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Section A :

Physique théorique.

ABSTRACT. - A comparaison is made between the coefficients of 1 /r
in the asymptotic expansion of the components of the metric tensor in a
harmonic coordinate system and in a null coordinate system (a coordinate

system adapted to a family of forward null hypersurfaces). It is found

that the comparison is most simply made if one takes as null coordinate

system a radiative coordinate system of the type introduced by Papapetrou.

RÉSUMÉ. - On compare les coefficients de 1/r dans le développement
asymptotique des composantes du tenseur métrique dans un système de
coordonnées harmoniques et un système de coordonnées radiatives du type
introduit par Papapetrou.

INTRODUCTION

The purpose of this article is twofold. First of all we wish to give an

asymptotic expansion along a family of forward null hypersurfaces u = const.
of the coefficients of the metric tensor in a harmonic coordinate system
of a general solution to the Einstein field equations with bounded

sources. Secondly, we wish to compare the coefficient of 1/r in this expan-
sion with the coefficient of 1/rin the asymptotic expansion of the components
of the same metric tensor in a radiative coordinate system [1]. That is,
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we wish to find the asymptotic expansion of the coordinate transformation
which transforms a radiative coordinate system into a harmonie coordinate

system.
Define the quantity ri in an arbitrary globally defined coordinate sys-

tem by

What we shall do is investigate the asymptotic transformation properties
of r’ under two groups of coordinate transformations. The first group, Gi,
is the group of all everywhere regular coordinate transformations which
possess asymptotic expansions in powers of 1 /r of the form (1.7). It is found

that r~ the coefficient of llr2 of the asymptotic expansion of ri is essentially
invariant under Gi.
A harmonic coordinate system is one in which the quantity ri vanishes.

A group G2 of coordinate transformations is introduced which does not
leave 1~ invariant and the coordinate transformation from a radiative
coordinate system (Xi) to a harmonic coordinate system (x’") is found by
finding the element of G2 which transforms ri to zéro.

Consider then a bounded source. By this we mean a body or system
of bodies with the property that they are contained in a world-tube of

compact space-like extension for a11 time. Suppose that outside of this
worid-tube the Ricci tensor vanishes and suppose further that the space-
time manifold V4 is homeomorphic to the four dimensional Euclidian

space fR4.
Under these conditions it is reasonable to assume that there exist solutions

of the field equations which have the property that in some globally defined
coordinate system the components of the metric tensor possess an asymptotic
expansion in inverse powers of a radial parameter r along a family of forward
null hypersurfaces. Such solutions are called retarded solutions. This

assumption can be easily seen to be true in the linear approximation;
it has however not yet been proven in the general case.
What one can do is assume a formal power series expansion in powers

of 1/r along a family of foward null hypersurfaces. The field equations
may be then formally integrated. This approach was initiated by Bondi [2]
and used by Sachs [3], Newman and Penrose [4] and Papapetrou [1] to study
the asymptotic nature of the fields. The success of this method is the main

reason for believing in the existance of solutions which possess asymptotic
expansions along a family of forward hull hypersurfaces. It is found [2], [3]
that if coordinate conditions are imposed, the formal integration proceedure
completely determines the solution to arbitrarily high powers of 1/r in terms
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of Cauchy data on a specified initial null hypersurface to within two arbi-
trary functions. These two functions of three variables - the null hyper-
surface variable u and two angular variables (8, lp) - describe the ampli-
tudes of the two polarization states which we know a zero-mass particle
must have.

In Section 1 of this article we assume a formal power series expansion
in powers of 1/r along a family of forward null hypersurfaces for the compo-
nents of the metric tensor in a harmonic coordinate system. We assume

implicitly that there actually exist solutions of the Einstein field equations
for the type of sources we are here considering for which the components
of the metric tensor in a harmonic coordinate system possess an asymptotic
expansion. The only reason we have for believing this to be so is the fact
that when a formal expansion is assumed, the field equations may be for-
mally solved up to and including the second order 1/r with no obstruction.

In the asymptotic expansion in powers of 1/r of the components of the
metric tensor in a null coordinate system, the coefficients of t/r" depend
only on the three variables (u, 0, It is found that the coefficients of 1 /r"
in the asymptotic expansion of the components of the metric tensor in har-
monic coordinate systems depend also on r through the function log r.

