Annales de l'I. H. P., section A

L. K. Patel P. C. VAIDYA
 A generalized plane wave metric

Annales de l'I. H. P., section A, tome 15, no 2 (1971), p. 169-175
http://www.numdam.org/item?id=AIHPA_1971_15_2_169_0
© Gauthier-Villars, 1971, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A generalized plane wave metric

by
L. K. PATEL and P. C. VAIDYA
Department of Mathematics, Gujarat University, Ahmedabad-9 (India).

1. INTRODUCTION

The theory of plane gravitational waves in general relativity has been discussed by many investigators. H. Takeno [I] has discussed the mathematical theory of plane gravitational waves in detail. A Peres [2] has studied the plane wave like line-element

$$
\begin{equation*}
d s^{2}=-d x^{2}-d y^{2}-d z^{2}+d t^{2}-2 f(x, y, u)(d t-d z)^{2} \tag{1.1}
\end{equation*}
$$

where $u=t-z$ and f is a function of x, y and u. The line-element.(1.1) can also be expressed as

$$
\begin{equation*}
d s^{2}=-d x^{2}-d y^{2}+2 d u d z+(1-2 f) d u^{2} \tag{1.2}
\end{equation*}
$$

Vaidya and Pandya [3] have studied the metric (1.2) in connection with gravitational and electromagnetic radiation. In fact the solution of Peres is a particular case of a more general solution obtained by Pandya and Vaidya [4].

In Peres' solution, all components of the metric tensor are not functions of u. The object of the present investigation is to generalize Peres' metric in such a way that all the components of the metric tensor $g_{i k}$ become functions of u. Of course, some of these components do depend upon x and y also.

2. GRAVITATIONAL WAVES

In Minkowskian space, consider an arbitrary smooth world line L that is every where time-like. Let u be the parameter along the world line. Let λ^{i} be the unit tangent vector at any point of L . Let $\mathrm{A}^{i}, \mathrm{~B}^{i}, \mathrm{C}^{i}$
be the three mutually orthogonal space-like unit vectors lying in the 3-space orthogonal to λ^{i} at the point under consideration. Thus we have the following relations:

$$
\begin{equation*}
\lambda^{i} \lambda_{i}=1, \quad \mathrm{~A}^{i} \mathrm{~A}_{i}=\mathrm{B}^{i} \mathrm{~B}_{i}=\mathrm{C}^{i} \mathrm{C}_{i}=-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{i} \mathrm{~A}_{i}=\lambda^{i} \mathbf{B}_{i}=\lambda^{i} \mathrm{C}_{i}=0 \tag{2.2}
\end{equation*}
$$

Here it should be noted that the raising and lowering of vector indices of $\lambda^{i}, \mathrm{~A}^{i}, \mathrm{~B}^{i}$ and C^{i} is carried out with respect to the Minkowskian metric

$$
n_{i k}=\operatorname{diag}(-1,-1,-1,1)
$$

Let us define the new co-ordinates x, y, z and t in terms of the co-ordinates x^{i} by the following relations.

$$
\begin{equation*}
x=x^{i} \mathrm{~A}_{i}, \quad y=x^{i} \mathrm{~B}_{i}, \quad z=x^{i} \mathrm{C}_{i}, \quad t=x^{i} \lambda_{i} \tag{2.3}
\end{equation*}
$$

Then clearly

$$
\begin{equation*}
x_{, k}=\mathrm{A}_{k}, \quad y_{, k}=\mathrm{B}_{k}, \quad z_{, k}=\mathrm{C}_{k}, \quad t_{, k}=\lambda_{k} \tag{2.4}
\end{equation*}
$$

Here and in what follows a comma followed by a lower index will imply partial differentiation with respect to that index. Let

$$
\begin{equation*}
\mathrm{Z}_{i}=\lambda_{i}-\mathrm{C}_{i} \quad \text { and } \quad p_{i}=\mathrm{A}_{i}-\mathrm{B}_{i} \tag{2.5}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
\mathrm{Z}_{i} \mathrm{Z}^{i}=0, \quad p_{i} p^{i}=-2 \tag{2.6}
\end{equation*}
$$

Thus Z^{i} is a null vector with respect to the Minkowskian metric and p^{i} is a space-like vector. In this paper we shall confine ourselves to the case in which $\lambda^{i}, \mathrm{~A}^{i}, \mathrm{~B}^{i}$ and C^{i} are all constant vectors.

