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Sets of simple observables
in the operational approach to quantum theory

C. M. EDWARDS

The Queen’s College, Oxford

Ann. Insi. Henri Poincaré,

Vol. XV, n° 1, 1971,

Section A :

Physique théorique.

ABSTRACT. - In the operational approach to the theory of statistical

physical systems, the set fl of simple observables is represented by the
order unit interval in the dual of a complete base norm space. Three

subsets of fl are introduced in the abstract framework. It is shown that,
in the C*-algebra model, these lead to operators in the C*-algebra itself
and in its envelopping E* and Baire* algebras respectively.

RESUME. - Ensembles d’observables simples dans l’approche operation-
nelle 9 la theorie quantique. - Dans l’approche opérationnelle à la theorie
des systemes physiques statistiques, 1’ensemble ~ des observables simples
est représenté par l’intervalle d’unite d’ordre dans le dual d’un espace

complet par rapport a une norme de base. On introduit, dans le cadre
abstrait, trois sous-ensembles de ~. On demontre que dans le modele

C*-algebre ces sous-ensembles deviennent des operateurs dans la C*-alge-
bre meme et respectivement dans la E*-algebre et la Baire* algèbre qui
l’enveloppent. ________

§ 1 INTRODUCTION

In previous papers [5] [6] [7] the operational approach to the theory
of statistical physical systems, originally suggested by Haag and Kastler [12]
and recently formulated by Davies and Lewis [2] in terms of partially
ordered vector spaces, was discussed in some detail and applied to the
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Von Neumann algebra and C*-algebra models for classical and quantum
probability theories. Throughout this paper the notation of [5] [6] will
be preserved. In particular, Postulates 1-6 of § 3 of [5] will be supposed
to hold for a given physical system.

It will be recalled that the set of states of the system is represented by
a norm closed generating cone K in a complete base norm space (V, B),
where B is a base for K, and that the set of simple observables of the system
is represented by the set fl = [0, e] in the dual space (V*, e) of (V, B).
(V*, e) is a complete order unit space Archimedean ordered by the cone K*
dual to K and 9 is the intersection of the unit ball [ - e, e] in (V*, e) with K*.

In the conventional approach to quantum theory, K is chosen to be the
set of positive normal linear functionals on the Von Neumann algebra .2(Y)
of bounded linear operators on the separable Hilbert space Y. Then,
f2 is the set of positive operators A on Y such that A _ I, the identity
operator on Y. In the conventional approach to classical theory, K is
chosen to be the set of positive regular Borel measures of finite total varia-
tion on the separable locally compact Hausdorff space Q. In this case fl

no longer coincides with the conventional set of simple random variables,
the set of positive bounded Borel functions A on Q such that 1,

E Q, and is in fact a far larger set.

In this paper various subsets of fl are defined and identified in the

C*-algebra model in an attempt to explain the anomaly described above.
The basis of their definitions is the notion of physical equivalence suggested
by Haag and Kastler [12].

§ 2. THE PHYSICAL TOPOLOGY

In [12] it was pointed out that, in making measurements on a statistical

physical system, the physical limitations on the system often made measure-
ments on different states indistinguishable. In effect, this produces a
topology T on B, K or V, which for convenience is referred to as the physical
topology. By assuming that all physically relevant information concern-
ing a separating subset 9’ of fl could be obtained in a finite number of

experiments, Gunsen [11] showed that T may be supposed to be locally
convex Hausdorff and that B may be chosen L compact. Results of

Klee [13] [14] show that this is equivalent to supposing that K is T locally
compact. A result of D. A. Edwards [4] shows that this implies that (V, B)
is the dual of a complete order unit space (U, e) Archimedean ordered by
a norm closed cone C, C and K are compatible cones and the topologies T
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and U) coincide on norm bounded subsets of V and on K. In fact,
U may be identified with the space of all r continuous affine functionals

on B. Notice that V* may also be identified with the space of all bounded

affine functionals on B.

The set ~B - [0, e] c U is said to be the set of basic simple observables
of the system. Notice that the relationship between and 9~ is as
follows. Clearly, 9’ c ~B and for f E B, an e-neighbourhood of f for
the topology L is defined by

Hence, it follows that the weak topologies of B and hence of K, defined
by fl’ and 9~ respectively are both identical to T. Therefore, there is no
loss in generality in identifying 9’ with flB.

