
introduced by Weiss [37] (cf. Grot [25]). Let be an arbitrary 2-dimen-
sional hypersurface of frontier (~). In integral form, Eq. (2 . 7) reads :

The variation of (2.13) yields the equation

but

since

which follows from the application of Stokes’ theorem and Poincaré’s
lemma. We now introduce the so-called Weiss-gauge-invariant variation
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and posit Eq. (2.14) to be valid for any 2-dimensional hypersurface (if)
in V4. Thus, we obtain the local variation of the field F:

In Eq. (2.16) we refer to 03B4A03B1 as being the proper variation of the electro-
magnetic potential and to 03B4A03B1 as its total variation. The latter involves

the variation of the particle path (CXK) in V4.

2.4. Variation of the temperature.

We consider a proper variation 58 of the temperature and a variation 60
due to the spacetime dependence. Thus, for the total variation of 8,
we write :

In order to express the last term, we introduce a new variable 0 in lieu

of 0 through the definition (cf. Taub [12] or Von Laue [38]) :

Thus,

Herein after, 50 is used to denote this expression.

2.5. Variation of the discontinuity surface.

We recall the Gaussian equation of (E) :

A nearby discontinuity surface has the equation:

where 8 is an infinitesimally small and is a 4-vector field. Given an integral

I = ~F~/)~ its variation due to the variation of (E) is given by :
(D) _ _
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In Eq. (2.23), we have applied the Green-Gauss theorem for a thin shell

(Do) enclosing (E) and taken account of the continuity of the 4-vector field 03B603B1
across (E).
For convenience, we introduce the following notation:

then,

where the jacobian J is defined as :

For instance, we note /~ = 3-//3-X~ and tensorial equations posited
valid in any system of coordinates can be indifferently written in the x"-sys-
tem or in the X4-system.

2.6. Constraints.

The following constraints can be considered in the variational process :

(i) constant magnitude of the 4-velocity; we thus introduce a Lagrange
multiplier fl the significance of which remains to be determined,

(ii) Eq. (2.13) which gives the variation of the field F,

(iii) continuity equation; with the domain (~J) of V4, we associate the
following integral of the motion:

where p is the invariant density of matter. The local differential form of

(2. 27) is known to be :

and does not need to be derived again. Upon use of the notation (2.24),
the local integral of the motion can be written as :

By integration of Eq. (2.28) over a region consisting of a thin shell (2)o)



288 G~RARD A. MAUGIN

enclosing (E) and application of the Green-Gauss theorem, we obtain :

This relation is posited to be valid everywhere on (E) and thus yields
the local form:

In order to take account of Eq. (2.27) in the variation, we write :

where, from here on, we shall denote ("D), (3~) and (E), the region or
hypersurfaces (3)), (ð-Ð) and (E) referred to the X~-system and we note:

the element of volume in this system. With (2 . 26), we have :

*

Since (D) is obviously not perturbed by the variation, we deduce,
* *

Eq. (2.32) being valid everywhere in (D - :I:), that:

We note that :

Hence, upon use of (2 . 4), we transform (2.35) to :

(iv) incompressibility : for the sake of completeness, we may impose
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a condition of incompressibility on the material. Such a condition is:

This follows from the relation ýgj) = 0. The latter relation is the
equivalent of the condition div v = 0 encountered in classical continuum
mechanics. To take account of (2.38), the introduction of the Lagrange
multiplier p referred to as the mechanical pressure is necessitated.

(v) on the frontier (3~) we shall assume that:

and on the singular surface (~)

At this point, we do not set [t5E&#x3E;] = 0.

2.7. Form of the variational principle.

Following the general scheme of variational principles in continuum
physics as enunciated in Ref. [27], we write the desired variational principle
in the form :

where A is given by (2.1) and we have set:

The expression (2.42) represents the only constraint introduced in integral
form. We discard the case of incompressibility for the time being. In
Eq. (2.43), following the tradition established by Lagrange and Piola, we
have introduced, in a selective manner, indeterminate multipliers for the
basic arguments varied in the Lagrangian densityd in (D - E) and on (~).
The terminology associates a physical significance to these quantities:
J" is the 4-vector current, q is the entropy density per unit of proper mass
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and is the surface current bivector prescribed on (1::). We have by defi-
nition :

,

Note that we did not introduce indeterminate multipliers on (M) 2014 I)
because of (2. 39) nor did we introduce such a quantity for in (D - E).
It would correspond to the 4-body force that we need not consider here ;
the only forces appearing in the treatment are due to the deformation field,
the flux of matter and the electromagnetic field and can be expressed as
divergences of second order tensors, thus included in the total stress-energy-
momentum tensor.