Consider a Riemannian 4-space whose metric is given by

$$
\begin{equation*}
d s^{2}=g_{i k} d x^{i} d x^{k} \tag{2.7}
\end{equation*}
$$

where the metric tensor $g_{i k}$ is expressed by the following equation.

$$
\begin{equation*}
g_{i k}=\eta_{i k}+\mathrm{H} p_{i} p_{k}+\mathrm{SZ}_{i} \mathrm{Z}_{k} \tag{2.8}
\end{equation*}
$$

Here H is a function of $u=t-z$ and S is a function of x, y and u. The determinant g of the metric tensor $g_{i k}$ can be easily computed. It is given by

$$
\begin{equation*}
g=\left|g_{i k}\right|=-(1-2 \mathbf{H}) \tag{2.9}
\end{equation*}
$$

As g is negative $1-2 \mathrm{H}$ should be positive. The vectors p_{i} and Z_{i} are orthogonal to each other.

$$
\begin{equation*}
\mathrm{Z}_{i} p^{i}=0 \tag{2.10}
\end{equation*}
$$

The contravariant components of the metric tensor $g_{i k}$ are given by

$$
\begin{equation*}
g^{i k}=\eta^{i k}-\frac{\mathrm{H}}{1-2 \mathrm{H}} p^{i} p^{k}-\mathrm{SZ}^{i} Z^{k} \tag{2.11}
\end{equation*}
$$

It follows from (2.9), (2.10) and (2.11) that

$$
\begin{equation*}
g^{i k} Z_{i}=\eta^{i k} Z_{i} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{i k} Z_{i} Z_{k}=\eta^{i k} Z_{i} Z_{k}=Z^{i} Z_{i}=0 \tag{2.13}
\end{equation*}
$$

Thus raising and lowering of the vector indices of Z_{i} can be carried out with the Riemannian or Minkowskian metric. Also the null character of the congruence Z_{i} with respect to the Minkowskian metric implies its null character with respect to the Riemannian metric.
From (2.8), (2.10) and (2.11) we also have

$$
\begin{equation*}
g^{i k} p_{i}=\eta^{i k} p_{i}+\frac{2 \mathrm{H} p^{k}}{1-2 \mathrm{H}}=\frac{p^{k}}{1-2 \mathrm{H}} \tag{2.14}
\end{equation*}
$$

We shall continue to use the Minkowskian metric $\eta_{i k}$ for raising and lowlering of indices and any dependence on $g_{i k}$ will the explicitly written out as in (2.14). The result (2.6) will be frequently used without mention.

The 3-index symbols for the metric (2.8) are given by

$$
\begin{align*}
\Gamma_{i k}^{n}=\frac{1}{2}\left[\frac{2 p^{n} \mathrm{H}_{,(i} p_{k)}}{1-2 \mathrm{H}}+2 \mathrm{Z}^{n} \mathrm{~S}_{,(i} \mathrm{Z}_{k)}\right. & -n^{n l} \mathrm{H}_{, t} p_{i} p_{k} \tag{2.15}\\
& \left.-\eta^{n l} \mathrm{~S}_{, l} \mathrm{Z}_{i} \mathrm{Z}_{k}+\frac{\mathrm{H}\left(\mathrm{~S}_{y}-\mathrm{S}_{x}\right)}{1-2 \mathrm{H}} p^{n} \mathrm{Z}_{i} \mathrm{Z}_{k}\right]
\end{align*}
$$

Throughout this paper the following conventions are used:
Indices range and sum over $1,2,3,4$; a semicolon indicates covariant differentiation; round index brackets indicate symmetrization over the indices enclosed; square brackets indicate antisymmetrization; and the lower suffixes attached to functional symbols denote the derivatives of the function with respect to the corresponding variable, e.g.

$$
\mathrm{S}_{y}=\frac{\partial \mathrm{S}}{\partial y}, \quad \mathrm{~S}_{x y}=\frac{\partial^{2} \mathrm{~S}}{\partial y \partial x}, \quad \mathrm{H}_{u u}=\frac{\partial^{2} \mathrm{H}}{\partial u^{2}}, \text { etc. }
$$

It is clear from (2.15) that

$$
\begin{equation*}
\Gamma_{i k}^{n} Z_{n}=0 \tag{2.16}
\end{equation*}
$$

The result (2.16) imply that the null congruence Z_{i} is geodetic.
In our case the expression for the Ricci tensor reduces to

$$
\begin{equation*}
\mathrm{R}_{i k}=\frac{1}{1-2 \mathrm{H}}\left[-\mathrm{H}_{u u}-\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}-\frac{1-\mathrm{H}}{2}\left(\mathrm{~S}_{x x}+\mathrm{S}_{y y}\right)+\mathrm{HS}_{x y}\right] \mathrm{Z}_{i} \mathrm{Z}_{k} \tag{2.17}
\end{equation*}
$$