In the following discussion U will be identified with its canonical embedd-
ing in its second dual V* and both U and V* will be regarded merely as
spaces of affine functionals on B. Clearly 9~ c ~. Physically ~ is the

set of « ideal » simple observables of the system which would be measurable
were it not for the limitations of the experiments. However, recall that
an observable j~ is a fl-valued measure on some Borel space (~, ~) such
that A(F) = e. It follows that, for each sequence {Ar} c fl such that

then

is well-defined and in ~. The topology for which this convergence is
defined is that of pointwise convergence on B, the weak* topology of V*.
However, ~ being the intersection of the weak* compact unit ball in V*
and the weak* closed cone K* in V* is itself weak* compact. Therefore
the conditions above are always satisfied for ~. However, it need not
follow that c 9~ that A E Hence, in order that a satisfactory
notion of observable may be obtained, the set 9~ must be widened in
some way. The remarks above show that one of the conditions which
must be satisfied by the enlarged subset 9" of fl is that the pointwise limit
of any monotone increasing sequence c 9" must itself lie in fl".
Led by these considerations certain properties of functions on B are
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examined. Let ~ (B) be the space of all real-valued bounded functions
on B equipped with the norm ~ . ~ ] defined for by

and let ff + (B) be the subset of consisting of non-negative functions.
Clearly ff(B) is a Banach space and ff + (B) is a cone in The spaces U
and V* are norm closed subspaces of ff(B).

For {T~} a sequence (resp. a monotone sequence) and T E ff(B),
write Tn  T (resp. Tn  T) if and only _ k  oo, Vn and

T( f ), A subset 1/ of (B) is said to be w-(resp. m-)closed
if for each sequence (resp. monotone sequence) {Tn} c j/" such that
that T n  T (resp. Tn  T) then If ~ is any subset
a smallest w-(resp. m-)closed subset 1/W (resp. i~’") containing exists
and is called the w-(resp. m-)closure of j/". The main properties of w-
and m-convergence are given below. The proofs which owe much to [1]
are given in § 3.

PROPOSITION 2 .1. - (i) If w-closed then V is m-closed
and norm closed.

(ii) If 1/ c ff(B) is convex then ’~W, 1/m are convex.
(iii) a cone then 1/w, are cones in ~ + (B).
(iv) If 1/ subspace then ’~’"’, are subspaces.

PROPOSITION 2 . 2. 2014 V* is a w- and m-closed subspace of and any

a(V*, V) closed subset of V * is w- and m-closed.

Let (resp. be the w-(resp. m-)closure of U. Then, Propn. 2.1
and Propn. 2.2 show that U"’ and um are subspaces of V* and that U"’
is norm closed. Let be the space of real-valued T continuous functions

on B. Then it is well known that = ~‘(B), the space of
bounded Baire functions on B. Since U c it follows that elements

of Uw and Urn are affine Baire functionals on B.

PROPOSITION 2.3. - (i) (UW, e), (U"", e) are complete order unit spaces
Archimedean ordered by the cones U"’ (l K*, Um (l K* respectively and
with their order unit norms identical to their norms as subspaces of (V *, e).

(ii) Let W (resp. M) be the set of bounded linear functionals f " on (UW, e)
(resp. e)) such that if { sequence (resp. monotone sequence)
in Uw (resp. and T (resp. T), f " (Tn) -~ /"(T). Let

Kw (resp. Km) be the subset of W (resp. M) consisting of elements f " such
that /~(U"nK*)~0 (resp. f " (Um (l K*) &#x3E;_ 0) and let Bw (resp. Bm)
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be the subset of Kw (resp. Km) consisting of elements f " such that f "(e) = 1.
Then (W, Bw) (resp. (M, complete base norm space with norm closed
cone Kw (resp. Km) order isomorphic to (V, B) and with base norm identical
to its norm as a subspace of (U"’*, Aw) (resp. (um*, Am)).

(iii) sequence (resp. monotone sequence) in (resp. um)
then Tn 03C9 T (resp. Tn m T) if and only if Tn( f ) -&#x3E; T ( f ), f~ B.

Notice that in Propn. 2.3 (ii) a mapping § between base norm spaces
(Vi, B1), (V2, B2) with cones K1, K2 respectively is an order isomorphism
if and only if ø is an isomorphism between V 1 and V2 mapping Bi one-one
onto B2. Such a mapping is automatically isometric.
The order unit spaces (Uw, e), (U’~, e) are said to be the weak and mono-

tone a-envelopes of (U, e) respectively. If the order intervals [0, e] in UW
and [0, e] in U"" are denoted by 9~’ respectively then clearly

flB C and both flw and ~M satisfy the condition
discussed earlier which allows a satisfactory definition of observable as
a ~w or flM-valued measure to be given. are said to be the sets

of weak and monotone simple observables respectively. The importance
of Propn. 2. 3 is in showing that, when or flM is regarded as the set of
physically relevant simple observables, the set B of normalised states is
precisely the set of possible normalised states satisfying’ the expected
convergence properties.

