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Conformal covariance and invariant formulation

of scalar wave equations

I. I. TUGOV

(P. N. Lebedev Physical Institute, Moscow, U. S. S. R.).

Ann. Inst. Henri Poincaré,

Vol. XI, n° 2, 1969,

Section A :

Physique théorique.

ABSTRACT. - A new formulation of the scalar field equation or the Klein-
Gordon equation in the presence of external tensor vector Ai(x) and
scalar c(x) field is given, which is covariant with respect to gauge transfor-
mations Ai(x) - A;(x) + V iV(X) and conformal transformations of the

tensor field gi’(x) - exp [- 0(x)]g", v(x) and 8(x) are arbitrary functions
of x = (xl, x2, ... , x"). In this case the rest mass square m2(x) defined

as the function of given fields rn2 x - c 2014 .-20142014-. R - 1 V iAi,
transforms as follows : m2(x) - exp [- 0(:B’)]~(jc). Here R is the scalar

curvature, 17 ;-covariant derivatives in the Riemann space V" with metric
tensor the reciprocal of A~ = It is shown that in

considering the class of the scalar wave equations with a constant mass
one deals with the metrics gij(x) = which depend implicitly
on given tensor, vector and scalar fields. For a potential vector field

~iAj = ~jAi one has the wave equation obtained earlier in ref. [1]

which describes the free motion [2] in the Riemann space Vn and possesses
correct group properties (contrary to the equation + ~~ = 0
considered usually in extension of the relativistic quantum mechanics
and quantum field theory for the case of space-time with nonvanishing
curvature). As an example, the scalar field geometrization problem is

considered for the relativistic spinless particle wave equation.
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I . INTRODUCTION

In the present paper a new formulation of the equation of scalar field 4&#x3E;
or the Klein-Gordon equation is considered in the presence of external
tensor vector Ai(x) and scalar c(x) fields, x = (xl, x2, ..., jc"), n &#x3E; 2.

Assuming the total covariance and homogeneity of the wave equations,
we consider the linear homogeneous partial differential equations of second
order

where p ~ are the covariant derivatives in the Riemann space Vn with metric

(under the assumption of nondegeneracy of the metric tensor 

Eq. (1) may be written in the gauge invariant form (see Sec. 2)

putting the rest mass square of the particle m2{x) as the function of given
tensor, vector and scalar fields :

The mass vs the scalar curvature R of the Riemann space V~ provides
covariance of Eq. (1 ) under the group C9 of all conformal transformations
of the metric tensor - = (Sec. 3), with m2(x) trans-
forming as m2(x) - m2(x) = e-6(x)m2(x). The mapping

gives the wave equation with a constant mass m2(x) = const = mo

where 02 _ is the Laplace-Beltrami operator and R is the scalar
curvature [3] determined by the metric gij = m2(x)gij of the Riemann
space V" conformal to V,~, V i are the covariant derivatives in Vn. The
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form (2) is called the canonical form of Eq. (1). Thus, considering the class

of wave equations with constant mass one deals with the metrics gij which

depend implicitly on given tensor vector AI(x) and scalar c(x) fields.
As a particular case in Sec. 6 the scalar field geometrization problem is
considered by an example of the relativistic spinless particle wave equation.
For a potential vector field Alx) = form (2) provides the

wave equation obtained earlier in ref. [1]

which corresponds [2] to the free motion in the Riemann space Vn with
metric tensor gij = (Eq. (3) is invariant under the group of motion
of Vn [1], see Sec. 4). In the case of conformally flat space-time V4 for the
classical problem corresponding to the wave equation (3) one obtains the
geodesic equation of motion in V4 (Sec. 6). Eq. (3) differs from the equa-
tion A24&#x3E; + = 0 (commonly used on the flat space-time analogy
as the Klein-Gordon equation in the space-time with a nonvanishing
curvature R) by the term (n - 2)R/4(n - 1). In fact, from the mathema-
tical point of view the only natural extension of the Laplace-Beltrami
operator A2 for the case of an arbitrary Riemann space should be the inva-
riant Laplace operator defined as follows [1]

