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Relativistic effects

for magnetohydrodynamic waves

I. S. SHIKIN

(Moscow State University, Moscow).

Ann. Inst. Henri Poincaré,

Vol. XI, n° 4, 1969,

Section A :

Physique théorique.

This paper deals with relativistic magnetohydrodynamics (MHD) of
ideal conducting medium under assumptions that it has no viscosity and
heat conductivity and that its electrical conductivity is infinite. In this

case the dissipative processes in regions of continuous motion are absent.
The metrics is used in the form ds2 = gikdxidxk with signature + - - -. .

4-velocity Ui is normalized by utui = 1. Latin indices run from 0 to 3,
Greek indices run from 1 to 3 ; x° = ct, t is time, c is the velocity of light,
x~ (a = 1, 2, 3) are space coordinates.
We shall consider the general system of equations of relativistic MHD,

Riemann waves in pseudo-euclidian space-time and relations for strong
discontinuities.

It is essential to emphasize that relativistic effects in MHD can become
apparent even in the cases when velocities and temperatures of fluid are
of nonrelativistic values but the velocities of waves approach to the velo-

city of light. Such a case can be realized when MHD waves propagate
through the medium with sufficiently small density, intense magnetic
fields or in the case of propagation at a large angle to the direction of
magnetic field.

§ 1 GENERAL EQUATIONS

The system of equations of relativistic MHD consists of the conservation
laws for total energy-momentum of fluid and electromagnetic field

(covariant di fferentiation is designated by ;),
ANN. INST. POINCARE, A-XI-4 23
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Maxwell equations

where Fik is electromagnetic field tensor,
the condition of ideal (infinite) electrical conductivity

In the case of General Relativity the conservation laws (1.la) are conse-
quences of Einstein field equations

so that in this case the general equations are ( 1.1 ).
Within the framework of special relativity in pseudo-euclidian space-

time the equations (1. la) are general.
In (1. la) is the energy-momentum tensor of ideal fluid

where heat function (enthalpy) w = e + p, e is internal energy per unit

proper volume including the rest energy, p is pressure, Ui is 4-velocity of
a fluid element.

is the energy-momentum tensor for electromagnetic field. 4-divergency
of this tensor is equal to

so that

The equations ( 1.1 a) (in the case of general relativity ( 1.1 )), ( 1. 2-5) must
be supplemented with thermodynamic state equation of fluid. Two cases

must be discerned depending upon the form of this equation:
Case I, when w = w(p, n), where n is density of number of particles

(instead of n one may use rest mass density mn, m is particle rest mass),
and case II, when w = w(p).

In case II, when w = w(p), the system of equations (1.1-5) is closed sys-
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tem. Such is for instance the case of ultrarelativistic state equation
e = 3p, w = 4p, or the more general case of equations of state

In case I, when w = w(p, n), it is still necessary to use the equation of

continuity for number of particles

In case I equation (1. la) by virtue of (1.4) and (1.6) is written

Projecting (1.7) on the direction of 4-velocity MB taking into account
relation Ui(Ui;k) = 0 which is a consequence of UiUi = 1 and using the condi-
tion of ideal conductivity (1.3), one obtains

By virtue of thermodynamic identity

where J is entropy per unit proper volume and T is temperature equa-
tion (1.8) is reduced to

It also follows from (1.6) and (1.9) that

Equations (1.9-10) are true within domains of continuous motion and
they demonstrate the conservation of specific entropy (per unit rest mass)
along world lines of fluid particles and also of entropy in fluid.

In case I the system of equations (1.1a) is equivalent to (1.8) and to
any three equations from ( 1. 7).

In case II, when w = w(p), projection of (1.1a) on Ui gives
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In view of ( 1.11 ) equations (1.1a) are written as

Thermodynamic identity for quantities per unit volume is

where p is chemical potential. In the case when ,u = 0 this relation is

written as Tda = and since ,u = w - TO" it yields dlnQ = 
so that in this case the equation ( 1.1 ) is reduced to ( 1.10) which is the equa-
tion of continuity for entropy.

In case II the system ( 1.1 a) is equivalent to ( 1.11 ) and to any three equa-
tions from (1.12).
The structure of equations ( 1. 7-8), ( 1.11-12) shows the expediency of

utilization of the following quantities which is being used below along with
Ui, w, p and n. These quantities are defined by

in case I

in case II

In case I in nonrelativistic limit both for macroscopic velocities of fluid
and for temperatures since w ~ mnc2 + pa + p (8 is nonrelativistic internal

energy per unit mass) the quantity becomes equal to fluid velocity,
2

p is equal to fluid density and # becomes equal after subtraction of c- 2

to a nonrelativistic heat content per unit mass E + -.
P

Along with relativistic speed of sound cu which is defined as

in case I and as

in case II, the quantity a2 is being used which is defined by
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The quantities a2 and W2 are connected by

in case I

in case II

In the case of MHD of ideally conducting fluid since the relation (1.3)
takes place the energy-momentum tensor of electromagnetic field has two
eigenvectors; one of then which is the time-like one coincides with 4-velo-
city Ui and the other is space-like 4-vector hi, orthogonal to Ui. ,

h~ is assumed to be normalized by

I j~ 12 .