§ 3. PROOFS

Proof of Propn. 2 .1. (i) Let 1/ be w-closed and let

Then, clearly { is a bounded sequence and Tn(f) ~ T( f ), f~ B.
Hence T" ~ T and T E ~. Therefore V is norm closed. is

monotone and Tn  T, then Tn  T and, since ~ is w-closed, 
Therefore is m-closed.

(ii) Let 1/ c ~ (B) be convex and let T E 1/, t E (0, 1). Let

If { c Z, Sn  S then !!  oo. Further

(tT + ( 1 - (tT + ( 1 - t)S)( f ), ’d, f ’E Band
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Therefore tT + ( 1 - t)S" ~ tT + ( 1 - t)S and since 1/W is w-closed
S E Z. Therefore Z is w-closed and since 1/ c Z, "j/’W c Z. It follows
that tT + (1 - t)S E Vw, T~V, S E Vw, Vt E (0, 1). Now let S E 
t E (0, 1) and Z’ = {T: T e tT + (1 - t)S e ~. Then, Z’ is w-closed
and from above c Z’. Hence, c Z’ and therefore is convex.
A similar proof applies to 1/m.

(iii) Let Y’ c ~ +(B) be a cone and for T E 1/, let

Then, as above, Z is w-closed and 1/ c Z. Hence j/"w c Z. Now sup-
pose that S E 1/W and let Z’ = { T: T E ~ (B), T + S E ~Y~’W ~. Then Z’
is w-closed and from above V c Z’. Therefore c Z’ and so

For a &#x3E;_- 0, let Then, Z" is w-closed,
1/ c Z" and hence c Z". Therefore, c ~’"’, 0. Let
T E n - Clearly ff+(B) is w-closed and hence

Therefore V"’ n - ~ = { 0 } and 1/W is a cone. Similarly, j/"m is a
cone.

(iv) Let V be a subspace of F(B). Then, a proof similar to that of (ii)
shows that, e R, the real line, VT, S e aT + j8S e ~~ and ~
is a subspace. A similar proof applies to 1/m.

Proof of Propn. 2 . 2. C V* and suppose [ _ k  00,

Tn  Let f, 1). Then, for e &#x3E; 0, 3no such that
for n &#x3E;_- no,

It follows that

and therefore T is an affine functional. Clearly T is bounded on B and
hence TeV*. It follows that V* is w-closed and Propn. 2 .1 (i) shows
that V* is m-closed.
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Let 1/ c V* be a(V*, V) closed and let c’r, Tn  T. For

f E V, 3a, 0, g, h E B such that f = Ctg - f3h. For 8 &#x3E; 0, 3no such
that for n &#x3E;_ no,

Therefore, T( f)  e and since TT is r(V*, V) closed and

It follows that is w-dosed and Propn. 2.1 (i) shows that 1/ is m-closed.

Proof of Propn. 2 . 3. - From Propn. 2.1, UW is a norm closed subspace
of V* and e E Uw. U"’ n K* is clearly a cone in U"’ and, for T E Uw,

It follows that U"’ n K* generates Uw. In addition, for the ordering
of Uw defined by UW n K*,

and e is therefore an order unit. Let T E Uw and suppose &#x3E; 0.

Then, T(/) ~ ~ B, VÀ &#x3E; 0 and hence T E - K*. It follows that

the ordering is Archimedean. If, for T E U*,

it follows that ~ . is a norm on U"’ and that (U"’, e) is an order unit

space Archimedean ordered by U"’ n K*. It follows from (3.1) and (3.2)
VTeU". If ~, &#x3E; 0 satisfies 

where T E U"’, then - 03BB ~ T(f) ~ 03BB, f~ B, h, Vfe B and hence
It follows that the reverse inequality ~T~ ~ ~T~w also

holds and A similar proof shows that e)
is an order unit space Archimedean ordered by um n K* and with order
unit norm identical to its norm as a subspace of (V*, e).

Since Uw is norm closed in V* it follows that (Uw, e) is complete in its
order unit norm.

