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The discrete symmetries
of elementary particle physics (*)
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Section A :

Physique théorique.

ABSTRACT. - The discrete symmetries P, C and T are discussed in terms
of Lie algebra extensions of the Poincaré Lie algebra. This formulation

leads to certain problems of Lie algebra theory which will be presented
in this and succeeding papers.

I. - INTRODUCTION

Recent work on the rate of the discrete symmetries P, C and T in ele-
mentary particle physics has, at the minimum, pointed out the need for a
careful discussion of their true nature (Note particularly the comments
of T. D. Lee and G. C. Wick [4] on the ambiguity of the definition of C.)
This paper will suggest a purely (Lie) algebraic model where one can readily
formulate some of the problems in a clear-cut mathematical way, and is
the first in a series in which the relevant mathematical problems will be
examined. Since the basic idea is to use the various extensions of the

Poincaré Lie algebra, the first problem (which will be the main problem
in this paper) will be to survey the methods for classifying extensions of
the Poincaré Lie algebra.

(*) Work supported by the U. S. Atomic Energy Commission.
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First, however, let us present the main idea. Start off with the Lie

algebra G of the Poincaré group G as a semidirect sum L + T of the
homogeneous Lorentz algebra L and the abelian ideal T of translations.
Explicitly, we have:

On this « geometric » level, P, and T (parity and time inversion) are iso-
morphisms of G. Thus, if (XII)’ u = 0, 1, 2, 3, is the basis for T,

The action of these automorphisms on L is determined by the condition
that each be an automorphism of G.
Now, as L. Michel has emphasized [5] to define an elementary particle

system, one must also be given an extension of G, i. e., a Lie algebra G’, 9
together with homomorphism of G’ onto G (The physical states can
then be defined by representations of G’ by operators on a Hilbert space.)
If we call K the kernel of rp (which is an ideal of G’, i. e., [G’, K] c K)
then G is the quotient algebra G’/K. From this point of view, it is natural
to define the « physical » discrete symmetries, which we shall call P’, T’,
as automorphism of G’ such that :

We shall present below the method for finding all such extensions, based
on the exposition of the classification of abelian extensions given in [2,
Part III]. In principle then, it is possible to find all such operators P’, T’
by a definite algebraic procedure. If we further want the « physical »
transformations P’, T’ to generate the same group as does P and T (i. e.,

P’2 - T’2) then in many cases they are quite determined.
The transformation of charge-conjugation, C, is not so obviously defined

in the general case, since it is not tied so clearly to « geometric » discrete
symmetries. However, by examining the usual derivation for the Dirac
equation we shall be able to pinpoint at least one way of defining C that
has general validity and that leads to a well-posed mathematical problem.

I am indebted to N. Burgoyne, S. Glashow, L. Michel and G. C. Wick
for many discussions about these ideas, and would like to thank them.
I would also like to thank J. Prentki and the Theoretical Study Division
of C. E. R. N. for their hospitality while this paper was written.
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II. - ABELIAN EXTENSIONS
OF THE POINCARH LIE ALGEBRA

Let G be an arbitrary Lie algebra. As we have said, an extension of G
is a pair (G’, cp) consisting of a Lie algebra G’ and a homomorphism cp
of G’, onto G. Let K be the kernel of cp. It is an ideal of G’, and G iso-
morphic to the quotient algebra G’/K. In [2, Part III] we have given a
short exposition of the standard results describing how the second cohomo-
logy groups classify to abelian extensions (i. e., the case where K is abelian).
In this section we will apply this to the case where G is the Poincaré algebra,
an exercise that does not seem to have been done in full detail before ( ~ ).

Recall how Lie algebra cohomology is related to abelian extensions.

Suppose K and G are Lie algebras with K abelian. Let cp be a represen-
tation of G by linear transformations on K, and let a): (X, Y) -~ co(X, Y) be
a 2-cocycle of G with coefficients in K, i. e.,

Construct a Lie algebra G’ in the following way :

G as a vector space is just K @ G.

The bracket [,] 1 in G’ is constructed as follows :

Let a denote the map : G 2014~ G which sends X + Y into a(X + Y) = Y
for X E K, Y E G. Then, 2.1 tells us that a is a homomorphism with
kernel K, i. e., G’ is an extension of G by K. Standard results assert that

every extension of G by K arises in this way, and that this is a semidirect
sum, i. e., there exists a homomorphism /3: G - G’ such that x~ = identity,
is and only if the cocycle OJ is cohomologous to zero.