where - is the corresponding eigenvalue of energy-momentum tensor.
8x

In terms of u’ and h’ the electromagnetic field tensor Fik is written as

where eikImlf - g)1/2, eiklm is completely antisymmetric unit pseudo-
tensor, e0123 = 1, (- g) is metric tensor determinant, and the energy-
momentum tensor of electromagnetic field is expressed as

Maxwell equations (1.2) in terms of u’ and h’ are written as

In the case of pseudo-euclidean space-time with Galilean metrics (and also
in curved 4-space in a local geodesic system of reference with Galilean
metrics in fixed space-time point) the electromagnetic field tensor is expressed
in a usual way in terms of electric intensity vector E and magnetic induction
vector H : 1 - - Ex, ~12 = - H=, etc. Maxwell equations (1.2) in
this case are written in usual three-dimensional form
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and ideal conductivity condition ( 1 . 3) is written in a well known form

V is three-dimensional velocity.
Components of 4-vector h’ are expressed in terms of E, H and v by

In accordance with (1.15) h ~ 2 is expressed by

In the proper system of fluid element in which 4-vector Ui is directed
along time axis v = 0 and E = 0. The values in such a system are desi-
gnated by * so that magnetic induction vector in the proper system is H*.
The invariance of gives

In the proper system also 0, ~’~ = 2014 

§ 2. RIEMANN WAVES

In this paragraph the consideration is being done in the framework of
special relativity, space-time being pseudo-euclidean with Galelian metrics.
Riemann wave (or simple wave) is defined as one-dimensional unsteady

motion in which the hydrodynamic and electrodynamic variables in some
inertial system of reference depend upon x-coordinate along a direction
of propagation and upon t through any combination qJ(x, t). Therefore
all these variables in simple wave can be expressed as functions of one of
them, for instance p.
The relation qJ(x, t) = 0 determines the law of propagation of a fixed

phase qJ front. This front velocity V is equal to

V = - 

being in general a function of qJ so that fixed phase fronts propagation is
governed by x = V( qJ)t + The last relation implicitly determines
a function qJ(x, t).
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Unit 4-vector of a normal to hypersurface qJ = const is being designated
by ni. It is a space-like 4-vector with non-zero components

Both cases I and II are treated below simultaneously, the difference in
results for these two cases being pointed out when necessary.

Since an inertial system of reference is used covariant differentiation
is replaced by partial. 

’

The system of equations ( 1. 6), ( 1. 7) with i = a, ( 1.19) and ( 1. 20) for
case I and the system of equations ( 1.11 ), ( 1.12) with i = a, ( 1.19) and ( 1. 20)

for case II in terms of variables (1. 13) yield 03B2~V c, 03BAx,y,z~ K 1, 2, 3 .

Hx = const ;

In case I this system must be enlarged with

We shall also use the zero component of equations ( 1. 7) and ( 1.12) :

It is found to be convenient to utilize for each phase qJ = const the system
of reference in which 4-vector ni is directed along x-axis by making Lorentz
rotation in (x, t)-plane [3]. Measured in such a system variables are desi-
gnated by prime. The transition into primed system means for each
phase ~ = const the transition into system of reference, in which this
phase is in rest (is « frosen »). The relations between primed and unprimed
values according to Lorentz transformations are given by
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In terms of (2 . 9) equations (2 .1 ), (2 . 3-5) become

Equations (2.2) and (2.8) by (2.13) become

where H*2 is defined by (1.22).
The equation (2.14) by virtue of (2.10) is written

The differentiation of = Hixx - Hx03BA’z and = Hxxy - Hyxx (con-
dition of ideal conductivity) with use of (2.10-13), (2.15) yields

where

Equations (2.17) and (2.18) by virtue of HxEx + + = 0

(the condition of orthogonality of E’ and H’ due to (1.21)) yield

The set of equations (2.10), (2.13), (2.16), (2.17-18) (and also (2.15)
if necessary) is used below as a main system, electric field E’ being considered
instead of transversal velocities rcy and xz. In case I this system is enlarged
with the equation (2.7) .

We start in analysis of this system with the case when over the region
of the wave 

...’ 1"B ’1’B ’"B’"B).

A simple wave in which (2.22) takes place does not travel through
fluid particles. Due to (2.10) in this case dç = 0 and V = const so that
the wave propagates (together with particles of fluid) without distortion
of its profile.
As (2.17-18) shows there are two types of simple waves with (2.22)

subject to the value of H~ 2014 E7.
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If H~~ - E1 - 0 (this situation may be realized only if H~~ = 0 and then
E1 = 0) the only condition

which is the consequence of (2.16) must be satisfied over the wave while

Hy, HZ and vy, vz may vary arbitrarily. Such a simple wave is called tan-
gential.

If K~ = 0 but Ej~ ~ 0 in the wave H = const, E = const, V = const
and p = const. In case II also p = const so that one simply has a region
with constant parameters. In case I due to (2 . 21) the variable j5 = 
may be altered arbitrarily in the wave as well as other thermodynamic
variables (in particular entropy) except pressure. Such a simple wave
is called entropic.

