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Section A :

Physique théorique.

SUMMARY. - The Z3 = 0 theory for allo-composite particles is based

on an equivalence theorem between a field theory with a Yukawa coupling
in the limit when Z3 --+- 0 and a field theory with a Fermi coupling. The

composite propagators are different in both theories. Here we study this .

problem in a suitable field theoretical model, relating it to the above

mentioned theorem, which is shown to represent only a restricted equi-
valence.

RESUME. - Dans la theorie des particules allo-composees, basee sur
un theoreme d’equivalence de la theorie des champs à couplage de Yukawa
à la limite Z3 --+- 0 et des theories des champs a couplage de Fermi, les
propagateurs des particules présentent certaines differences.

Nous étudions ici ces differences dans un modele particulier et montrons
que le théorème enonce plus haut doit être pris dans un sens restreint.

INTRODUCTION

The field theoretical approach to allo-composite particles [1] is based

on the Z3 = 0 theory of B. Jouvet. This theory relies on an equivalence
theorem [2] which states that for a given field theory with a Yukawa coupling

(*) Ce travail a bénéficié de l’aide du Fond National pour la Recherche Scientifique du
Chili.
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there exists a field theory with a Ferthi coupling yielding the same obser-
vable results of the former theory considered in the limit ZB = 0 (where
ZB is the renormalization constant of the field associated to the composite
particle).
The Yukawa coupling corresponds to the basic interaction B - A + A

while the Fermi coupling corresponds to a theory where only a particle A
appears explicity (A + A - A + A) and particle B is composite.
The equivalence theorem has been studied in the Lee model [3]. The

propagator of the composite particle has also been studied in this model
by J. C. Houard [4], who proved that the composite propagator in the
limiting Yukawa theory is different from that of the corresponding Fermi
theory. This difference was related in this paper to the existence of a

resonance whose position goes to infinity when Z3 --+- 0.

In Section I we show by an explicit calculation in the Lee model that
this resonance completely accounts for the difference in both propagators.

In Section II we introduce a suitable zero dimensional model (i. e.,

a model in which the fields depend only on t) in order to examine more
closely the meaning of the result of Section I. We find that Jouvet’s

equivalence theorem should not be interpreted in a strict sense, and that
the difference between the propagators is a consequence of this limitation.
The result is shown to be related to the remarks on the singular character

of the limit Z3 ~ 0 made by Sekine [5].

I. - This Section is based on the results of reference [4], and we shall
use the same notation.

From the field equations we can deduce that in the limit Z3 ~ 0 the
renormalized field should be replaced by

- _ ~

The propagator of the (elementary) V-particle is

and the composite (limit) propagator Sax) is the limit of(l. 2) when Z3 --+- 0.

We can also introduce in a natural way the matrix element corresponding
to ( 1. 2) in the Fermi model :

Direct calculation shows that, in spite of equation (1.1),
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the difference of these functions being equal to

i. e. to a term which oscillates with infinite amplitude and infinite frequency.
The corresponding Fourier transforms differ by the constant term 
which is responsible for the different asymptotic behaviour.
We prove now that the contribution of the resonance found by Houard

is precisely equal to From reference [4] we know that

where p(a) and pl(a) are the spectral functions, and for any finite a we have
lim p(a) = The function p(a) contains a resonance whose posi-
tion a = a goes to infinity when Z3 --+- 0 :

(we recall that bvj is negative). Both spectral functions contain the term
6(a - M) which is conveniently removed by the substitution

and an analogous one for We can then write [4]

with

where M, m, and J1 are the masses of the V, N, and 0 particle respectively ;
and (GU2 - u2~1 j2..
The resonance occurs at the value a = a for which R(a) = 0. The

height of the resonance is given by
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and its width, which is defined by the condition R(a + F) = I(a + r), is