Before showing that e) is also complete in its order unit norm (ii)
is proved. Let (U~*, Aw) be the complete base norm space dual to (Uw, e)
and let CW be the cone dual to Uw n K*. Then, W c U"’*, Kw ci CW
and Bw c Aw. First, suppose h E W satisfies h(T) = 0, VT E U and let

Zh = { T: T E Uw, h(T) = 0 ~. c Zh, T. Since h E W,
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h(T) = lim h(Tn) = 0 and therefore T E Zh which implies that Zh is w-closed.
However, U c Zh and therefore Uw c (Zh)W = Zh c Uw which implies
that Zh = U"’ and h(T) = 0, VT E Uw.
For /" E W, let ~( f ^ ) denote the restriction of /" to U. Then § is

clearly a linear mapping from W into V, sending Kw into K and BW into B.
From the result above, it follows that § is one-one. Let f E B and define / ~
on Uw by /~(T)=T(/). Then and ~( f ^ ) = f It follows
that 1&#x3E; maps Bw onto B and hence Kw onto K and W onto V. Therefore 03C6
is an order isomorphism between complete base norm spaces (W, Bw)
and (V, B). To complete the proof of (ii) it remains to show that the base
norm is identical to the norm as a subspace of (Uw*, Let /" eW
and let ~f^~ ] denote the norm of /" regarded as an element of 
Then, II ~( f ^ ) I ~ __ II .f ^ Since U is a closed subspace of ~( f ^ )
has a Hahn-Banach extension fl a bounded linear functional on 
such that [ 03C6(f^) II _ II f1~. Hence, there exists a regular Borel measure ,u
of finite total variation on B such that

_ ~ ~ Elements of Uw are bounded Baire functions on B
and therefore p-integrable. Let

Then, using the properties of integrals, h e W and h(T) = 0, VT e U.
From the earlier result it follows that h(T) = 0, VT E Uw and therefore,

Hence, 1 ~f1~=~ 03C6(f^)~~~ f^II, which implies that
I I .~ ~ ~ I ~(y)!!. Therefore the base norm in (W, BJ coincides with
its norm as a closed subspace of (U"’*, Aw). A similar proof applies to
(M, BJ.

It is now possible to complete the proof of (i) by showing that (U’", e)
is complete and therefore closed in (V*, e). Let { ci Um be a sequence
such that

n
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Since V* is complete, there exists TeV* such that

and to prove that (U’", e) is complete it is sufficient to show that T E U"".
Define

Then, SIr, S2r E Um (l K* and Tr = Sir - Let

Then, { Rln ~, ~ R~ } ci U’" n K* are monotone sequences satisfying

For fe B,

Therefore, converges for f E B, i = 1, 2 and hence converges
for f E V. Therefore, 3R; E V*, i = 1, 2, such that Rin(f) ~ R,(/), f~ B,
i = 1, 2. It follows that R~, i = 1, 2 and since { is monotone

increasing that Ri E K*. Since U"" is m-closed, Ri E i = 1, 2. There-

fore, for f E B,
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It follows that T( f ) = (Ri - R2~( f ), VfE B which implies that

This completes the proof of (i).
To prove (iii), notice that Tn  T if and only if II  oo and

T( f ), f~ B. Conversely, let {T,} c Uw and let T( f ),
’df E B. Then, Tn(f) ~ TCf), df E V and the principle of uniform bounded-
ness shows  oo and hence T. Similarly for

{Tn} c Um monotone, Tn m T if and only if Tn(f) ~ T ( f ), f~ B.

§ 4. THE C*-ALGEBRA MODEL

For the general theory of C*-algebras and Von Neumann algebras the
reader is referred to [3] [4] and for the order theory to [9] [16].

Let denote the space of self-adjoint elements of a C*-algebra u
with identity e and let denote the subset of positive elements of 9t.
Then, e) is a complete order unit space Archimedean ordered by
the norm closed cone C(M) and with order unit norm identical to the
C*-algebra norm. The dual space (U*(9t), of e) with dual
cone is a complete base norm space with closed unit ball

conv ( - is the space of bounded hermitean linear

functionals on u and is the set of states of u. If 9t* denotes the

Banach dual space of, 9t* = + and 9t* may be identified

with the pre-dual of the Von Neumann envelope B = u** of u. In this

identification, is the space V(~) of ultraweakly continuous hermitean
linear functionals on ~, C*(9t) is the cone of positive normal linear
functionals on B and is the set of normal states of B. The

dual space (V*(~), e) of the complete base norm space (V(Q3), B(~)) is

a complete order unitspace Archimedean ordered by the cone 

dual to K(Q3). V*(Q3) is the space of self-adjoint elements of ~, 
is the cone of positive elements of B and e is the identity in B. Notice

that if 9t does not possess an identity the theory described above holds
with slight changes in definitions for the C*-algebra obtained by adjoining
an identity to 9~.
The model for a statistical physical theory in which the set of states of

the system is represented by the cone is said to be the C*-algebra
model corresponding to ~. In this case the set 9 of all simple observables

may be identified with the set of elements A of B such that 0 ~ A _ e.