Let us now consider simple waves in which (2.22) does not take place.
In case I it follows from (2.21) that entropy must be constant throughout
the region of wave so that p is a function of p.
As (2.17-20) show two possibilities then arise.

throughout the wave.
This relation in terms of initial variables is written by virtue of ( 1.13)

and (2.19) as

In accordance with (2.16-18) over the region of the wave p = const,
p = const, H * 2 = const. Equations (2.10) and (2.13) yield (h1)’ dç = 0
where h is given by ( 1. 21 ). The equality (h 1 )’ = 0 which leads to

in accordance with given below equations (2.27, 2.30) may take place
only in degenerate case H~i - E~2 = 0 together with M~ = 0 so that over
the region of wave d~ = 0 and also H~~ = const, E~ = const.
Throughout the region of the wave by virtue of (2.15) and (1.21)

This may be written in covariant form since (ni)’ is directed along xl-axis as

Such a simple wave is Alfven wave.
Alfven waves travel through fluid particles without distortion of its
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profile. Unprimed values (in initial system) depend in this case simply
upon x - Vt, where V = const. The components of ni are the same f~

each phase qJ so that primed system of reference is a single inertial system
for all phases. In this system the front of Alfven wave is in rest.
Now we consider along with primed system also all other systems in

which wave front is in rest. We call each of them w-system. It may have

an arbitrary velocity in the plane of front, i. e. in (y, z)-plane.
Let us consider a 4-vector [4]

Components of V are expressed by (1.16) in terms of and E1 as

so that

The quantity H~ 2014 E7 has the same value in each w-system. As

H~ 2014 E1 &#x3E; 0 in considered case of Alfven wave one can choose among

w-systems such one in which E1 = 0 and because of orthogonality of E’
and H’ also E~~ = 0 i. e. electric field E’ = 0. In such w-system vectors v’
and H’ are collinear and due to (2.24) and (1.21) also

throughout the wave. The only parameter that may be changed arbi-
trarily over the wave is in this case an orientation of joint direction of v’
and H’. In such a sense Alfven waves are also called rotational.

All conditions in Alfven wave can be written in manifestly covariant
form.

The formula (2 . 23) since uX --_ (u 1 )’ - - (utnt) is written by (2.27) as

In view of (2.26) over the region of Alfven wave

According to (2.25) and (1.15) ViV is expressed by

Substitution of (2.30) into (2.28) yields

so that in Alfven wave
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either (4nw + I = hkYlk, or + I h I2~1~2(uknk) - _ (2 . 3 1 a)

that corresponds physically to propagation in opposite directions.
Let 4-vectors and be introduced by

As (2 . 31 a) shows in Alfven wave either = 0 or = 0.

In Alfven wave with dini = 0 4-vector V is written due to (2.25) and
(2 . 31 a) as so that by virtue of (2 . 29) throughout such a
wave

By analogy in the wave with PJini = 0

(2.33-33a), (2.29) and (2.24) together with the condition of invaria-

bility of p, p and |h|2 form the set of relations in Alfven simple waves in
manifestly covariant form.

Let us now consider the propagation of Alfven wave over medium which
is in rest with magnetic field H*. The velocity of wave along the normal
to its front is being designated by DA, components of H* along the direc-
tion of propagation and at the perpendicular direction being designated
accordingly by Ht and 

Together with Lorentz transformation of field (2.23a) yields

The value of H~ 2014 Ei in Alfven wave is expressed in terms of parame-
ters in rest by (2.23a) and (2.34) as

(2.28) and (2.30) give the covariant relation

Formulae (2. 35) and (2. 36) shows that in the case when H~ 5~ 0 (i. e.

when 0) in Alfven wave H’2~ 2014 El &#x3E; 0 and 4-vector V is time-
like one. If Hfi = 0 then H’~ = E’| = 0, 4-vector V reduces to zero,

This case is the transitional one between tangential and Alfven. waves.

Returning to general analysis of simple waves let us now consider the
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second from the above-mentioned possibilities when (2.22-23) does not
take place. It corresponds to magnetoacoustic simple waves.

It is essential that in magnetoacoustic simple wave ~ 5~ 0 unlike the
cases of tangential, entropic and Alfven waves. Fronts of fixed phase qJ
travel according to x = V(qJ)t + f(qJ) with different velocities V for diffe-
rent qJ so that wave profile is distorted during propagation. As phase qJ
the variable p may be implied for instance. If = 0 the wave is called
centered. Lines cp = const in (x, t)-plane form a set of straight lines which
has an envelope.

Equations (2.17-18) together with (2.13) yield

Differentiation of orthogonality condition HxEx + HyEy + = 0
with assistance of (2.17-18) gives

The equation (2.16) due to dp = a2dp becomes

The comparison of (2.37-38) with (2.39) leads to biquadratic equation
for 

The equation (2.40) holds also true for small disturbances propagated
through medium with constant parametres as well as for weak disconti-
nuities in which discontinuity may occur only in derivatives of hydrodyna-
mic and electrodynamic variables.

