L. K. PATEL P. C. VAIDYA A generalized plane wave metric

Annales de l'I. H. P., section A, tome 15, nº 2 (1971), p. 169-175 http://www.numdam.org/item?id=AIHPA 1971 15 2 169 0>

© Gauthier-Villars, 1971, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A generalized plane wave metric

by

L. K. PATEL and P. C. VAIDYA Department of Mathematics, Gujarat University, Ahmedabad-9 (India).

1. INTRODUCTION

The theory of plane gravitational waves in general relativity has been discussed by many investigators. H. Takeno [1] has discussed the mathematical theory of plane gravitational waves in detail. A Peres [2] has studied the plane wave like line-element

$$(1.1) \quad ds^2 = -dx^2 - dy^2 - dz^2 + dt^2 - 2f(x, y, u)(dt - dz)^2$$

where u = t - z and f is a function of x, y and u. The line-element (1.1) can also be expressed as

(1.2)
$$ds^{2} = -dx^{2} - dy^{2} + 2dudz + (1 - 2f)du^{2}$$

Vaidya and Pandya [3] have studied the metric (1.2) in connection with gravitational and electromagnetic radiation. In fact the solution of Peres is a particular case of a more general solution obtained by Pandya and Vaidya [4].

In Peres' solution, all components of the metric tensor are not functions of u. The object of the present investigation is to generalize Peres' metric in such a way that all the components of the metric tensor g_{ik} become functions of u. Of course, some of these components do depend upon x and y also.

2. GRAVITATIONAL WAVES

In Minkowskian space, consider an arbitrary smooth world line L that is every where time-like. Let u be the parameter along the world line. Let λ^i be the unit tangent vector at any point of L. Let A^i , B^i , C^i

be the three mutually orthogonal space-like unit vectors lying in the 3-space orthogonal to λ^i at the point under consideration. Thus we have the following relations:

(2.1)
$$\lambda^i \lambda_i = 1, \quad \mathbf{A}^i \mathbf{A}_i = \mathbf{B}^i \mathbf{B}_i = \mathbf{C}^i \mathbf{C}_i = -1$$

and

(2.2)
$$\lambda^i \mathbf{A}_i = \lambda^i \mathbf{B}_i = \lambda^i \mathbf{C}_i = \mathbf{0},$$

Here it should be noted that the raising and lowering of vector indices of λ^i , A^i , B^i and C^i is carried out with respect to the Minkowskian metric

$$n_{ik} = \text{diag}(-1, -1, -1, 1)$$

Let us define the new co-ordinates x, y, z and t in terms of the co-ordinates x^i by the following relations.

(2.3)
$$x = x^{i}A_{i}, \quad y = x^{i}B_{i}, \quad z = x^{i}C_{i}, \quad t = x^{i}\lambda_{i}$$

Then clearly

(2.4)
$$x_{k} = A_{k}, y_{k} = B_{k}, z_{k} = C_{k}, t_{k} = \lambda_{k}$$

Here and in what follows a comma followed by a lower index will imply partial differentiation with respect to that index. Let

(2.5)
$$Z_i = \lambda_i - C_i \text{ and } p_i = A_i - B_i$$

It follows from (2.5) that

(2.6)
$$Z_i Z^i = 0, \quad p_i p^i = -2.$$

Thus Z^i is a null vector with respect to the Minkowskian metric and p^i is a space-like vector. In this paper we shall confine ourselves to the case in which λ^i , A^i , B^i and C^i are all constant vectors.

Consider a Riemannian 4-space whose metric is given by

$$(2.7) ds^2 = g_{ik} dx^i dx^k$$

where the metric tensor g_{ik} is expressed by the following equation.

$$(2.8) g_{ik} = \eta_{ik} + Hp_ip_k + SZ_iZ_k$$

Here H is a function of u = t - z and S is a function of x, y and u. The determinant g of the metric tensor g_{ik} can be easily computed. It is given by

(2.9)
$$g = |g_{ik}| = -(1 - 2H).$$

As g is negative 1 - 2H should be positive. The vectors p_i and Z_i are orthogonal to each other.

The contravariant components of the metric tensor g_{ik} are given by

(2.11)
$$g^{ik} = \eta^{ik} - \frac{H}{1 - 2H} p^i p^k - SZ^i Z^k$$

It follows from (2.9), (2.10) and (2.11) that

and

$$(2.13) gikZiZk = \etaikZiZk = ZiZi = 0$$

Thus raising and lowering of the vector indices of Z_i can be carried out with the Riemannian or Minkowskian metric. Also the null character of the congruence Z_i with respect to the Minkowskian metric implies its null character with respect to the Riemannian metric.