Equations (1.10) and (1.11) are actually valid only asymptotically, they
can be deduced from equations (1.6), (1.7), (1.8) and (1.9) taking into
account the shrinking of the peak for a - oo as a consequence of the

asymptotic behaviour of f(rx) (which vanishes faster then oc -1 ~).
We introduce now two new functions, p(a) and pr(a), defined by

and

The functions represents the contribution of the resonance to p(a)
and it is easy to verify that we have

and

since lim = 0. The essential point here is that in the limit

Z3 --+- 0 the contribution to the spectral integral of pr(a) is exactly 
To show this we evaluate the spectral integral for using equation (1.9):

In the limit Z3 --+- 0, i. e. a - oo, the logarithmic term vanishes ; the
argument of the inverse tangent function tends to - a/r, i. e. to infinity.
Neglecting po and r as compared with a we finally obtain

This proves, as we have already stated, that the resonance completely
accounts for the observed difference between the propagators of the Yukawa
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and the Fermi models. We remark that in coordinate space the diffe-

rence is given by

The discussion we have just made shows that limit (1.14) can be inter-

changed with an spectral integral of the type (1.3), while this is not the
case for the limit lim p(a) = Pl(a), the difference between both cases is

due to the pr(a) part of the spectral function which, in spite of (1.15), gives
a contribution to the spectral integral in the limit Z3 --+- 0.

II. - We shall now study the equivalence theorem and the asymptotic
behaviour of the composite propagator in zero dimensional models [6].
We start with a Yukawa type model defined by the unrenormalized

Lagrangian

In the interaction representation one ha:

together with the commutation relations [a, a+] = [b, b+] = 1.
Ig Z3 is the renormalization constant of the field cpo we define

where cp, g and  are the renormalized field, coupling constant and mass,
respectively. Ig we impose the condition Z3 = 0 in the field equation
for cp we find that cp should be replaced by the current j(t) = 
where the index I refers to the limiting values of the corresponding quanti-
ties when Z3 --+- 0. Replacement of the field by j(t) in the original
Lagrangian yields the Lagrangian of the equivalent Fermi theory.

Let us precise the meaning of the limit Z3 --+- 0 of the Yukawa theory.
This theory is characterized by three independent parameters m, J1.o, and go.
The limit Z3 --+- 0 will be taken here (this should become clear later, after
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we give the expression for Z3 in terms of the parameters of the theory)
keeping m fixed, while oo. /10 being a function of go such that

The Hamiltonians of the theories are given by

The unrenormalized propagator is’ calculated from

(see for instance reference [6]) and its Fourier transform is given by
1

It is easily seen that S(p) has two poles on the real axis. One of them goes

to infinity like go while the other remains at a finite position ; the latter
is obviously the one which corresponds to the renormalized mass , and

the residue at this pole is Z3. We get

In the limit Z3 -~ we have

with

We shall now introduce the renormalized propagator

It will be meaningful to compare it with the corresponding function cons-
tructed with the « current » j(t) (or Fermi propagator). One gets
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while a direct calculation gives

Thus we find again the same difference between the propagators as in
Sect. 1. ,

In order to understand the origin of the term we shall now solve

the eigenvalue problem for the Hamiltonian (2.3). One gets two eigen-
velues E + : .

One of them, E _, is the renormalized mass E- = J1 = 2(m + ~) + ~).
The other eigenvalue is found at a position which in the limit Z3 -+ 0
goes to infinity, and will be later identified as the source of the difference
between both models (i. e. it corresponds to the resonance found in the
three-dimensional model). One has

The orthonormalized eigenvectors are :

with

Let us consider now the eigenvalue problem for the Fermi model.

One gets only one eigenvalue EF = 2(m + x) and the corresponding eigen-
vector is

One easily verifies that
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while the limiting value of E+ is given by (2.11). This shows that for

any finite energy (E + -+ oo) the spectra of both models coincide. How-

ever, complete equivalence could be reached only if the second eigenstate
dissappears, which is not the case.