Physically the equation (2.40) expresses the fact that fronts of fixed
phase travel through fluid particles with the speed of small amplitude
magnetoacoustic wave. In (x, t)-plane lines qJ = const which form a
set of straight lines coincide with characteristics of the corresponding
family.
The equation (2 . 40) in terms of initial variables according to ( 1.13-14a)

is written
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In covariant form the equation (2. 40a) by (1.22) and (2 . 27) is written as

The roots of (2.40-40a) are

The upper sign in (2.41-41a) (the values a+ and U+) corresponds to
fast magnetoacoustic waves whereas the lower sign (values a - and U - )
does to slow waves.

According to ideal conductivity condition (1.20)

where 6 is an angle between vi and Hi so that values of H1 - are

non-negative:

the equality E’/7 = 0 taking place only when H~ = 0.
In view of (2 . 42) since (2. 40) may be written as

the following inequalities for magnetoacoustic speeds become apparent
(ai and UA are defined by (2.19) and (2. 23a)):

where signs of equality may take place with excluding the degenerate
case xx = 0 only when H1 - E~ 2 - 0 i. e. when H1 = 0.
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For fast magnetoacoustic waves stronger inequality may be written:

In process of rarefaction in magnetoacoustic simple wave as p diminishes
the value of H*2 in accordance with (2.39) and (2.43) increases in slow
waves and decreases in fast ones.
As (2. 38) shows there exist solutions with Ex = 0 over the region of

wave. In the case when Ex i= 0 the diminution of p leads to increase of
E; in slow waves and to its decrease in fast waves.

Values of H~ 2014 El in slow magnetoacoustic waves due to inequa-
lities (2.43) may not become negative, being equal to zero
together with xx .

In contrast with the case of slow waves the value H~ 2014 E1 in fast waves
may become negative.

In order to clear up the conditions under which such a situation may be
realized we consider now fast magnetoacoustic wave of small amplitude
or fast weak discontinuity and study its propagation with speed D along
a normal to wave front through medium in rest with field H*, the compo-
nent of H* along a direction of propagation being again designated by Hfi.

In view of

the equation (2 . 40 a) yields

Roots of (2.45) are the speeds D~ of fast and slow weak discontinuities
’(and also of fast and slow small amplitude wave) :

By analogy with (2.43-43a) the inequalities hold true (DA is defined

by (2 . 34)) :

(D~)2 ~ + H*2)}, (cc~2, (2.46)

where signs of equality takes place only when H1 = 0 (for DM =P 0).
Let us now consider the propagation of weak discontinuities for fixed
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values of w, wand H*2 and at various angles to the direction of H* (i. e.

for various H~). The calculation of extreme values of H~ 2014 El and O~
in dependence upon H?i according to (2.44-45) in view of (2.46) shows
that H~ 2014 for both types of discontinuities approachs its maximum
value which is equal to H * 2 when H 1 = 0 i. e. when the propagation occurs
along H* and H~ 2014 E1 approachs its minimum value when Ht = 0
i. e. when the propagation occurs in a perpendicular to H* direction.
Minimum value of H~ 2014 is equal to 0 for slow waves and is equal
to negative value

for fast waves.

Therefore for slow weak discontinuity as well as for Alfven one the value

It vanishs when Hfi = 0, OM being equal to 0 and this case being transi-
tional one between slow magnetoacoustic and tangential discontinuities.

In fast weak discontinuity is positive according to (2.44)
if (DM )2  c2(Hfi/H*)2, and it becomes zero or negative if

The physical meaning of (2.47) becomes apparent after consideration
of speed °H* with which the wave front, being propagated at an angle to H*,
is displaced along the direction of H*. Vector DH* is received from vec-
tor D of propagation velocity of discontinuity along a normal to its front
by addition with the vector of velocity in the front plane so that to direct
the resulting vector along H*. The condition (2.47) means that DH*
is equal to light velocity c or greater than it (the velocity DM is naturally
less than c).

Substitution of (2 . 47) into (2 . 45) gives conditions under which the situa-
tion with (2.47) takes place

When H*, w and cv are given the condition (2.48) is realized for a suffi-
ciently large (H!/H*)2 i. e. for propagation of fast discontinuity at a suffi-
ciently large angle to the direction of magnetic field.
We call magnetohydrodynamic weak discontinuities as well as small

amplitude waves and also shock waves for which H~ 2014 E1  0 by super-
fast.
The covariant description of the above-mentioned situation may be
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given in term of 4-vector V (2.25) in view of (2.27). For slow waves
4-vector V is always time-like apart from the transitional case between
slow and tangential waves when V is equal to zero. For fast waves Vt

may be both time-like and isotropic or space-like in the case of superfast
waves.

It must be emphasized that the existence of superfast waves is essentially
relativistic effect.

Returning to magnetoacoustic Riemannien waves we now consider
the behaviour of fast simple wave near the points where H1 = 0. In such

points xx in accordance with (2.43) is equal to the greater from values of
a2 and when a2 and ai when a2  afl. If in the

the point with H~ = 0 xx - a2 then is this point according to (2.37)
and (2.13) also dH’|/d03C1 = 0 so that Hl = 0 over the region where = a2.

Yet, if in the point with H1 = 0, xx = ai (this case, naturally, being pos-
sible when H~ 2014 E1 &#x3E; 0) then in this point in accordance with (2.37),
(2.13) and (2.43) the derivative This inequality shows
that a rarefaction below the value p for which H1 = 0 would lead to nega-
tive values of H7 and because of this is impossible, so that the value p
for which tangential field is switched off utterly is the maximum degree
of rarefaction in fast magnetoacoustic wave (an analogous fact is true also
in nonrelativistic approximation).

