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On the shrinkage
of the forward and backward diffraction peaks

NGUYEN VAN HIEU, NGUYEN NGOC THUAN

V. A. SULEYMANOV

Ann. Inst. Henri Poincaré,

Vol. IX, n° 4, 1968,

Section A :

Physique théorique.

SUMMARY. - Various upper bounds for the ratios of the differential to

the total cross sections of the elastic and inelastic processes are established.

1. INTRODUCTION

It was shown in a series of papers [1] [4] that the general requirements of
analyticity and unitary lead to some bounds on the asymptotic behaviour
of cross sections of elastic and inelastic processes. Defining the width of
the diffraction peak by the relation

Finn [5], Kowalski [6], Kinoshita [7] and Bessis [8] have shown that W can-
not decrease arbitrarily as s increases. Other characteristics of the diffrac-

tion cone for two-body (elastic and inelastic) processes of the type
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are the ratios

where k and k’ are the 3-dimensional momenta of the initial and final par-
ticles in the c. m. s. and 10 is the momentum transfer at vanishing angle and

AI = At large s we have 2~ = .. For multiple production

processes

it is also possible to introduce quantities

where is the cross section of the production of a particle « c » incos 0 "

the given angle 8, integrated over all the other variables. In the papers [4) [9]
it was shown that at s - 00

In this paper we generalize these results and find the explicit expressions
for the constants which were not determined in ref. [4] [9].
The experimental check of the relation of the form (3) is diflicult, because

the differential cross section at the vanishing angle must be measured for
this purpose. In view of these difficulties we modify the relations of the

type (3) and introduce inequalities containing only differential cross sections
in some interval of angles.

For the backward scattering it is also possible to derive inequalities simi-
lar to that for Ajjp However it is known from experimental data that the
main contribution to the total cross sections comes from the interval

of small angles, whereas cross sections at 8 - 1800 decrease quickly.
Therefore the upper bound seems to be too high. We intend to show that

even stronger bounds exist : in the denominator of the 1. h. s. of the last
formula ai and Un can be replaced by the cross section integrated over the
backward hemisphere ( - 1 cos 03B8  0).
For simplicity we consider only the spinless particles.
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2. ANALYTIC PROPERTIES

OF THE ELASTIC SCATTERING AMPLITUDE

AND THE NUMBER OF SUBTRACTIONS

The obtained inequalities are consequences of the analyticity of the elastic
scattering amplitude (process I) F(s, t) -_- f (s, z) in the momentum trans-
fer t (or in z = cos 0). It follows, as is well know, from the general prin-
ciples of the quantum field theory, that the function f (s, z) for a number
of processes is analytic in the topological product of the s plane with real
cuts (and poles) and the circle y (see [10-12]). We assume the

distributions in the local field theory to be linear functionals on the space
of infinitely differentiable rapidly decreasing functions, i. e. tempered
distributions [13, 14]. Then for all values of t in the circle t I  y the

amplitude F(s, t) is polinomialy bounded and satisfies a dispersion relation
in s with a finite number of substractions :

Let us decompose the amplitude F(s, t) = I(s, z) in partial waves

where k is the three-dimensional momentum of particles in c. m. s. We

put zo = 1 + 2k y 2 and denote by Ezo the ellipse with foci at z = ± 1 and

with the major semiaxis zo. Then for all values of z in Ezo and on its
boundary the inequality I ~ holds. On the other hand,
due to the unitarity condition

Since the function f(s, z) is analytic in z up to the point z = zo the series
for the imaginary part

ANN. INST. POINCARÉ, a-i X-4 24
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converges at z = zo. Therefore this series must be convergent absolutely
and uniformely in the ellipse Ezo and on its boundary and it determines a
function analytical in t in this closed ellipse and bounded uniformly and
polynomial in s.

Following the method of Greenberg and Low [2] and using the condi-
tion (3) we can (on the basis of these properties of analyticity and poly-
nomial boundedness) obtain the Froissart bounds

In the paper of Jin and Martin [15] the following statement was proved :
If F(s, t) satisfies a dispersion relation with two substractions in s for those

values of t that are in a circle a, with a rather small but finite radius

a(a  y), then it follows from (4) and the unitarity condition that it satisfies
a dispersion relation with two substractions for all values of t from the circle

We show now, that in fact F(s, t) satisfies a dispersion relation with two
subtractions for all values of t in some circle a.

By means of a conformal mapping

we transform the ellipse Ezo into a ring with the centre at ç = 0 and with
the internal radius 1 and the external one R

and put s) = Imf(s, z). We denote by m and by M the values of
I on the circle I = 1 and I ç J = R respectively. Since

~ p l( 1 ) = 1 in the interval - 1  z  1 and Im 0,
j I for - 1  z  1 is always smaller than Im, f ’(s, 1 ). Also, it
follows from the inequality (8) that

for any value &#x3E; 0 small enough. On the other hand, because of the
polynomial boundedness,
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Now using Hadamard’s theorem on three circles [17] we obtain for any
value of z from the interval 1 ~ z  zo

First we consider the case when N ~ 2. It can easily be seen on the
basis of the relation (12) that

This eondition is satisfied, in particular, when 1 ~ r  ro

Thus for all z from the interval

the inequality (13) holds. Because of the unitary condition and the pro-
perties of the Legendre polynomials this inequality holds also for any z
in the ellipse Ez~ with foci at z = ± 1 and with the major semiaxis
Zl = 1 + P/2k2 in particular for all z from the circle [ z - 1 [ 
Thus we have for a dispersion relation

where the dn(t) are analytic in this circle. The relation (9) shows that
== 0 where n  2 for all t from some interval t2  t  ti  0. They

must vanish indentically for any t in the circle fl. It follows from

these results and from the Jin and Martin theorem [15] that a dispersion
relation in s with two subtractions holds true for all I 1 I ~ y.