The coefficient of 1/r" for n  3 is of the form

The necessity of introducing logarithmetic terms in an asymptotic expansion
of the coefficients of the metric tensor in harmonic coordinates was first
noticed by Fock [5].
The harmonic condition does not uniquely define a coordinate system.

For example, in the linear approximation the harmonic condition is conser-
ved by transformation of the form

where ai is a harmonic vector field. This indeterminacy is reflected in the
asymptotic expansion. Instead of finding that the solution depends on
the Cauchy data on an initial hypersurface and two arbitrary functions
of the variables (u, 0, one finds that the solution depends on six arbi-
trary functions of (u, 0, Two of these functions are the same as those
which one finds when using a null coordinate system; the four orthers
reflect the coordinate indeterminacy.

Instead of integrating directly the field equations in a harmonie coor-
dinate system, it is easier to find the coordinate transformation which trans-
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forms a given solution in a radiative coordinate system into harmonic
coordinates. This is the method which we adopt here. We do not proceed
past the second order in the formal integration because of the complexity
of the calculations; our interest is only in the coefficient of 1/r and how
it transforms under the group G2 of coordinate transformations.

In Section II we shall show that the pseudotensor gives a mass-loss
formula which is invariant under the group G2 of coordinate transfor-
mations. In particular it is finite when calculated in a harmonic coor-

dinate system-the log r term does not cause any difliculties. We shall

show also that the expression for the energy-momentum vector given by

the pseudotensor in harmonic coordinates is finite in spite of the log r r
terms. We see then that the log r terms which it is necessary to introduce
in an asymptotic expansion of the components of the metric tensor in har-
monic coordinates do not give an infinite value either for the mass-loss
or for the total energy-momentum vector.

In Section III we give an expression for the Bondi news function and
derive an asymptotic expression for the function 03C3 introduced by Newman
and Penrose [4], in terms of the components of the metric tensor in har-
monic coordinates.

1

Let V~. be a space-time manifold whose sources are restricted to a bounded
region of space. We shall assume that V~. admits global coordinate sys-
tems :

We shall designate a coordinate system either by the application w or
by its image qJ(x) = xi in [R4. Latin indices take the values (0, 1, 2, 3);
greek indices take the values (1, 2, 3). The signature of the metric is -2.
Indices will be always raised and lowered with the standard Minkowski
metric 11 ij unless otherwise indicated.

Let u = const. be an arbitrary regular family of foward null hypersurfaces
defined outside of a bounded region of the sources. Let r be an affine para-
meter along the bicharacteristics of u = const. and let (0, ç) be a polar
coordinate system of one of the spheres u = const., r = const. We shall

keep the family u = const. fixed throughout the rest of the discussion.
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This means that we do not touch upon the problems concerning the Bondi-
Metzner group [2], [7].
We shall assume that there exists an everywhere regular retarded solution

of the field equations. We define a retarded solution of the field equations
for the type of matter distribution which we are here considering as a solu-
tion with the property that the components of the metric tensor in some

globally defined coordinate system possess an asymptotic expansion in
inverse powers of r along the family of forward null hypersurfaces u = const.
(and therefore along any regular family of forward null hypersurfaces).
We assume also that the globally defined coordinate system may be chosen
such that in the limit as r tends to infinity the components of the metric
tensor approach 

We defined previously in Part 1 [6] a retarded solution as a solution with
an asymptotic expansion along a family of cones, null with respect to the
Minkowski metric of the coordinate system. We then showed that if the

solution is radiative the Minkowski cones must become asymptotically
tangent to a family of (Riemannian) null hypersurfaces. Since we are

here exclusively interested in radiative solutions, the two definitions are
equivalent.
We remark that what follows will also be valid for formal power series

solutions of the field équations ; that is, solutions with the components
of the metric tensor of the form

and where the series may or may not converge. Such solutions are obviously
retarded in the above sense. The most compelling reason for considering
formal power series solutions is the fact that no exact, retarded, radiative
solutions are known with the components of the metric tensor given expli-
citly in closed form in a globally defined coordinate system such that (1)
is satisfied.