In slow simple wave in points where H1 = 0 and in accordance

with (2 . 37) and (2 . 43) the derivative  0 and this leads to switch-

ing on of transverse magnetic field Hl with a diminution of p.
Let us now consider the angle a of H’| and the angle {3 of El with y-axis.

Reducing of the second brackets in (2.20) to zero yields

Equations (2.13) give

As it was already mentioned above there exist in accordance with (2. 38)
the solution when Ex = 0 over the region of simple wave (such is in parti-
cular the case when fluid before the wave is in rest). In this case vectors H
and El are orthogonal (due to = -ExHx) and in view of (2.49-50)
their orientation remains invariable. If Ex =I 0 then vectors Hl and Ë~
are rotated in the wave. The angle (a - [3) between and E1 monoto-
nously (with ç) increases or decreases over the wave in dependence upon
a sign of ExHx. In this case, yet, vectors Hl and Ë~ may not become
orthogonal in any point because it leads to Ex = 0 in point where 

this being incompatible with (2.38).
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In the framework of nonrelativistic approximation the equation (2.49)
reduces to da = 0, a = const, so that such polarization effects vanish.

Let us now receive the equation which displays the character of distor-
tion of magnetoacoustic Riemann wave profile. The differentiation of

(2.40) with taking into account (2 .10), (2.13) and (2. 39) yields

We shall assume the following inequalities for the thermodynamic
functions (formulae (1.13) are used):

in case I

in case II

In addition we assume as before that

what means

In consequence of (2.52) in magnetoacoustic Riemann wave the deri-
vative d[(ap)2]/dp &#x3E; 0. The expression in braces in the right side of (2.51)
according to (2 . 43) is positive for fast simple waves and is negative for slow
ones. The analysis of the sign of the left side of (2.51) with utilization of
(2.40) which is complicated by the presence of the third term shows that
this sign is positive for fast waves and it must be negative for slow ones,
so that in magnetoacoustic simple wave

The inequality (2.55) shows that the points of magnetoacoustic simple
wave profile with greater values of p propagate more rapidly than the points
with lower values of p, so that a profile of p during wave propagation with
increasing time flattens out in the domains of rarefaction and steepens in
the domains of compression. This leads to toppling down in the domain
of compression and to arising of discontinuity.

ANN. INST. POINCARÉ, A-XI-4 24
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§ 3. SHOCK WAVES ,

We shall consider now strong discontinuities at the surface of which an
actual jump takes place in the values of hydrodynamic and electrodynamic
variables. The results of this paragraph hold true both for flat and for
curved space-time. For obvious physical interpretation of the relations
being obtained we shall use also for each element of discontinuity surface
a local geodesic system of reference in which metrics for this element is
reduced to Galilean form and given element of discontinuity surface is

in rest. We shall call such a system w-system.
In study of classification of strong discontinuities the results of previous

analysis of Riemann waves prove to be available. Among Riemann waves
entropic, tangential and Alfven waves as it was already mentioned above
propagate without distortion of their profiles with equal for each points
velocity and a distribution of parameters in a connected with wave w-sys-
tem does not depend upon time. In these waves some of hydrodynamic
and electrodynamic variables can vary arbitrarily so that there exist a
free parameter which for given state ahead a wave admits a certain arbi-
trariness in a distribution of variables within a wave. In particular a
width of wave region may be zero and a distribution of variables may be
chosen as a jump. In such a case we obtain correspondingly contact (accord-
ing to entropic wave), tangential and A(fven strong discontinuities.

Such a reasoning fails for magnetoacoustic Riemann waves which
propagate with a distortion of wave profile so that the corresponding strong
discontinuities which are called magnetohydrodynamic shock waves

require special study.
Let a unit 4-vector of a normal to hypersurface which conforms to space-

time domain occupied with discontinuity be denoted by ni(nini = - 1).
In w-system ni is directed along x-axis.
We shall mark the side of discontinuity surface faced to a fluid which

flow into it by means of index 1 and the opposite side by index 2 so that
a fluid flows from state 1 to state 2. We shall assume that 4-vector ni
has the same direction as a velocity of fluid in w-system.
The difference of values ~ 2 1 of a variable ~ at opposite sides

of discontinuity surface will be denoted by 
In accordance with energy-momentum conservation laws (1. la) where

energy-momentum tensors for matter and for field are given by (1.4)
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and ( 1. 7) and according to Maxwell equations ( 1.18) the following rela-
tions must be satisfied at points of discontinuity surface:

which expresses the continuity of energy-momentum flux along a normal
to discontinuity surface, and

The physical meaning of components of 4-vector V in w-system is exposed
by formulae (2.25-27).

In this paragraph values in w-system are denoted without prime. We

also shall denote

so that in w-system

The set of relations (3.1-2) in case II when an equation of state has a
form w = w(p) is closed.