From (2.8), (2.10) and (2.11) we also have

(2.14)
$$g^{ik}p_i = \eta^{ik}p_i + \frac{2Hp^k}{1-2H} = \frac{p^k}{1-2H}$$

We shall continue to use the Minkowskian metric η_{ik} for raising and lowlering of indices and any dependence on g_{ik} will the explicitly written out as in (2.14). The result (2.6) will be frequently used without mention.

The 3-index symbols for the metric (2.8) are given by

(2.15)
$$\Gamma_{i\ k}^{\ n} = \frac{1}{2} \left[\frac{2p^{n}H_{,(i}p_{k)}}{1-2H} + 2Z^{n}S_{,(i}Z_{k)} - n^{nl}H_{,l}p_{i}p_{k} - \eta^{nl}S_{,l}Z_{l}Z_{k} + \frac{H(S_{y} - S_{x})}{1-2H}p^{n}Z_{l}Z_{k} \right]$$

Throughout this paper the following conventions are used:

Indices range and sum over 1, 2, 3, 4; a semicolon indicates covariant differentiation; round index brackets indicate symmetrization over the indices enclosed; square brackets indicate antisymmetrization; and the lower suffixes attached to functional symbols denote the derivatives of the function with respect to the corresponding variable, e.g.

$$S_y = \frac{\partial S}{\partial y}, \quad S_{xy} = \frac{\partial^2 S}{\partial y \partial x}, \quad H_{uu} = \frac{\partial^2 H}{\partial u^2}, \text{ etc.}$$

ANN. INST. POINCARÉ, A-XV-2

It is clear from (2.15) that

$$(2.16) \qquad \qquad \Gamma_{ik}^n Z_n = 0$$

The result (2.16) imply that the null congruence Z_i is geodetic.

In our case the expression for the Ricci tensor reduces to

(2.17)
$$\mathbf{R}_{ik} = \frac{1}{1 - 2H} \left[-H_{uu} - \frac{H_u^2}{1 - 2H} - \frac{1 - H}{2} (\mathbf{S}_{xx} + \mathbf{S}_{yy}) + H\mathbf{S}_{xy} \right] \mathbf{Z}_i \mathbf{Z}_k$$

The Riemann curvature tensor R_{hijk} for the metric (2.8) is given by

(2.18)
$$\mathbf{R}_{hijk} = 2 \left[\mathbf{H}_{uu} + \frac{\mathbf{H}_{u}^{2}}{1 - 2\mathbf{H}} \right] p_{[i} Z_{j]} p_{[h} Z_{k]} + 2 \mathbf{S}_{xx} \mathbf{A}_{[j} Z_{i]} \mathbf{A}_{[k} Z_{h]} + 2 \mathbf{S}_{yy} \mathbf{B}_{[j} Z_{i]} \mathbf{B}_{[k} Z_{h]} + 2 \mathbf{S}_{xy} \left\{ \mathbf{A}_{[i} Z_{j]} \mathbf{B}_{[k} Z_{h]} + \mathbf{B}_{[i} Z_{j]} \mathbf{A}_{[k} Z_{h]} \right\}$$

For gravitational waves we have

$$\mathbf{R}_{ik} = \mathbf{0}.$$

The results (2.17) and (2.19) imply that

(2.20)
$$S_{xx} + S_{yy} - \frac{2H}{1-H}S_{xy} = -\frac{2}{1-H}\left(H_{uu} + \frac{H_u^2}{1-2H}\right)$$

For gravitational waves, S and H have to satisfy the equation (2.20). The choice of any one of S and H is at our disposal.

If S = 0, then from (2.18), (2.19) and (2.20) we obtain $R_{hijk} = 0$ and the space-time becomes flat.

If H = 0, then $R_{ik} = 0$ implies $S_{xx} + S_{yy} = 0$ and we get the space-time of peres.

Thus it is clear that if we choose H in such a way that $H \neq 0, 1-2H > 0$ and $H_{uu} + (H_u^2/1 - 2H) \neq 0$, then we get the gravitational field which is different from that discussed by Peres.

From (2.18) we have:

A necessary and sufficient condition that a space-time given by (2.8) be Minkowskian is

(2.21)
$$S_{ab} = 0$$
 and $H_{uu} + \frac{H_u^2}{1 - 2H} = 0$, $a, b = x, y$

Thus, when S is a linear function of x and y whose coefficients are functions of u and H satisfies $H_{uu} + \frac{H_u^2}{1-2H} = 0$, then the space-time discussed here becomes flat.