The equation of scalar field with zero mass m2(x) = 0 (e. g. the equation
describing the light propagation in a gravitational field = 4)

is considered in Sec. 5. Eq. (4) is covariant with respect to the group C~
of conformal coordinate transformations and covariant under the group C9
of conformal transformations of the metric tensor (Maxwell’s equations
are known to be Cc-invariant and Cg-covariant, see Ref. [4]).
Our treatment of scalar wave equations (*) is mathematically based on

the simple structure of finite transformations of symmetry groups allowed
by Eq. (1) [5], which will be briefly outlined in what follows.

(*) The results of this work were previously presented in Ref. [6].
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2. THE CANONICAL FORM OF Eq. ( 1 )

Let us consider the equations equivalent to equation (1) (see Ref. [2] [SJ)

Here A2 is the Laplace-Beltrami operator and R is the scalar curvature

determined by the metric

of the Riemann space V~ conformal to Vn. and i,(x) are arbitrary
differentiable functions of x,

The function m2(x) is given by the tensor, vector and scalar fields associated
with initial Eq. (1)

where R is the scalar curvature of Vn, and are the covariant

derivatives in Vn and Vn, respectively. Thus the form

associated with Eq. (1) transforms into

Geometrically this means a one-to-one mapping of Vn onto Vn. According
to (5) and (8) the function
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characterizing the equivalent Eq. (5) will be

If Vn remains the same m2(x) does not change either.
Thus, contrary to scalar c(x) the function m2(x) (obtained from c(x) by

substracting the scalars constructed by given tensor and vector fields)
behaves as a scalar function not only under transformations x’ = jc M
which evidently preserve Vn. The most general transformation

preserving linearity, homogeneity and the Riemann space Vn, associated
with Eq. (1), does not also affect m2(x) either (gauge invariance).

It enables us to suppose that m2(x) may be thought as a rest mass square
and general Eq. (1) may be considered as the equation of scalar field with
mass m(x) or the Klein-Gordon equation in the Riemann space Vn with
metric tensor in the presence of vector field with vector-poten-

(h = c = e = 1)

In particular the Klein-Gordon equation for a charged particle in a gravi-
tational field g;  (that is in a Riemann space V~. with signature + 2) will be

where D is the d’Alembert operator in a four-dimensional Riemann space V4.
Providing m2(x) is a nonvanishing function of x, transformation (5)

at 03B8 = log leads to the form, which will be referred to as a cano-
nical form of Eq. ( 1 )

given by tensor field and vector field A~(x), the latter is defined (7)
with an accuracy to a gradient of an arbitrary differentiable function v(x)
(gauge transformation).
From (7) it follows that if

A r’N. INST. POINCARE, A X! 2 14
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transformation (5) at

leads to an equation with 0. In this case the form (14) coincides
with Eq. (3). Thus if the vector field A;(x) is a potential one, Eq. (1) is
reduced to the invariant Klein-Gordon equation (3) given entirely by the
tensor field m2(x)gij(X) [1] [2].
At m(x) = 0 we shall obtain form (14) with the right-hand part equal

to zero in an arbitrary conformal to vn Riemann space V~ with metric

g ij = is an arbitrary differentiable function of x. In a particular
case F ij = 0 one has the following property of the invariant Laplace ope-
rator A EE A~ + (n - 2)R/4(n - 1 ).

If the Riemann spaces Vn and vn are conformal, that is gij = eO(x)gij,
than

where A and A are invariant Laplace operators in V~ and Vn, respectively.
As we shall see in what follows, this property is directly related to the fact
that the equation = 0 is invariant under the group of conformal coordi-

nate transformations of a Riemann space Vn.