In case I when an equation of state has a form w = w(p, n) the rela-
tions (3.1-2) must be enlarged according to (1.6) with the condition of
continuity of particles flux

As it was already mentioned above and as it results from (3.1-2) and
(3.4) strong discontinuities with uini = 0 through which flux of matter
is absent may be of 2 types.

At tangential strong discontinuity

and the only relation takes place for a jump of variables:

At contact strong discontinuity (in case I)

At such a discontinuity a jump may occur in all thermodynamic variables
(in particular in entropy 6/n) apart from pressure and a value of jump
may be arbitrary.
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In further consideration of relations at discontinuity surface we start
with an analysis of relations (3.1-2) without using the condition of conti-
nuity of particles flux (3 . 4). In case II it gives a complete analysis of closed
set of relations at discontinuity. In case I the relation (3.4) must then
be added.

From 4-vector W the components along ni and V may be extracted.
It must be noticed that vectors V and ni are orthogonal:

Since UiUi = 1 is follows from the definition of Wi (3.1) that

the scalar (W’Mj in view of (3.1) being continuous at discontinuity surface :

The relation (3.8) is also written due to (2.30) as

The projection of Wi onto V by virtue of definition of W (3.1) and of
orthogonality condition = 0 yields

the scalar WiV due to (3.1) and (3.2) also being continuous

Let the component of W~ which is orthogonal to ni be denoted by 
so that W in accordance with (3. 8à) is expressed as

Due to (3.1) and (3.9) fi is continuous at discontinuity surface

The length of 4-vector Jf’ due to (3.1) and (3.12) is equal to
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it also being continuous in accordance with (3.13) :

Now let us resolve hi and Ui into the components along ni and the com-
ponents perpendicular to nt :

According to (3.16), (3.1) and (3.12) gi is written as
i !~)~B "’II

In terms ofg’ and tt due to (3.2) and (3 .16) V acquires the form

which explicitly demonstrates the orthogonality of V and ni (3.7).
Let us now extract from Jf’ its component along V under assumption

that ViVi i= 0 i. e. excluding the case when V is an isotropic 4-vector.
The expression (3.17) in view of Jf’V, = W’V, and of (3.10) after calcu-

lations yields

where

It is evident due to (3.13), (3.2) and (3.11) that at discontinuity surface

and also

where

Finally, in case 0 4-vector W is expressed due to (3.12) and (3.19)
as

where = 0, and so the conditions = 0 at discon-

tinuity surface may be replaced by (3.8a-11) and (3.21) which express the
continuity of components of Wi along the invariant directions.
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If ViVi = 0, the relation (3.12) with Xi given by (3 .17) stays true. It is

easy to verify that for V’V, = 0 the relation (3.19) with ffi given by (3 . 20)
remains valid and 4-vector ffi i becomes equal so that in

the case of isotropic V the condition (3.21) does not give anything new
as compared with (3 .10-11 ).

Let us consider for clear physical interpretation the corresponding rela-
tions in w-system.
The relations (3.8a-9) in w-system in accordance with (3.3) and (1.22)

become

The relations (3 .10-11 ) in view of ( 1. 21 ) in w-system become

The relations (3 . 20-21 ) according to (3.16) and ( 1.17) in w-system are
written (component ~ 1 = 0) :

Due to ( 1. 22) and (3. 3) in w-system

The relation (2.42) gives

the equality to zero taking place only when HT = 0.
With keeping in mind (3.28-29) we shall denote

In view of (3.30) the relations (3.22-23) in case ViVi i= 0 and (3.19, 21)
in case ViV = 0 yield
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In w-system (3.31) becomes

where

the choice of sign in formulae (3.30a-3.31) being reasoned below.
Now we shall consider in which cases iF’ would reduce to zero. Accord-

ing to (3.23) this may take place either if w(utni)2 - ViVJ4n at both sides
of discontinuity surface, or if k = 0 at both sides of it, or if k = 0 at one side
of discontinuity surface and at another. The last of

these possibilities according to (3.29) corresponds to waves which switchs
on or switchs off the transverse magnetic field. The second of these

possibilities corresponds as it may easy be shown to usual gasdynamic
shock waves which propagate along magnetic field and does not interact
with it (H= = E~ = 0). The first of these possibilities corresponds to

Alfven strong discontinuities. Since iF~ = 0 the number of relations at
Alfven discontinuity decreases so that for given state 1 state 2 is not deter-
mined uniquely and there exist a free parameter at wave. The relation

at Alfven discontinuity as it was already pointed out above are analogous
to those in Alfven simple waves so that the analysis of behaviour of variables
in these waves given in § 2 and relations (2.31a-36) remain true also for
Alfven strong discontinuities.
For magnetohydrodynamic shock waves 4-vector ~ differs from zero

(apart only from the case of shock waves which switch on or switch off
the magnetic field).
The further consideration is concerned with MHD shock waves.

The relation (3 . 21) shows that 4-vector is the same for states 1 and 2
and together with V it determines (in case ViV i =I- 0) the orthogonal to
4-vector ni hyperplane which remains invariable while the surface of dis-
continuity is crossed (if V’V, = 0 such hyperplane is composed by Jf’
and V).