The symbol A appearing in Eq. (2 . 41 ) stands for:

The variation is understood to be carried out in the « undeformed »

X~-system of coordinates which is unperturbed in the variation. Hence all

tensor fields appearing in (2 . 41 ) are written with the help of the formalism
(2.24). Note that the ~-variation of the coordinates commutes with the

derivatives with respect to the generalized Lagrangian coordinates

3. THE VARIATION

3.1. Intermediate results.

We shall only give some important steps and the results of the varia-
tion (2.41). First, we note the elementary variations [here we omit the
notation (2 . 24)] :
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The latter is none other than Eq. (2.37). With the definitions (1.18)2
and ( 1. 27) and on account of (2 .17), it is easily found that :

Here we have used the fact that:

Hence, carrying the results (3.5), (3.6) and the variation (2.18) in the
variation of #, we get:

that is :

where we have defined the stress-energy-momentum tensor due to the

deformation field, the magnetization tensor IVIya per unit of proper volume
and the quantity 11 by :

In the sequel, we also need the following results :

since

from Ricci’s lemma.

ANN. INST. POINCARB, A-XV-4
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(b) Upon use of (2.17) and (3. 3), the variation of the second term of (2.1 )
is [excluding the variation due to the variation of (E)]:

where we have defined the stress-energy-momentum T~‘ m. v) of the electro-
magnetic field in vacuum by :

(c) Upon using (2. 23) we find the variation due to the variation of (E) :

(d) The variation of the term involving R in (2 .1 ), due to the combined
variations of the metric and of the particle path closely follows the classical
procedure (cf. Taub [12], Landau and Lifshitz [39], or Weber [4/1]). With

(3 . 3), we obtain:

of which the first term in the r - h - s can be rearranged. Using the
definitions (1.5-6) then (1.4), we have [47] :
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*

We now integrate this result over (D) and, applying (1.34) while taking
account of (2.39)~ we get:

We thus gather the contributions (3. 8), (3 .12), (3 .13), (3.15), (3.16)
and (2 . 43) to yield:

where the stars superposed to letters stand for the notation (2.24). In

Eq. (3 . 19) we have defined the Einstein-Cartan tensor A0153p and the electric
displacement-magnetic field intensity bivector G0153p according to (1.7) and
(1 . 21) respectively. We also introduced the total stress-energy-momentum
tensor rP and the stress-energy-momentum tensor T(:m .m) of the electromagne-
tic field in matter by :
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The latter definition is different from those of Sedov [18]1, Abraham [41]
or Minkowski [42] but is similar to that used by Grot and Eringen [6] and
Maugin [27] in SR, and is closely related to that of De Groot and Suttorp [44].
We believe, following the arguments given in Ref. [44] that it assumes the
most satisfactory form though, in the present case, is not a symmetric
tensor. Nevertheless, note that the total energy-momentum tensor given
by Eq. (3.20) will be posited symmetric since, as no spin occurs in the treat-
ment, we shall require the angular momentum density defined by

to satisfy the conservation law

or, with the equation (3.28) obtained below

The nonsymmetry of T(:m.m) is therefore counterbalanced by that of
the tensor which has no reason to be symmetric. We note that T"°
is none other that:

If # depended upon derivatives of grxp, we should replace o-(i)-grxfJ by the
Euler-Lagrange derivative 5/5~.
We can now apply for each term of the form the rule :

and use the theorem (1.34) for the divergence terms. Taking account of
(2 . 39), we obtain :

continued
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(3.24) continued 
’

3.2. Field equations.

If Eq. (3.24) is posited to be valid for any volume in (D - E) and any
hypersurface (E) and for any variations 5A~ 50, ~0 satisfying
the constraints (2.39) and (2.40), then we deduce from (3.24) the local
field equations in (D 2014 E) and across (E). Furthermore, the field equations
can be written in tensor form in any system of coordinates. Therefore,
we abandon the formalism (2.24) and simply write the equations in the
X«-system. We obtain :

(i) in (D - E)

(ii) across (E~
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Here Eqs. (3.32) and (3.33) are obtained by setting the coefficients
of and separately equal to zero (in the starred system where
derivatives and variations commute) after having explicitly expressed the
covariant derivatives. Finally we have omitted the stars.

Eq. (3.25) constitutes the definition of the entropy density as a function
of the free energy while Eq. (3.26) represents the conservation of entropy
flux since the process considered is nondissipative. The ten equations (3 . 27)
[in fact only six of them are independent as a consequence of Bianchi’s
identities] are the Einstein’s equations. Eq. (3.28) is the conservation law
for the energy-momentum. Eq. (3.29) is the group of Maxwell’s equations
that supplements Eqs. (2. 5) and (2. 8). Eqs. (3 . 30) and (3 . 31) are the jump
relations which supplement Eqs. (3.28) and (3.29) respectively. The

jump relations (3.32) and (3.33) concerning the geometry were already
extensively discussed by Taub [12], O’Brien and Synge [44] and Lichne-
rowicz [11]. We shall not discuss them here. However, we point out
that, with Lichnerowicz’s conditions of continuity for (cf. § 1.1.), these
two jump relations are satisfied with:

It remains to analyze the last jump condition (3.34) which, because of
the presence of the deformation field and of the electromagnetic field in
matter, slightly differs from the relation found by Taub for a perfect
fluid [12]. For comments, the latter author refers to the classical analogue
(cf. Taub [45]). We shall examine this jump relation in section 5. Before
we need determine the expression of the unknown ~.