3. CONFORMAL COVARIANCE OF EQUATION ( 1)

Let us show that Eq. (1) given by a tensor field vector field Ai(x)
and scalar field c(x) is covariant (form-invariant) under the group C9 of
conformal transformations of the metric tensor

This question is of interest in view of the conformal covariance of the basic
equations of classical physics [4]. The group C9 gives a one-to-one mapping
of V~ with metric (9) onto Vn with metric (10).
Now let us condier a one-to-one correspondance between the mapping (17)

and the equivalence transformation (5) with the same function at

(n - 2)~)/4, that is,
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Then according to (7) for the contravariant and covariant components
of the vector field A we have

i. e., one of the two possible ways [4] of the vector field transformation under
the group C9 of conformal transformations (17). Scalar m2(x) transforms
like (11)

This result has its full counterpart in classical mechanics. Schouten and

Haantjes [7] have shown that the Lorentz equation of motion of charged
particle is covariant under conformal transformations, providing the rest
mass is not invariant but transforms as (20). In the quantum theory this
assumption leads to conformal covariance (18) of fundamental Eq. (1)
(since conformal covariance is intimately connected with relativity, we have
in mind here relativistic quantum mechanics and relativistic quantum field

theory). On the other hand, the set of Eq. (1) on the totality of spaces Vn
conformal to Vn and with the same tensor F ij is a set of equivalent equations.
The evidence of this theorem follows from (5), (7) and (20). From this

point of view reduction of Eq. ( 1 ) to the canonical form ( 14) can be considered
as a conformal point mapping of Vn onto such a Vn where the mass m(x)
becomes constant. The physical meaning of this mapping will be discussed
in sec. 6.

4. INVARIANCE GROUPS OF EQUATIONS (1)

DEFINITION. - The invariance group G/T of an equation (1) F(x, 4» = 0
is the set of those substitutions of independent and dependent variables
~’ == x’(x) that does not affect the appearance of the equa-
tion under consideration with an accuracy to some nonvanishing multi-
plier ~(jc), say That is, the equation F(x, 4» = 0 written in
new variables x’, 4&#x3E;’ must be F’(x’, 4&#x3E;’) = ~ ).
Such a definition is obviously equivalent to the requirement that Eq. (1)

written in new independent variables x’ = x’(x) coincide with one of Eq. (5)
(on replacing x by x’ in the latter). On substitution x’ = x’(x) Eq. (1 )
written as Eq. (5) at 03B8 = v = 0 will be
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Here 02 and R’ are defined by the V~-space metric

transformed to new variables x’ = x’(x). Comparison of the coefficients
at the second-order derivatives in Eq. (21) and (5) gives

Thus the substitution x’ = x’(x) belonging to G/T must be conformal
coordinate transformation (*), i. e.

Thus Eq. (21) in the coordinate system (x’) of the Riemann space Vn
with metric (22) can be formally treated as Eq. (5) associated with the Rie-
mann space Vn conformal to Vn with metric ds2 = (one should
only substitute x’ for x in Eq. (5). Then comparison of the coefficients
of Eq. (21) and (5) gives the theorem [2] [5] :
The invariance group G/T of Eq. (1) is isomorphic to a subgroup of the

group C~ of conformal coordinate transformations x’ = x’(x) of the Rie-
mann space Vn with metric associated with Eq. (1), for which

and

that is

Providing ~(;c) 7~ 0, the set of those transformations x’ = x’(x) that
leave tensor invariant is automatically a set of conformal

transformations. Therefore, in this case the invariance group of Eq. (1)
is the group of isometry of a Riemann space V" with metric tensor m2gij.
The case m2 = 0 will be discussed in the following section.

(*) The connection of group C~ of conformal coordinate transformations x’ = x’(x)
in V and group Cg of conformal transformations (17) of the metric tensor is considered
in Ref. M. The customary notations used in physics are employed here; x and x’ refer
to the same point seen by different coordinates (observers) S and S’. Note that the maxi-

mum number of parameters of group C~ at n a 3 in not in excess of (n-f-1)(n+2)/2 and
achieved only for conformally flat spaces V~.
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5. THE EQUATION
OF SCALAR FIELD WITH ZERO MASS