We are now able to calculate the spectral functions for both theories.
For the Yukawa model we have

and in the limit Z3 ~ 0 we get

For the propagator we have

In the Fermi theory the spectral function pF(E) is given by

and the Fermi propagator is

These calculations clearly show that the difference between both pro-

pagators arises from the contribution of the state E + ) to the spectral
function. It is also easily seen from (2.21) that the difference in the asymp-
totic behaviour is due to the interchanging of the limit Z3 --+- 
Thus we see the correspondence with the results of the three-dimensional
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theory, the resonance being represented here by E+ ). We find again

lim py(E) = pF(E) for any finite E, but py(E) contains a ð-function (the
contribution of E + )) whose position and coefficient both tend to infinity,
and which gives a contribution to the propagator. Notice the fact that
the source of the difference between the limiting Yukawa theory and the
Fermi theory is perfectly singled out in the zero-dimensional model,
because of the absence of the continuum.
We have stated that in the limit the field cp(t) should be replaced by the

current j(t). Let us then study the vectors of the Yukawa theory
and j +(t) ~ 0 ) of the Fermi theory. One has

Taking the limit Z3 --+- 0 in (2.24) we get

This last equation shows that the vectors 10) and j+(t) I 0) differ
by the vector associated with the « resonant » state !E+ ), with a coeffi-
cient which diverges as Z3 1~2. The fact that the difference is proportional
to only allows us to say that the projection of I 0) on the
subspace which is orthogonal to ! E+ ) (in our case this space is one-dimen-
sional and its unit vector is ~E_ ) will tend 

In the following paragraph we shall consider the problem from a diffe-
rent point of view : that of the time evolution of the state vectors.

Let us consider an arbitrary vector belonging to the sector AA
of the Hilbert space of the Yukawa model, which is a two dimensional
space. In the basis (~!0B (a+)21 [ 0 )) we have

The time evolution of I ~(t) ~ is determined by the Schrodinger equation

which gives a system of two differential equations for the coefficients
oc(t) == (Z3) -1 ~2a~t) and 
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The general solution is of the form

with

If we want to coincide with the vector ~p + ( - t) I 0 &#x3E; of the pre-
ceding paragraph we must choose ao = ~30 = 0. We get for

the expression

which coincides with (2.24) if we express it in the basis (~E_ ), !E+ )).
An analogous calculation can be performed in the Fermi model. Now

the Hilbert space has only one dimension, and an arbitrary vector is

The Schrodinger equation leads to

whose general solution is = 
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Let us compare equation (2.30) with the system (2.27) and (2.28).
Taking the limit Z3 ~ 0 in these last equations we get

Elimination of a gives

which is just equation (2.30). I. e., in the limit Z3 --+- 0 the differential
equations for are the same in both models, but, in spite. of this fact,
the two cases are not mathematically equivalent because in the first one ao
can be chosen arbitrarily (the solutions of a system of two differential
equations of the first order being determined by two initial conditions),
while in the second a(t) is necessarily given in terms of for any value

of t. This problem has been carefully examined by Sekine [5] who pointed
out the singular character of the limit Z3 --+- 0.

Let us now consider the state which at t = 0 coincides
with the Fermi state vector

i. e. let us choose

We now get

for any value of t. More generally, if we take as our initial conditions
for the Yukawa state vector

then it follows that the vector of the Yukawa theory so constructed
tends in the limit to ~p(~) ~.

Therefore, it appears from this analysis that the actual source of the
difference between the two models in the present case is related to the
different initial conditions imposed on the state vectors ~(t) ~ and ~F(t) ~
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which, in their turn, come from the difference between the Hilbert spaces
(which are two and one dimensional in the Yukawa model and in the Fermi
model, respectively). Let us remark that the difference between these
two vectors directly accounts .for the term in the limit propagator.
This is easily verified by showing that S’(t) and SF(t) can be written as
S’(t) = 8(t)  ~(0) I ~(t) ~ and = 0(t) ).. 

’

We finally conclude from our study that both models are not strictly
equivalent. This fact manifests itself in results such as the difference

and lim ~(~0B the difference between the limit
Z3-0

spectrum of Hy and that of HF (the eigenvector of Hy at infinity can give
finite contributions to matrix elements), or the term in the limit pro-
pagator. All these effects are interrelated, as we have shown, and reflect
the non strict equivalence.
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