The Riemann curvature tensor $\mathrm{R}_{\text {hijk }}$ for the metric (2.8) is given by

$$
\begin{align*}
\mathbf{R}_{h i j k} & =2\left[\mathbf{H}_{u u}+\frac{H_{u}^{2}}{1-2 \mathbf{H}}\right] p_{[i} Z_{j j} p_{[h} Z_{k]} \tag{2.18}\\
& +2 S_{x x} A_{[j} Z_{i j} A_{[k} Z_{h]}+2 S_{y y} B_{[j} Z_{i]} B_{[k} Z_{h]} \\
& +2 S_{x y}\left\{A_{[i} Z_{j]} B_{[k} Z_{h]}+B_{[i} Z_{j j} A_{[k} Z_{h]}\right\}
\end{align*}
$$

For gravitational waves we have

$$
\begin{equation*}
\mathrm{R}_{i k}=0 \tag{2.19}
\end{equation*}
$$

The results (2.17) and (2.19) imply that

$$
\begin{equation*}
\mathrm{S}_{x x}+\mathrm{S}_{y y}-\frac{2 \mathrm{H}}{1-\mathrm{H}} \mathrm{~S}_{x y}=-\frac{2}{1-\mathrm{H}}\left(\mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}\right) \tag{2.20}
\end{equation*}
$$

For gravitational waves, S and H have to satisfy the equation (2.20). The choice of any one of S and H is at ourdisposal.

If $S=0$, then from (2.18), (2.19) and (2.20) we obtain $R_{h i j k}=0$ and the space-time becomes flat.

If $H=0$, then $\mathrm{R}_{i k}=0$ implies $\mathrm{S}_{x x}+\mathrm{S}_{y y}=0$ and we get the space-time of peres.

Thus it is clear that if we choose H in such a way that $\mathrm{H} \neq 0,1-2 \mathrm{H}>0$ and $\mathrm{H}_{u u}+\left(\mathrm{H}_{u}^{2} / 1-2 \mathrm{H}\right) \neq 0$, then we get the gravitational field which is different from that discussed by Peres.

From (2.18) we have:
A necessary and sufficient condition that a space-time given by (2.8) be Minkowskian is

$$
\begin{equation*}
\mathrm{S}_{a b}=0 \quad \text { and } \quad \mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}=0, \quad a, b=x, y \tag{2.21}
\end{equation*}
$$

Thus, when S is a linear function of x and y whose coefficients are functions of u and H satisfies $\mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}=0$, then the space-time discussed here becomes flat.

3. CO-EXISTANCE OF ELECTROMAGNETIC WAVES

In this section we shall show that the solution obtained in the previous section can be generalized to the case in which the electromagnetic waves co-exist with the gravitational waves. The field equations of electromagnetic field in general relativity are

$$
\begin{equation*}
\mathbf{R}_{i k}=-8 \pi \mathrm{E}_{i k} \tag{3.1}
\end{equation*}
$$

and the maxwell equations are

$$
\begin{align*}
& \mathrm{F}_{i k, n}+\mathrm{F}_{k n, i}+\mathrm{F}_{n i, k}=0 \\
& \mathrm{~F}_{; k}^{i k}=0 \tag{3.2}
\end{align*}
$$

Here $F_{i k}$ is the antisymmetric tensor describing electromagnetic field and $\mathrm{E}_{i k}$ is the electromagnetic energy tensor defined by

$$
\begin{equation*}
\mathrm{E}_{i k}=\frac{1}{4} g_{i k} \mathrm{~F}_{l m} \mathrm{~F}_{a b} g^{l a} g^{m b}-\mathrm{F}_{i l} \mathrm{~F}_{k m} g^{l m} \tag{3.3}
\end{equation*}
$$

If ϕ_{i} is the 4-potential of the electromagnetic field then

$$
\begin{equation*}
F_{i k}=\phi_{i, k}-\phi_{k, i} \tag{3.4}
\end{equation*}
$$

Let us choose the 4-potential ϕ_{i} of the electromagnetic field as

$$
\begin{equation*}
\phi_{i}=\mathrm{D}(x, y, u) \mathrm{Z}_{i} \tag{3.5}
\end{equation*}
$$