If m2 = 0 Eq. (5) has the form

In what follows we shall limit ourselves to the case of potential vector
fields Fij = 0. Then Eq. (23) is equivalent to the equation

which will be termed as the invariant Laplace equation in the Riemann
space Vn. Equation = 0 commonly thought [8] to be the wave equa-
tion in Vn, will be further referred to as the Laplace-Beltrami equation.
Replacing = 0 by Eq. (4) for a wave equation in Vn is founded on the
equivalence property (16) of Eq. (4) on a set of conformal spaces. Thus

in a particular case of conformally flat spaces Vn the necessity to use Eq. (4)
instead of the Laplace-Beltrami equation in Vn is apparent and related
to the fact that usual Laplace-Beltrami equation in a flat space Sn proves
to be equivalent to Eq. (4) in any space Vn conformal to S~. With an arbi-

trary space Vm the necessity to use Eq. (4) is accounted for by its invariance
under the group C~ of all conformal coordinate transformations in Vn.
Indeed, on substitution x’ = x’(x) belonging to C~, Eq. (4) constructed
from the metric ds2 - gijdxidxj of Vn transforms to an equation, which
can be considered to be the invariant Laplace equation in a Riemann

space Vn with metric ds2 - e8ds2. By the definition of the conformal

coordinate transformations C~, in a primed coordinate system (x’)V" has
the metric

- ,, ",__,~ ~~~*~~* _

According to (16) this equation is equivalent to the original Eq. (4) in Vn
(one should only substitute x’ for x). Thus under the conformal coordinate
transformation x’ = x’(x) (24) accompanied by the substitution
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Eq. 4 retains its appearance to within the factor exp [- (n + 2)~(jc)/4], i. e.

is invariant under Cc. Consequently, the linear homogeneous equation (4)
is the natural extension of the equation = 0 given in flat spaces Sn
for an arbitrary Riemann space Vn, which retains the total covariance and
invariance under the group C~ of conformal coordinate transformations.
Note, that equation = 0 in space Vn with metric g;~ is invariant only
under the group of motions of the Riemann space Vn with metric

(providing that scalar curvature R of Vn is not zero). This note follows

from the theorem of Sec. 4. Such transformations are evidently included
in the transformations corresponding to (24). With R = const # 0 the

invariance groups of the invariant Laplace equation (4) and the Laplace-
Beltrami equation = 0 in the same Riemann space Vn are readily
intercompared because in this case the latter is invariant under the group
of motions of the Riemann space Vn.
Note that while the suggested invariant Laplace equation (4) in any

arbitrary Riemann space Vn is covariant under the group C9 of the confor-
mal transformations of the metric tensor gij, the Laplace-Beltrami equation,
say, in a Minkowski space (R = 0), is covariant only under 15-parameter
Lie group of the restricted conformal transformations considered by
Cunningham and Bateman [9] [10]. These transformations transform flat

space into flat space. Therefore the term (n - 2)R/4(n - 1) appearing
under the equivalence transformations (16) (the only ones transforming
equation 0 into 02 ~ + = 0 [2]) may be omitted. Note

finally that in the case being considered (m = 0) covariance of Eq. (4)
under C9 is not related to any appropriate mass transformation (20).

6. THE KLEIN-GORDON EQUATION
IN A RIEMANN SPACE Vn

On the analogy with the flat space-time case the Klein-Gordon equation
in the Riemann space V4 is commonly assumed to be

c = h = 1; mo = const (see, e. g., Ref. [4] [11] [12]). We do suggest [2] [5]
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that the canonical form

should be used as the equation of scalar field or the Klein-Gordon equation
in a Riemann space Vn with metric tensor gin. In the following Eq. (3)
will be referred to as the invariant Klein-Gordon equation. In gravitational
fields, i. e., in Rieman spaces V4 with signature + 2, the invariant Klein-
Gordon equation (3) is

This suggestion is based on the group properties of Eq. (3) which is invariant
under the group of motions ofVn and covariant under group C9 of conformal
transformations of the metric tensor gij. Generally speaking, the commonly
used Eq. (26) does not possess either the first or the second, contrary to
some claims [4], property.