It is clear from the results of § 2 that the set 9~ of basic simple observables
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may be identified with the set of elements A of u such that 0 ~ A  e.
Recall that, according to Davies [7], a C*-algebra 9t is said to be a

E*-algebra when there exists a set y of ordered pairs {An, A } consisting
of a sequence C 91 and an element A ~u called the a-convergent
sequences such that if S~9t) = { f : f E S(91), { An, A } E ~ =&#x3E; f (A) }
then,

(i) {A,,A}e~ =~ Vn,
(it) ( A~, A ) e %, A’ e 8l + ( A~A’, AA’ ) e %,

(iii) if {An} c: 9t is such converges, f~ S03C3(A), 3A e 9t
such that {An, A } ~y,

(iv) if A E ~, A # 0, ~/6S~9t) such that f(A) # 0. S"(9t) is said to
be the set of 03C3-states of 9L

A subset 93 of the algebra B(X) of bounded linear operators on the
Hilbert space X is said to be ~-closed if every norm bounded weakly con-
vergent sequence in V has its limit in V. The smallest o-closed subset 93~

containing an arbitrary subset 93 of ~(X) is said to be the a-closure of 93.
A a-closed concrete C*-algcbra 9t is a E*-algebra and the a-closure of

an arbitrary concrete C*-algebra is a E*-algebra.
For an arbitrary C*-algebra 9t taken in its universal representation,

the X*-algebra 9t~ is said to be the a-envelope of. In this case

= S(8l) and ~~ may be identified with the smallest family of bounded
affine functionals on containing 9t and such that every bounded
sequence {An} in 9f converging pointwise on has its limit in 9TB

It follows that, in the C*-algebra model, the set of weak simple obser-
vables can be identified with the set of elements A of 9~ such that 0 ~ A  e.

Recall that according to Pederson [15] and Kehlet [10], a C*-algebra u
is said to be a Baire*-algebra when

(i) For each monotone increasing sequence {An}~u such that

][  oo, Vn, ~A~u such that A, Vn and A/E91, A’,
Vn implies A _ A’. In this case write A.

(ii) A ~ f(An)  f (A) } and A ~ 9t, A # 0,
~f~ S03B2(u),f(A) ~ 0.

A subset 93 of the space of bounded self-adjoint operators on the Hilbert
space X is said to be ~-closed if every norm bounded monotone increasing
sequence { An} c ~3 has its least upper bound in ID. The smallest ~3-closed
subset 93~ of the space of bounded self-adjoint operators on X containing
an arbitrary subset 93 is said to be the 03B2-closure of 93. A concrete

C*-algebra 9t such that U(9t) is ~-closed is a Baire*-algebra and for an
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arbitrary concrete C*-algebra N, ~~ = + is a Baire*-algebra
Every E*-algebra is a Baire*-algebra.
For an arbitrary C*-algebra ~C taken in its universal representation,

the Baire*-algebra 9t~ is said to be the Baire envelope of 9t. In this case
= S(9t) and U(8l)° = -U(Q1°) can be identified with the smallest

family of bounded affine functionals on containing and such
that every bounded monotone increasing sequence {An} in has
its least upper bound in 

It follows that, in the C*-algebra model, the set flM of monotone simple
observables can be identified with the set of elements A of 2IP such that
0 ~ A ~ ~.

§ 5. EXAMPLES AND CONCLUDING REMARKS

(i) Let 81 = the C*-algebra of compact operators on the Hilbert
space Y. Then, as was described in [5], Q3 = £(Y) and can be

identified with the set of positive trace class operators on Y. In this

case 210’ = 9t~ = £(Y). Hence in this example, the conventional model
for quantum probability, the sets ~, and flM coincide and are equal to
the set of operators A on Y such that 0 ~ A _ I, the identity operator on Y.
The set 9~ of basic simple observables is the subset of fl consisting of
operators of the form A + ~1 where A is compact.