(1) We note however a preprint by A. Galindo, « An extension of the Poincaré
group » giving an example of a non-trivial abelian extension. Such an example
was also discovered earlier by S. Glashow, and mentioned briefly in E. Stein’s
talk at the 1965 Trieste conference. It will be presented in more detail here.
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Note one sidepoint that is of interest for the theory of deformation of Lie
algebras: if formula 2.1 are used, with Y) replaced by Y),
where ~, is a real parameter, we obtain a one-parameter family of Lie alge-
bras, each of which is an extension of G by K, which for ~, = 1 is G’, and
for a = 0 is the semidirect product of G and K.

Let us now turn to the case where G is the Poincaré algebra L + T,
where L is the homogeneous Lorentz algebra and T is the abelian ideal
formed by translations. Suppose 0 - K - G’ - G - 0 is an abelian

extension. As we have seen in [2], we can choose co in its cohomology
class (which only changes G’ up to an isomorphism) so that

Equation 2.3 then says that 03C9 is determined uniquely by its reduction to
T x T, i. e., we are given a « tensor » mapping skew-symmetrically
T x T - K. In addition, 2.2 says that this tensor is invariant under

the action of L on these spaces. Now L is the Lie algebra of SL(2, C).
All invariant tensors of this group can readily be found by the usual Clebsch-
Gordan analysis. Thus, in principle, we could solve the problem of writing
down all possible abelian extensions of the Poincaré algebra.
Of course, not every such invariant tensor will satisfy the cocyle condition.

Let us examine this in more detail. Suppose then that (~: G x G2014~ K

satisfies

Let us look for the condition dm = 0. Now,

hence from 2.4 above follows the condition

Suppose X E T. The condition that dcv = 0 is now :

or

or

Let us work through conditions 2.5.
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Case 1: Y, Z E T. The condition is then :

Case 2: Y, Z E L : Then 2. 5 is automatically satisfied.

Case 3: Y E L, Z E T. Then only the following terms survive from 2. 5:

or

which again satisfied identically. Then 2 . 6 is the only non-trivial condition.
Note that it too is automatically satisfied if, for example,

Thus we have proved the following :

THEOREM 2.1. - Suppose 2.7 is satisfied. Then every bilinear, skew-

symmetric mapping m: T x T --~ K which is invariant under L defines
an extension of G by K.

Next, we should inquire if the abelian extension by K constructed in
this way are semi direct products. Suppose otherwise, i. e., the correspond-
ing 2-cocycle ro satisfies

and in addition :

Then, d(X(8)) = 0 for X E L, i. e., X(8) is a 1-cocyle. If, for example,
K contains no subspace that transforms under cp(L) like the representation
of Ad L in T, we know from [2] that = 0, i. e., there exists a Wx E K
such that

If also, p(L) acting on K has no invariant vectors, one sees that the assign-
ment X - Wx is linear, and is invariant under the action of L also. Then,
if K contains no subspaces that transform under ço(L) like the adjoint
representation of L in itself, we see that Wx = 0 for X E L, i. e., 8 is an
L-invariant linear mapping of T - K, forcing co = 0 if no such mappings
exist. Summing up, we have proved :

THEOREM 2.2. - If p(L) acting in K has no invariant vectors, and no
subspaces transforming like Ad L in L or T, then every nonzero 2-cocycle



344 ROBERT HERMANN

determined by an L invariant map : T x T - K is not a coboundry (as
a corollary, the extension of G by K determined by the cocycle is not iso-
morphic to a semi-direct product).
The simplest example of an co satisfying the conditions of theorems 2.1

and 2.2 can be described as follows : Let K be the vector space consisting
of the skew symmetric bilinear forms on T, which we can symbolize by
TAT. Let co be the skew-symmetric tensor product T x T - N AT.
This leads to an abelian extension of G, the Poincaré algebra, by a six-
dimensional abelian kernel. This algebra was first constructed by
S. Glashow (and was the example that started this investigation). We will

call it the Glashow Algebra.
In summary, we might say that a good technique exists for studying and

classifying the abelian extensions of the Poincaré algebra. How to reduce

(finite dimensional) extensions by arbitrary Lie algebras to this case is more
or less known, although difficult to find when needed ; hence we will now
present a short exposition.

III. - EXTENSIONS

WITH NONABELIAN KERNELS

In this section we will briefly review the standard material describing
how, in many favorable cases, extension of Lie algebra by nonabelian
kernels can be reduced to extensions by abelian ones.