In w-system the combination 2Ey + ~3Ez from (3 . 27) due to inva-
riance of H~ 2014 E; yields
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It also follows from (3.27) due to (3.3) and (3. 33) that

so that vectors 1 and (Hr)2 are located at the same plane [1].
Relations (3.33) and (3.34) give

By virtue of (3.29) and (3.35) one may choose among w-systems such
one in which En = 0 at both sides of discontinuity surface. In such a

w-system due to (3. 30a) k is equal to absolute value of H=.
The solution of relations (3.8a-9) and (3.31) with respect to 

in states 1 and 2 gives

The substitution of (3.36) into (3.14-15) in view of (3.30) yields

The relation (3 . 37) binds up thermodynamic quantities w and p and elec-

tromagnetic field parameter k in states 1 and 2 at both sides of discontinuity
surface.

It is known that reasons of compatibility of shock wave with outgoing
small disturbances lead to the existence of two types of MHD shock waves

namely of slow and fast shocks with the following inequalities for fluid
velocities ahead and behind a shock front (evolutionary conditions [2]):

for slow MHD shocks

for fast MHD shocks

where the speeds of Alfven and magnetoacoustic waves UA and U 1: are
defined by (2. 23a), (2. 40a-41 a) (the signs of equality correspond to waves
of small amplitude; switch-on and switch-off shocks are not taken into
account here).
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In a covariant form relations (3.38) are written as

for slow MHD shocks

for fast MHD shocks

The fact of existence of slow and fast MHD shocks is in agreement with
the existence of two types of small amplitude MHD waves and also of
weak discontinuities.
The evolutionary conditions (3 . 38a) in particular mean in view of (2.43)

that

for slow shocks

for fast shocks

It follows from (3.39) that 4-vector V for slow MHD shocks is time-
like one (yiYi &#x3E; 0). In view of (3. 37), (3.36) and (2.25) there also exist
the limiting possibility when V = 0, (hinJ = 0, this being a transi-
tional state between slow shock and tangential discontinuity.
For fast shocks, yet, in accordance with (3.38a) as well as for fast weak

discontinuities 4-vector V may be both time-like and also isotropic or
space-like in cases of superfast MHD shocks. Due to inequalities (3.38)
and (2.44) such a situation is realized in particular for shock propagation
through medium in rest with parameters which obey (2.48).
For fast MHD shocks with an isotropic 4-vector V when = 0

the relation (3.37) acquires an especially simple form

If 4-vector Vi at a shock point is time-like then in accordance with (3 . 3)
a w-system can be chosen in which Et = 0. In such a w-system due to
(EH) = 0 also En = 0 i. e. at both sides of discontinuity surface the electric
field E = 0, vectors of velocity v and of magnetic field H being collinear
and fluid moving along a direction of magnetic field. In this system 4-vec-
tor V is directed along time axis. For slow shocks as well as for Alfven
discontinuities such a system always may be chosen.
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In case of superfast shocks for which V%  0 in accordance with (3. 3)
a w-system can be chosen in which Hn = 0 i. e. at both sides of a shock front
vectors of magnetic field are parallel to shock surface. In such a system V~
and ni have pure space directions which are orthogonal to each other.

It follows from evolutionary conditions (3.39) that in w-system in view
of (3.34) fields Hzl and HT2 must have the same direction and in for-
mulae (3.32) in both sides of equality one may consider k as arithmetical
value of square root (with sign + ), this being assumed in corresponding
formulae (in accordance with (3.30a).

In case II when an equation of state is of form w = w(p) (in particular
in case of ultrarelativistic state equation e = 3p) the relation (3 . 37) with

given values of V, pl, ki and of one from p2 and k2 determines the value
of the other. Then formulae (3.36) determine (uini) in states 1 and 2

and (3.10), (3.20-21), (3.2) and (3.18) determine for given state 1 other

values for state 2.

In case of state equation of form w = w(p) which obeys (2.54) the equa-
tion (3.37) with given value of V in (p, k)-plane determines a curve which

passes through the point p = pi, k = k i . Straight lines p = pi l and l

divide the plane (p, k) into 4 quadrants. Due to (3.37) for points of the
curve if p = pi then necessarily k = kl and vice versa, so that each branch
of the curve is disposed entirely in one of quadrants. It follows from (3 . 37)
also that the equality [p + (k2/8n)] = 0 takes place only together with
[k] = [p] = 0 so that in each quadrant a ’sign of [p + {k2/8~)] and a sign of
[p + (~/87:)]/[~] along a corresponding branch of the curve (3 . 37) remain
invariable.

Near p = pi, k 1 the points of the curve (3 . 37) correspond to small

amplitude waves and (uini) coincides with one of magneto acoustic speeds 
The relations (3.36) in view of (3.30) become in the limit

when p2 -~ pi 1

It follows from (3 . 40) and (2. 43-43a) that for weak waves in case ki # 0
the branch of (3 . 37) with [p]/[k] &#x3E; 0 and also with [p + (k2/8~)]/[k] &#x3E; 0

corresponds to fast waves while the branch of (3. 37) with [p]/[k]  0 and

also with [p + (~/87r)]/[~]  0 corresponds to slow waves.
The invariance of a sign of [p + (k2/8n)]/[k] along the curve (3 . 37) in