Consider a given retarded solution of the field equations. It can be either
a function solution, which we shall assume to be of class e3 for sufficiently
large r or a formal power series solution of the form (2). Throughout
this article we shall keep this solution fixed. We assume that it is radiative;
that is, that the 1 /r term of the asymptotic expansion of the Riemann tensor
does not vanish. We have then by assumption that in some globally defined
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coordinate system the components of the metric tensor are of the form

To alleviate the formulae in what follows we have dropped the superscript
on Let Ci be the set of all coordinate systems such that (3) is satisfied.
Ci is the set of aIl globally defined coordinate systems such that the compo-
nents of the metric tensor for the solution we are considering possess an
asymptotic expansion in powers of 1/r along the family of forward null
hypersurfaces u = const. We do not specify to what power n of 1/r the
components may be expanded. We assume only that n  2.

Let Gi be the group of coordinate transformations which préserve the
asymptotic form (3). We note the following two important properties
of Gi. First of all, by definition Gi acts transitively on the set Ci.
If y E Gi then y is an everywhere regular map of R4 onto 1R4. If cp, cp’ E Oi
then there exists y E ri with y o ({J’ = ~.

Secondly y must possess an asymptotic expansion in inverse powers
of r along the hypersurfaces u = const. Suppose y to be given by the
functions

Then the induced transformation of the components of the metric tensor is

Since gij and g’ij possess asymptotic expansions so also must 

One sees immediately by applying the integrability conditions

to this system of equations (6) that the map (4) must be of the form

where the ai are constants.
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From these two elementary properties of the group Gi we see that to
study the asymptotic behaviour of the solution we are considering in an
arbitrary coordinate system in 03A61 it suffices to consider it in a particular
coordinate system and then discuss the action of the group Gl upon the
coefficients of the asymptotic expansion. We shall choose as particular
coordinate system an element of the class of radiative coordinate systems
studied by Papapetrou [1]. These coordinate systems are characterized

by the fact that they satisfy the equalities

where

We may choose a radiative coordinate system such that for r &#x3E; ro,

ro sufliciently large, the family u = const. coincides with the forward Min-
kowski null cones whose vertices lie on the world-line of the origin. From
the four functions (u, r, 0, rp) construct four functions (je*) by the equations

u + ~ ~ = ~ sin 0 cos rp, x2 - r sin 0 sin cp, x3 - r cos 0, (10)

for r &#x3E; ro. Then (x’) may be extended to give a globally defined coordinate
system 

- ..

One can easily show [7] that (xi) is a radiative coordinate system for r &#x3E; ro ;
that is, that the equation (8) holds. One sees also that for r &#x3E; ro the hyper-
surfaces u = const. are the forward Minkowski null cones of the coor-
dinate system 03C6 whose vertices lie on the world-line of the origin.
We shall choose this coordinate system as our basic coordinate system

in Ci. Any other coordinate system in may be obtained from ç by
applying an élément of G18 That is, for alllp’ in there exists y in Gi
such that lp’ = y o ({J.
The fact that the null hypersurfaces along which we shall expand are

also Minkowski null cones of the coordinate system ({J enables us to use
the results of Part I. Consider the asymptotic expansion (3) of the coeffi-
cients of the metric tensor in the coordinate system ~. Because of (8)
the decomposition of (See Part I, formula (1.6) is given by

Condition (8) implies in fact the equations

ANN. INST. POINCARÉ, A-X!!-4 26
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Note that, also because of (8), the definition of çi given above (9) coincides
with that given in Part 1 (for r &#x3E; ’0). We showed in Part 1 that if the solu-

tion we are considering is radiative then the quantity is necessarily non-
zero.

The partial field equations

are equivalent to the following three equations, expressed in terms of the
elements of the decompositions of h;j and (See Part I, formulae (III . 8)) :

A dot designates differentiation with respect to u and a dash, when followed
by a greek index, is defined as

Papapetrou [1] has further shown that the higher order partial field

equations

yield the relation

Therefore equation (14 b) may be written as

This may be written as

if we define the function M of (u, 0, ç) as

M is the mass aspect in a radiative coordinate system [1].
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We now turn to the problem of finding the elements of the decomposition
of the coefficient of 1 /r in the expansion (3) of the components of the metric
tensor in an arbitrary coordinate system The transformation (4)
from the basic coordinate system ç to a general coordinate system ~
in ~1 induces the transformation (5) on the components of the metric
tensor. From (7) we see that the coefficients of 1 /r, and h’ij are related
as follows :

If vs is any cartesian 4-vector, it may be decomposed as follows :

where

We shall apply this decomposition to ai and bi. Decomposing both sides
of (19) as we did in formula (1.6) of Part I, we find the following, relations
between the elements of the decomposition of h~~ and those of hl J :