Looking to the nature of our problem this choice of ϕ_{i} seems appropriate. Now,

$$
\begin{equation*}
\mathrm{F}_{i k}=\mathrm{D}_{, k} \mathrm{Z}_{i}-\mathrm{D}_{, i} \mathrm{Z}_{k} \tag{3.6}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
g^{i m} h^{k n} \mathrm{~F}_{m n} \mathrm{~F}_{i k}=0 \tag{3.7}
\end{equation*}
$$

Thus the electromagnetic field is null with respect to Riemannian metric. (2.8). The electromagnetic energy tensor $E_{i k}$ is given by

$$
\begin{equation*}
\mathrm{E}_{i k}=\left[\mathrm{D}_{x}^{2}+\mathrm{D}_{y}^{2}+\frac{\mathrm{H}\left(\mathrm{D}_{y}-\mathrm{D}_{x}\right)^{2}}{1-2 \mathrm{H}}\right] \mathrm{Z}_{i} \mathrm{Z}_{k} \tag{3.8}
\end{equation*}
$$

The results (2.17), (3.1) and (3.8) imply that

$$
\begin{align*}
8 \pi\left[\mathrm{D}_{x}^{2}+\right. & \left.\mathrm{D}_{y}^{2}+\frac{\mathrm{H}\left(\mathrm{D}_{y}-\mathrm{D}_{x}\right)^{2}}{1-2 \mathrm{H}}\right] \tag{3.9}\\
& =\frac{1}{1-2 \mathrm{H}}\left[\mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}+\frac{1-\mathrm{H}}{2}\left(\mathrm{~S}_{x x}+\mathrm{S}_{y y}\right)-\mathrm{HS}_{x y}\right]
\end{align*}
$$

The Maxwell equations (3.2) are equivalent to

$$
\begin{equation*}
\mathrm{D}_{x x}+\mathrm{D}_{y y}-\frac{2 \mathrm{H}}{1-\mathrm{H}} \mathrm{D}_{x y}=0 \tag{3.10}
\end{equation*}
$$

Hence, for electromagnetic waves D and S have to satisfy equations (3.9) and (3.10) and H remains arbitrary.

However if we consider S as a function of D, equations (3.9) and (3.10) imply
(3.11) $\frac{16 \pi-\frac{d^{2} S}{d \mathrm{D}^{2}}}{2}\left[(1-\mathrm{H})\left(\mathrm{D}_{x}^{2}+\mathrm{D}_{y}^{2}\right)-2 \mathrm{HD}_{x} \mathrm{D}_{y}\right]=\mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}$.

Let us consider a particular case in which

$$
\begin{equation*}
\frac{d^{2} \mathrm{~S}}{d \mathrm{D}^{2}}=16 \pi \quad \text { i. e. } \quad \mathrm{S}=8 \pi \mathrm{D}^{2}+\alpha \mathrm{D}+\beta \tag{3.12}
\end{equation*}
$$

where α and β are constants.
Equation (3.11) reduces to

$$
\begin{equation*}
\mathrm{H}_{u u}+\frac{\mathrm{H}_{u}^{2}}{1-2 \mathrm{H}}=0 \quad \text { i. e. } \quad \mathrm{H}=\frac{1-(a u+b)^{2}}{2} \tag{3.13}
\end{equation*}
$$

where a and b are constants.
For electromagnetic waves in this case, H and D have to satisfy (3.10) and (3.13). When $\mathrm{H}=0$ (i.e. $a=0, b=1$), the electromagnetic field discussed above reduces to the electromagnetic field studied by Takeno [5]. It may however be noted that Takeno [5] has not taken S as a function of D.

REFERENCES

[1] H. Takeno, The Mathematical Theory of plane gravitational waves in general relativity. Scientific reports of research institute for theoretical Physics, Hiroshima University, No. 1, 1961.
[2] A. Peres, Some gravitational waves. Phys. Rev. let., t. 3, 1959, p. 571.
[3] P. C. Vaidya and I. M. Pandya, Radiation: gravitational and electromagnetic. Curr. Sci., t. 29, 1960, p. 268.
[4] I. M. Pandya and P. C. Vaidya, Wave solutions in general relativity. I. Proc. nat. Sci. India, t. 27, 1961, p. 620.
[5] H. Takeno, On the space-time of Peres. Tensor, N. S., t. 11, 1961, p. 99.
(Reçu le 3 février 1971).