172

3. CO-EXISTANCE OF ELECTROMAGNETIC WAVES

In this section we shall show that the solution obtained in the previous section can be generalized to the case in which the electromagnetic waves co-exist with the gravitational waves. The field equations of electromagnetic field in general relativity are

$$\mathbf{R}_{ik} = -8\pi \mathbf{E}_{ik}$$

and the maxwell equations are

(3.2)
$$F_{ik,n} + F_{kn,i} + F_{ni,k} = 0$$
$$F^{ik}_{;k} = 0$$

Here F_{ik} is the antisymmetric tensor describing electromagnetic field and E_{ik} is the electromagnetic energy tensor defined by

(3.3)
$$E_{ik} = \frac{1}{4} g_{ik} F_{lm} F_{ab} g^{la} g^{mb} - F_{il} F_{km} g^{lm}$$

If ϕ_i is the 4-potential of the electromagnetic field then

$$(3.4) F_{ik} = \phi_{i,k} - \phi_{k,i}$$

Let us choose the 4-potential ϕ_i of the electromagnetic field as

$$(3.5) \qquad \qquad \phi_i = \mathbf{D}(x, y, u) \mathbf{Z}_i$$

Looking to the nature of our problem this choice of ϕ_i seems appropriate. Now,

$$\mathbf{F}_{ik} = \mathbf{D}_{,k}\mathbf{Z}_i - \mathbf{D}_{,i}\mathbf{Z}_k$$

Clearly

$$g^{im}h^{kn}\mathbf{F}_{mn}\mathbf{F}_{ik}=0$$

Thus the electromagnetic field is null with respect to Riemannian metric. (2.8). The electromagnetic energy tensor E_{ik} is given by

(3.8)
$$E_{ik} = \left[D_x^2 + D_y^2 + \frac{H(D_y - D_x)^2}{1 - 2H} \right] Z_i Z_k$$

The results (2.17), (3.1) and (3.8) imply that

(3.9)
$$8\pi \left[D_x^2 + D_y^2 + \frac{H(D_y - D_x)^2}{1 - 2H} \right]$$
$$= \frac{1}{1 - 2H} \left[H_{uu} + \frac{H_u^2}{1 - 2H} + \frac{1 - H}{2} (S_{xx} + S_{yy}) - HS_{xy} \right]$$

The Maxwell equations (3.2) are equivalent to

(3.10)
$$D_{xx} + D_{yy} - \frac{2H}{1-H}D_{xy} = 0$$

Hence, for electromagnetic waves D and S have to satisfy equations (3.9) and (3.10) and H remains arbitrary.

However if we consider S as a function of D, equations (3.9) and (3.10) imply

(3.11)
$$\frac{16\pi - \frac{d^2S}{dD^2}}{2} [(1 - H)(D_x^2 + D_y^2) - 2HD_xD_y] = H_{uu} + \frac{H_u^2}{1 - 2H}.$$

Let us consider a particular case in which

(3.12)
$$\frac{d^2S}{dD^2} = 16\pi \text{ i.e. } S = 8\pi D^2 + \alpha D + \beta$$

where α and β are constants.

Equation (3.11) reduces to

(3.13)
$$H_{uu} + \frac{H_u^2}{1-2H} = 0$$
 i.e. $H = \frac{1-(au+b)^2}{2}$

where a and b are constants.

For electromagnetic waves in this case, H and D have to satisfy (3.10) and (3.13). When H = 0 (i. e. a = 0, b = 1), the electromagnetic field discussed above reduces to the electromagnetic field studied by Takeno [5]. It may however be noted that Takeno [5] has not taken S as a function of D.

REFERENCES

 [1] H. TAKENO, The Mathematical Theory of plane gravitational waves in general relativity. Scientific reports of research institute for theoretical Physics, Hiroshima University, No. 1, 1961.

- [2] A. PERES, Some gravitational waves. Phys. Rev. let., t. 3, 1959, p. 571.
- [3] P. C. VAIDYA and I. M. PANDYA, Radiation: gravitational and electromagnetic. Curr. Sci., t. 29, 1960, p. 268.
- [4] I. M. PANDYA and P. C. VAIDYA, Wave solutions in general relativity. I. Proc. nat. Sci. India, t. 27, 1961, p. 620.
- [5] H. TAKENO, On the space-time of Peres. Tensor, N. S., t. 11, 1961, p. 99.

(Reçu le 3 février 1971).

Directeur de la publication : GUY DE DAMPIERRE.

DÉPOT LÉGAL ÉD. Nº 1795a.

IMPRIMÉ EN FRANCE IMPRIMERIE BARNÉOUD S. A. LAVAL, N° 6244. 9-1971.