These complicated transformation laws seem to exclude the possibility
of attaching too much physical significance to the elements of the decompo-
sition of hij. However two simple facts may be noticed. First of all,
H’ has a very simple dependence on (0, cp) and is independent of u. It is
impossible to have an asymptotic expansion in powers of 1 /r of the form (3)
with H’ a general function of the variables (u, 0, qJ).
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Secondly, the derivative with respect to u of is an invariant :

Recall that 0i = 0.
Since we shall be discussing harmonic coordinate systems, it is of interest

to consider the quantities ri, defined by

where rjk are the components of the affine connection in a certain globally
defined coordinate system. The necessary and sufficient condition for

a coordinate system to be harmonic is that ri vanish.

Let

be an arbitrary everywhere regular coordinate transformation. This

transformation induces the transformation

of the components of the affine connection. Therefore we find the follow-

ing transformation for the quantities ri :

Consider now the basic coordinate system ç we have introduced. A short

calculation gives the following asymptotic expansion of r’ in this coor-

dinate system:

This formula is immediately obtained from the asymptotic expansion of

the functions given in the Appendix to Part I. Using equations (15)
and (18), equation (24) may be written as

From equation (7) we can calculate the change in the leading term of
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~-2x, j 
the quantity ri. We find that g’k 20142014, 2014., 

the term to be added

to pi 
20142014-. 

in formula (23) is of the form

We have set

We therefore find from formula (23) that in a general coordinate system ~
in 03A61 we have

Let f be a function of the variables (0, that is, a function on the sphere.
Then a short calculation yields that the sum

is a divergence of a function on the sphere. Therefore the integral

vanishes. dSZ is the standard volume élément of the sphere. We shall
often designate the divergence of a function on the sphere simply as div
in what follows. Using this notation, equation (27) may be written as

We see therefore that the quantity

is invariant to within a divergence under the subgroup G~ of Gi defined by

We have in fact from (25) and (28) that

Papapetrou [1] has shown that there exist choices of the family of hyper-
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surfaces u = const. for which the canonically associated radiative coordinate

system given by (10) is such that 
~--~

In this case we have from (28) the following expression for ri:

Differentiate equation (25) with respect to u. The field equations (14 a),

(14 c), (16) yield the following asymptotic expansion for ri in the coor-
dinate system ~:

We saw previously that is invariant under the group of coordinate trans-

formations Gi. Equation (34) therefore yields us the following invariant
of the group Gi :

If the field we are considering is radiative, this invariant is non-zero.
In a harmonic coordinate system it must of course vanish. This is perhaps
the easiest way of seeing that the harmonic coordinate systems do not
belong to the coordinate set Oi. The components of the metric tensor
in harmonic coordinates do not possess asymptotic expansions of the
form (3) in powers of 1/r along the hypersurfaces u = const.

Since the group Gi does not contain the coordinate transformation

from cp to a harmonic coordinate system we must look for a larger group
G2 ::&#x3E; Gi of transformations. Fock [J] found that the asymptotic expansion
of the second approximation to a solution of the field equations in harmonic

coordinates contains terms of the form log r . We are therefore led to
r

consider the group G2 of regular transformations

which possess asymptotic expansions of the following form :

As before the ai are constants and the bi are independent of u. The remain-

ing coefficients are functions of (u, 0, cp). We set
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Differentiating both sides of (36) with respect to (xi) yields us the follow-
ing équation :

The coefficients are given by the equations

Differentiating a second time yields the following équation :

The coefficients are given by the equations

The contravariant components of the metric tensor in the coordinate
system qJ are given by

From (39) and (41) we find the following expression for ;
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After a short calculation, we find that the coefficient of log r vanishes.
r

A necessary and sufficient condition for this to be true is that ai be inde-
pendent of (0, ~).
The inverse of the matrix may be calculated from (37) :

From equations (42) and (44) we find the following expression for the term
to be added to f in the transformation (23) induced by a coordinate trans-
formation in G2:

If the coordinate system (Xli) is to be harmonic then we must have

Therefore we see from (23) that the transformation

must satisfy

Let

be the asymptotic expansion of r’. Using (45) and (48), equation (47)
yields the following three équations :

If we calculate the left-hand side of equation (49 a) in terms of the coeffi-