4. DETERMINATION

OF THE LAGRANGE MULTIPLIER

Here we follow the procedure used by Taub for perfect fluids in GR [12]
and extended to solids in SR [27]. In order to determine JL, we perform
the differentiation indicated in Eq. (3.28) and contract the result with
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ua i. e., we project the resulting 4-vector along the world velocity. We note

that, by using (3.29) and (2.5), the divergence of the electromagnetic
stress-energy-momentum tensor m) can be written as a volume 

according to the relation :

of which the former is the Lorentz ,force and the latter is the Stern-Gerlach
force in a magnetized medium. In the subsequent developments, we shall
assume that the current is only due to convection i. e., we shall take:

thus,

from the skewsymmetry of 
Performing the differentiation in (3.28) while taking account of (3.20),

we obtain :

where we used the continuity equation (2 . 28). Upon contracting Eq. (4.6)
with ua and using (4 . 5), ( 1.11 ) 2 and the fact that :

which follows from (1.11)~ we get :

where we used the notation

With (1.17)2, (3.9) and (3.10), we remark that we can write
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If we note that:

then, the r. h. s of Eq. (4.10) is nothing else than :

But from (1.29) we have :

or using (1.28), (3.25) and the conservation of entropy flux (3.26), this
gives:

Thus, we can write Eq. (4 . 8) as :

Integrating over proper time and introducing the constant of integra-
tion c2 (the rest energy per unit of proper mass), we obtain :

Therefore, the final form of the total stress-energy-momentum tensor (3 . 20)
reads :

, - B

where

is the so-called internal energy, a quantity which reduces to the classical
internal energy of 3-dimensional continuum mechanics in a local rest frame.
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As far as this reduction is concerned, we must emphasize here that all

dynamical equations and electromagnetic equations given above reduce in
a satisfactory manner to their special relativistic form as given, for instance,
by Grot and Eringen [6] in a local inertial frame. Moreover, in the limit
c - oo, these reduce to those of the classical theory of finite deformations
in electromagnetoelasticity such as given by Dixon and Eringen [46] (if
we neglect the quadrupole terms in the latter theory). In these limits,
the constitutive equations (3.9) and (3.10) go to constitutive equations
satisfying the principle of objectivity of Soderholm [33] for the special
relativistic case and to constitutive equations satisfying the classical principle
of objectivity [32] for the classical case.

Remark. - If we consider an incompressible medium then, it is not

difficult to show that the condition (2. 38) leads to adding a term - 
to the expression (4.17) where, we emphasize, p is an unknown to be deter-
mined upon solution of a peculiar well-posed problem.

Let us finally note that, with the known value of fl given by Eq. (4.16),
remarking that we have :

since

from (3 . 9) and (1.17)~ Eq. (4.8) can be written as :

This equation which gives the proper time rate of the internal energy E

may be considered as the conservation law corresponding to this quantity
for a nondissipative process, in (D - E). Remark however that it is not

independent of Eq. (3.28). Indeed the equations (3.28) can be replaced
by Eq. (4.20) and the three independent equations obtained by projecting
Eq. (3.28) onto Vi. These latter are the Cauchy’s equations of motion.
Upon use of (3.20), (1.12), (4.5) and (4.19), they read:

where we have collected the terms whose contribution vanishes when we

take the classical limit c - 00.
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5. THE JUMP RELATION (3.34)

First we shall transform the second term of Eq. (3.34). Instead of the
infinitesimal quantity 5@, we introduce the finite scalar E whose dimension
is (temperature x time), by:

Then, setting

we note thac, with (5.1) and (2.31), we can write:

The first term of Eq. (3.34) is transformed as follows. Take the trace

(tr = trace) of Eq. (3.27) and using (4.17) write

since is a traceless tensor. Thus we have

since

With 8p0 0, collecting the results (5.3) and (5.5), we can write

Eq. (3.34) as:

across (E)

This equation is a constraint imposed on the variational process. The

variation of the discontinuity surface as defined by (2.21) cannot be arbi-
trary ; it must be linked to the variation of the temperature through Eq. (5.6).
To end with, we give a more explicit form for the jump relation (3.30).

With (2. 31) and the notation (5.2), Eq. (3 . 30) can be written:
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where we have set

Eq. (5.7) corresponds to the jump condition for the energy flux familiar
to us in hydrodynamics and more generally in classical continuum mechanics.

6. CONCLUSION

We have obtained the field equations for a nonlinear elastic magnetized
homogeneous solid in the frame of general relativity. In the continuous

region (D - X) they consist of Eqs. (3.27), (3.28) [or equivalently (4.20)
and (4.21)], (2.28), (2.5), (2.6) and (2.8). Across the discontinuity
surface (E), the jump equations (3.32), (3.33), (3.30), (2.31), (2.10), (3.31)
and (2.12) must hold, Eq. (5 . 6) being a constraint imposed on the variation
of (~). The constitutive equations are given by Eqs. (3.25), (3.9) and
(3.10).

I thank Professor W. D. HAYES for his enlightening comments concerning
the section 5.
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