Jf, however, the constant N in (11) is smaller than 2, the later statement
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follows immediatly from the expression (14) for any y. Thus the

integral

converges absolutely for all values of t in the circle y and, hence,
for all t in the ellipse with foci at t = 0 and t = - 4k2 and with the

major semiaxis 2k2 + y. In particular

for all t from 

In the following we shall assume also that F(s, t) satisfies a dispersion
relation in s with a finite number of subtractions for all t from the ellipse

Then, due to the absolute convergence of the integral (15), we can
write a dispersion relation (14) for all t in this ellipse. On the basis of (9)
we conclude that a dispersion relation in s with two subtractions holds then
for all t from the ellipse E;1) if F(s, t) is analytical in In particular,

for all t from 

3. BEHAVIOUR OF DIFFRACTION PEAKS

OF THE ELASTIC AND INELASTIC PROCESSES

Following Greenberg and Low we apply now, to the function Im f (s, z)
analytic in the ellipse Ezo the Cauchy formula

where v-Ezo denotes the boundary of the ellipse Ezo. Hence, using the
familiar formula

we obtain
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Since on the contour 

the inequality

follows from the formula (20).
We have, due to the unitarity condition

We denote by L that value of 1 for which

unity

and consider the series (5) for z = 1. Further, we decompose it into two
parts

where v is a suitable positive number for which (1 + v)L is an integer.
The following estimate for the second sum can easily be derived

We use the Schwartz inequality to get a bound for the first sum. We have

thus
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where is the total cross section for the elastic scattering. It is to be

remembered that the differential cross section is

We choose v such that the inequality

holds. Then the second sum can be neglected as compared to the first one.
We assume &#x3E; const s-p, p &#x3E; 0. In this cas it follows from (26) that

Hence we obtain a restriction on v :

Chosing

where G is a positive number small enough, we obtain

A relation of this type containing an unknown constant was first derived
in paper [9].
We assume that the total cross section tends to the constant for s - oJ

i. e. p = 0. Then

In the case of the scattering on a nonvanishing angle, using the inequality
for the Legendre polynomials

,

the following relations can be derived
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We consider now the process

Decompose the amplitude T(s, z) into partial waves

where k and k’ are three-dimensional momenta of the initial and final

particles.
The unitary condition reads

From (31) and (21) we obtain

By repeating the calculations used for the elastic processes we get

Here p’ is a constant, such that for s - oo O’inel &#x3E; 

Finally we consider a process of multiple production

where A denotes all possible systems of hadrons. It was shown in ref. [4]
that the total cross section of the inelastic processes of the type (III) with the

production of a partical « c » on the give angle 6 is of the form
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where, due to the unitary condition, the coemcients cll. are related to the

imaginary parts of the partial amplitudes of the amplitudes of the elastic
scattering (I) by the inequality

Substituting (21) into (37) we get

Using again the beforementioned arguments we get on the basis of 
and (37) the bounds

where p" is a constant, such that qC &#x3E; const s-P" for s - oo.

4. GENERALIZATIONS

Formula (27) holds also for the backward scattering (at the angle
8 = 180°). Since the main contribution-according to the experimental
data-comes from an interval of angles close to 8 = 0°, this formula

practically is of no interest for the backward scattering. To study the
character of the backward diffraction peak we introduce the notion of the
total cross section on the backward hemisphere 

instead of the total cross section of the elastic scattering. We show now

that the quantity 1 d03C3 dt/t = - 4k2 also satisfies the inequality of the
type (27).
We assume, instead of the rigorously proved analytic properties, the

F(s, t) is analytic in the topological product of the s-plane with the cuts
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and the ellipse Then, as it has been shown, in sec. 2, the inequality (17)
holds.

We denote, by E’ the ellipse with focci at z = - 1 and z = 0 and with

the major semiaxis Zo = 1 2 + 2014 , s - oo. It can be shown that this

ellipse is contained in the Martin ellipse Therefore f (s, z) is an ana-
lytic function in E’.

Introducing the new variable

we map E’ into the Martin ellipse in the W plane with foci at W = :!: I

and the major semiaxes W 0 = 1 + 4Y s - ~. We put f( s, z _ g(s, w)J o s P .f ( ~ ) g( ~ )

and decompose g(s, w) into Legendre polynomials

It follows from the analyticity of g(s, w) and the condition (17) that

where

Repeating now the arguments used in section 3 we get

Here r is a positive constant, such that for s - oc

The experimental determination of the differential cross section at 8 = 0~
and 8 = 1800 is very difficult. To facilate the task we slightly modify
the obtained relations (27) and (45). Again, like at the beginning of this
section, we assume analyticity of F(s, t) in the topological product of the

s-plane with cuts and the ellipse For definiteness we consider the

scattering at a small angle. We denote by ti and t2 some fixed nega-
tive values of t, t2  0. It can easily be shown that the Martin



368 NGUYEN VAN HIEU, NGUYEN NGOC THUAN AND V. A. SULEYMANOV

ellipse contains the ellipse En with foci at tl, t2 and major semiaxis

By means of the mapping

we transform the ellipse E" into the ellipse Euo in the u plane with the foc
at u = ± 1 and the major semiaxis uo = const &#x3E; 1. Using the method
presented above we can derive the following inequality

where

The relevant inequality for the backward scattering can be established in
a similar way

where
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