(ii) Let 2I = the commutative C*-algebra of continuous functions
on the separable locally compact Hausdorff space Q which take arbi-
trarily small values outside compact subsets of Q. Then, as was described
in [5], can be identified with the set of positive regular Borel measures
of finite total variation on Q. In this case 9F = 9~ = the space of

bounded Borel functions on Q. Hence, in this example, the conventional
model for classical probability, the sets ~W and flM coincide and are equal
to the set of Borel functions A on Q such that 0  1, ~03C9 E o.

The set 9~ of basic simple observables is the subset of = flM consisting
of continuous functions.

The two examples above shed some light on which sets of simple obser-
vables should be regarded as more natural than others in the abstract

theory. In both examples the set 9~ is smaller than that usually chosen
for the set of simple observables. Whilst in general ~~ c in the

examples, and this will always be the case for a Type I C*-alge-
bra [15]. However, these two coincident sets are precisely those in which
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the conventional simple observables, the projections in .2(Y) in (i) and the
characteristic functions of Borel subsets of f1 in (ii), lie. To be more precise,
the conventional simple observables form the set of extreme points of the
set = flM in both examples. Some discussion of the importance of
extreme points of sets of simple observables has been given elsewhere [5] [6]
and therefore will not be pursued here.
The inferences which can be gained from examples (i) and (ii) are there-

fore that the most natural class of simple observables must be chosen
from 9"~ and 9~’. The motivation for studying these classes at all seems
to point to flM as the most likely. However, when applied to the C*-algebra
model, for a wide class of C*-algebras, ~W = Pederson points
out that it is still an open question whether the notions of E*-algebra and
Baire*-algebra coincide in general.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Dr. J. D. MAITTLAND
WRIGHT for many fruitful discussions and in particular for the proof
of Propn. 2. 3 (ii) which is due mainly to him. The author is also grateful
to Dr. Ulrich KRAUSE for bringing to his notice his paper in Math. Ann.,
t. 184, 1970, p. 275-296 which deals with a related topic.

[1] E. B. DAVIES, On the Borel structure of C*-algebras. Commun. Math. Phys., t. 8,
1968, p. 147-164.

[2] E. B. DAVIES and J. T. LEWIS, An operational approach to quantum probability.
Commun. Math. Phys., t. 17, 1970, p. 239-260.

[3] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
[4] J. DIXMIER, Les algèbres d’opérateurs dans l’espace hilbertien, Gauthier-Villars,

Paris, 1969.

[5] C. M. EDWARDS, The operational approach to quantum probability, I. Commun.
Math. Phys., t. 16, 1970, p. 207-230.

[6] C. M. EDWARDS, Classes of operations in quantum theory. Commun. Math. Phys.,
t. 20, 1971, p. 26-56.

[7] C. M. EDWARDS and M. A. GERZON, Monotone convergence in partially ordered
vector spaces. Ann. Inst. Henri Poincaré, t. 12 A, 1970, p. 323-328.

[8] D. A. EDWARDS, On the homeomorphic affine embedding of a locally compact cone
into a Banach dual space endowed with the vague topology. Proc. London Math.
Soc., t. 14, 1964, p. 399-414.

[9] E. G. EFFROS, Order ideals in a C*-algebra and its dual. Duke Math. J., t. 30, 1963,
p. 391-412.



14 C. M. EDWARDS

[10] E. T. KEHLET, On the monotone sequential closure of a C*-algebra. Math. Scand.,
t. 25, 1969, p. 59-70.

[11] J. GUNSON, On the algebraic structure of quantum mechanics. Commun. Math. Phys.,
t. 6, 1967, p. 262-285.

[12] R. HAAG and D. KASTLER, An algebraic approach to quantum field theory. J. Math.
Phys., t. 5, 1964, p. 846-861.

[13] V. L. KLEE, Convex sets in linear spaces. Duke Math. J., t. 18, 1951, p. 443-466.
[14] V. L. KLEE, Separation properties of convex cones. Proc. Am. Math., t. 6, 1955, p. 313-

318.

[15] G. K. PEDERSON, On the weak and monotone 03C3-closures of C*-algebras. Commun.
Math. Phys., t. 11, 1969, p. 221-226.

[16] R. T. PROSSER, On the ideal structure of operator algebras. Mém. Am. Math. Soc.,
t. 45, 1963.

Manuscrit reçu le 2 octobre 1970.