Besides, the statement [2] that Eq. (3) is that of motion for a free particle
in a Rieman space Vn agrees (as well as the requirement that the Klein-
Gordon equation be conformally covariant) with the character of a classical
particle motion in the scalar field. As a matter of fact, the relativistic
wave equation for a particle with mass mo in a scalar field 0(x) is (see
Ref. [13])

where D is the d’Alembert operator in the Minkowski space S4 with
metric h = c = 1, ~, is the coupling constant or the charge of a particle.
The corresponding classical particle moves on a geodesic of the geometry V4
with metric [14]

On the other hand, reduction (18) of Eq. (27) to the canonical form gives the
invariant Klein-Gordon equation in the same Riemann space V4.

This example enables us to give some physical interpretation of scalar (8)
which we identify with the rest mass square of a particle.

1. The rest mass relating to Eq. (27) is by Eq. (8) equal to

i. e., is the function of the scalar field 0(x).
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2. Any scalar field O(x) changes the space-time metric. This statement

can be developed by reduction of Eq. (27) to the canonical form (in V4
with metric tensor - exp 2014 8 x for which, by definition,

m(x) = mo = const. According to (28) this means that the scalar field
vanishes and that the original Minkowski space-time S4 conformally
transforms to V4.

3. The physical reason of such a behaviour of the rest mass of a particle
may be clarified in a particular case of the restricted conformal group Co
transforming flat space into flat space. The group Co contains the accele-
ration transformations

where x2 = xkxk, a2 = the parameters, corresponding to the tran-
sitions from an inertial frame of reference to a uniformly accelerating
frame of reference. Let us consider the Klein-Gordon equation in the
Minkowski space S4

On substitution (29) the metric tensor of S4 transforms as follows (see,
e. g., Ref [15])

In the primed frame of reference S’ Eq (30) due to conformal covariance
is equivalent to

Then considering S’ as an inertial frame of reference one obtains the follow-
ing interesting application of the equivalence principle. An acceleration

transformation (29) is equivalent to switching of some scalar field 8(x)
(see Eq. (28)). Let us limit ourselves to a special choice of ak in (29)),
namely : ak = (0; 0, 0, g/2). Then

Providing that gz’ » (~~/4)(z ~ 2014 t’2), we have w(z ) ~ mo(1 + gz’).
Thus, a conformal transformation (29) corresponds to a change of the

apparent force field acting on the particle and the mass transformation
represent the corresponding change in the rest energy which takes account
of the change in potential energy (cf. Ref. [4]).
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7. CONCLUSION

The invariant Klein-Gordon equation (3) was originally obtained [I]
as a canonical form of the generalized Schrcedinger equation

in Vn. Transformation of the equation to the canonical form is essentially
equivalent to some replacement of the dependent variable. It enables

us to investigate the equation properties irrespective of the coordinate
system, as the equation has the same form in all of them. In this case to

study the Riemann space V~ properties becomes very important.
Knowledge of V" geometry allows us by substituting independent variables

(along with the dependent variable transformation accomplished in reducing
the equation to the canonical form) to transform the equation to a more
convenient form. This approach proves to be effective in solving concrete
problems. Some solutions of the invariant Klein-Gordon equation have
been investigated in multidimensional spaces of constant curvature (by an
example of the discrete spectrum and the continuous spectrum of the
multidimensional Coulomb problem [16]) and in the subprojective Riemann
space V4 (an exact solution of the « ladder approximation » Bethe-Salpeter
equation for two scalar particles interacting by a massless scalar field [77]).
Transformation to the canonical form can be also helpful in solving some
other problems dealing with linear homogeneous partial differential equa-
tions of second order.

The above analysis of the group properties of general Eq. (1) enables
us to state that the scalar wave equations usually introduced in extension
of the relativistic quantum mechanics and quantum field theory for the case
of an arbitrary space are not correct [18]. Such generalization should be
treated in the light of the concept that real space-time geometry somehow
affects the properties of elementary processes [19]. Suggested equations (3)
and (4) possess the desired symmetry groups and are conformally covariant.
The physical consequences of these properties agree, as far as we know,
with the well-known results of the classical theory.
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