each quadrant leads then in view of the evolutionary conditions (3.39)
to the conclusion that the branch of (3-37) for which [p]/[k] &#x3E; 0 might

correspond to fast shocks while the branch of (3 . 37) for which [p]/[k]  0

might do to slow shocks.
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For media with state equation w = w(p) which obeys along with (2. 54)
the thermodynamic inequality (2.52) apparently the parts of inequalities
in evolutionary conditions (3.38) which contain magnetoacoustic speeds
lead to the conclusion that the pressure p2 behind a shock must be greater
than the pressure p ahead it i. e. shock waves are compression jumps. Then
at fast shock the field k increases ([k] &#x3E; 0) whereas at slow shock k decreases
([k]  0) and it can be switched-off (k2 = 0). The proof of this statement
must use the relations (3.36), (3.37) and (3.40) and be concerned with
analysis of curve (3.37).
For ultrarelativistic equation of state e = 3p, w = 4p which obeys the

inequalities (2.52-54) the equation (3. 37) is reduced to quadratic equation
in (p2 - p1):

A degree of compression in slow MHD shocks is restricted by maximum
(finite) value of p2 when the field k2 becomes switched-off completely
(k2 = 0). In contrast with slow shocks at fast MHD shocks arbitrarily
large values of p2 are admitted. When at fast shock j~ -~- oo then

If a w-system is chosen in which a fluid flows into the shock normally
to its front then in such a w-system according to (3.36), (1.20) and (3.26)
a fluid must flow out also normally to shock front with the velocity which
is equal in virtue of (3.42) to

fields Er and Ar being orthogonal in both the states 1 and 2 and

It must be pointed out for comparison that the relations for velo-
cities (3.4?-42a) at MHD shocks of maximum intensity coincide with the
corresponding relations for shocks in absence of magnetic field, this being
connected with the fact that magnetic intensity remains finite while P2 -+ oo.

In case I when an equation of state has a form w = w(p, n) the relations
considered above must be enlarged with the relation (3.4) which expresses
continuity of particles flux or of rest mass flux :
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Let us denote in accordance with (3.43)

The value of j in nonrelativistic limit turns into pvx.
The relations (3. 8a-9) and (3 . 31 ) because of (3 . 44) yield

Now let us return to the equations (3.14-15). It follows from these

equations in view of (3.8a-9) that

The last term in the right side of this relation (in braces) by virtue of (3. 31)
reduces to [w(u‘n~)2](k2 - k1)2/8n so that the relation becomes

The equation (3.47) with use of (3.44) transforms into the equation of
shock adiabat (Hugoniot relation):

It is essential that the relation (3.48) in terms of variables (1.13) becomes
written in the form which formally coincides with the form of shock adia-
bat in nonrelativistic MHD [5] if variables (1.13) be treated as the corres-
ponding nonrelativistic quantities (with the only distinction that k must
be replaced by HT). This circumstance permits to apply the known

procedure of thermodynamic analysis in nonrelativistic version of MHD
to the present case. An analogous fact is valid for shock waves in absence
of magnetic field [3].

In connection with this it must be emphasized that though equa-
tions (3.45, 36) in terms of (1.13) look also like the corresponding non-
relativistic relations the value yiYi in nonrelativistic limit reduces to H~
so that in nonrelativistic version of MHD superfast waves phenomenon
vanishes.
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In order to ascertain the character of jump in values of thermodynamic
variables inequalities for an equation of state must be formulated. We
assume that an equation of state obeys the inequalities (2.52-54) as well
as the inequality

In terms of (1.13-14) the set of inequalities (2.52-54), (3.49) is analogous
to usual set of thermodynamic inequalities in nonrelativistic theory and
under these conditions at shock waves in virtue of increasing of entropy
in irreversible processes the pressure p and p as it known must increase.
Therefore in present case [4]

and also in view of (3.46)

Due to the evolutionary conditions (3.39) in view of (3.36) and (3.50~)
when shock front is crossed the value of k increases at fast shocks and
decreases at slow ones. At slow shocks k2 may be diminished up to zero,
in this case transversal field Hr being switched-off completely. Using
also (3.45) we have therefore

for slow MHD shocks

for fast M H D shocks

Along with (3 . 50) at shock wave (in view of .f2 &#x3E; also

In conclusion let the case be pointed out when at shock wave = 0.

According to (3.10-11) at shock front the equality 1 
= 0 takes place

together with = 0 and rice In this case 4-vector Vt in view
of (2. 25) is space-like and is directed along ln so that such a shock must be
superfast. 4-vector W (3.12) in this case is orthogonal to V and is repre-
sented with use of (3 .17) in the form:
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the relation (3.2) being written as

The addition to (3.52-53) of the condition of continuity of particles
flux (3.43) yields in view of (3.53)

and (3.52) in virtue of (3.54) becomes

The expression (3.55) for W formally coincides with the expression for
W in relativistic hydrodynamics in absence of field for a fluid with heat
function w* and pressure p*.

In the present case among w-systems such a w-system can be chosen
in which (vr)1 = 0. Then in view of [W] = 0 also (V,J2 = 0 and according
to (hini) = 0 and (1.21) also Hn = 0. In this w-system matter flows nor-

mally to a direction of magnetic field which is parallel to shock wave front.
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