Suppose G’ is a Lie algebra, and K, K’ are two ideals of G, with K’ c K,
and G = G’/K. There is a linear map :

with kernel K/K. It is readily verified that this map is a Lie algebra
homomorphism. Hence, if K/K’ is abelian, we have « resolved » the
extension O2014~K-~G’2014~G2014~O into a sequence of two extensions :

and

Suppose now that K is a solvable Lie ideal of G’. Choose K’ as [K, K].
Then, K’ is an ideal in K and, by the Jacobi identity, even an ideal in G’.
Hence this remark applies, and we see that we may consider the problem
of classifying all extensions by solvable Lie algebras as « solved » if it is
« solved » for abelian ones.
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Let us examine the situation in case G’ is the Poincaré group, and K is

a « two-step » solvable algebra, i. e.,

Now, 3.1 determines a representation cp of G by linear transformations
in K/K’, and an element co E Z2(~p). Recall that G’/K’ is described as

follows:

([,] is the bracket in G’/K’).
Let G = L + T, with L the Lorentz subgroup, T the translations. We

knew that (J) can be chosen so that

Thus, L is a subalgebra of G’, not merely identified with a subspace.
Now, 3.2 determines a homomorphism q/ if G’ by linear transformations

on K’, and a 2-cocycle w’ E ZZ(~p’). Notice from 3. 3 that T + K/K’ is
an ideal in G’/K’ (In fact, [T + K/K’, T + K/K’, so that

this algebra is itself solvable. It is nilpotent if and only if qJ(T) = 0.)
Thus the rules given in [2] for computing the second cohomology group
for semidirect products applies again, and we see, qualitatively, that every-
thing can be reduced to computing tensors of SL(2, C). We will not go
further with the details here.

Extensions by semisimple algebras are readily described. If

with K semisimple ; then, by the Levi-Malcev decomposition [3],

where R is a maximal solvable ideal, the « radical », and S is a maximal

semisimple subalgebra, which we can suppose contains K. Since K is an
ideal of G’, [R, K] = 0. By the theory of semisimple Lie algebras, S can
be written as the direct sum K + H of two ideals. Hence G = G’/K is
just R + H, and G’ is the direct sum (as a Lie algebra) of R + H and K.

This « triviality» of extensions by semisimple algebra enables us to
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reduce the general extension problem to that for the solvable case, i. e.,

ultimately, to the case of abelian extension. Suppose that we are given an
extension 3.5, with K an arbitrary of Lie algebra (2). Applying the Levi-
Malcev theorem again,

with R a solvable ideal, S a semisimple subalgebra. Then, we have an
exact sequence :

or

By our preceding remarks on extensions by semisimple algebra,

Thus, the problem is reduced to finding extensions of G + S by a solvable
Lie algebra.

IV. - DISCUSSION OF THE GEOMETRIC
DISCRETE SYMMETRIES P AND T

G will continue as the Poincaré Lie algebra L + T. Suppose w is a
representation of G by linear operators on a vector space V, with a given
field of scalars (say, the real or complex numbers). Suppose K is a Lie
algebra (under commutator) of linear transformations on V, such that

Then, of course, G’ can be constructed as the semidirect product algebra
G + K, with

The « physical » P and T, denoted by P’ and T’, will be invertible linear
transformations: V2014~V such that:

(2) Of course, to use the Levi-Malcev theorem, we can only consider finite
dimensional Lie algebras.
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If such a P’ and T’ can in addition be chosen so that

we obviously have succeeded in defining the « physical » discrete symmetries
as automorphisms of G’.
The commutation relations that are satisfied by P’ and T’ are also easy

to discuss via Shur’s lemma (if p(G) acts irreducibly on V). For then

Then, if V is a complex vector space, if p(G) act complex-linearly and
irreducible, if P’2 and T’2 are complex linear (recall that this will be so
even if T’ is complex antilinear), i. e.,

T’(~r) = )..*T’(v) for a complex number À., v E V, with 2*
the complex conjugate

then they are multiples of the identity.
Since this analysis is, in effect, done in every back on relativistic quantum

mechanics, and is very straightforward when done from this point of view,
we shall leave it at this point.

V. - DISCUSSION
OF CHARGE CONJUGATION, C

As we have just seen, there is a straightforward algebraic motivation for
the definition of the « physical » P’ and T’ that one finds in quantum mecha-
nics books. Let us turn to charge conjugation. In effect, we will give
in general the « explanation » for C that one finds in quantum mechanics
books in various special cases.
Suppose again that G is the Poincaré algebra, with p a representation

of G by linear transformations on a complex vector space V. Suppose
also that V has a « complex conjugation » transformation v - v* which
has the following properties :

It is linear over the real numbers.

(~,v)* = ~.*v* for each complex number A.
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Let p* denote the following representation of G* by linear transformations
on V :

Notice that p*(X) is also a complex linear transformation of V, and
X - p*(X) is also a homomorphism of G by linear transformations on V.
It may be equivalent to the original representation, i. e., there may be a

complex-linear transformation C : V 2014~V such that :

Now let C’ be the following linear transformation of V :

Suppose K is a Lie algebra of (complex linear) transformations on K, with

We can construct the semidirect product G’ of G with K, as before. Note

that C’ is an anticomplex linear transformation of V, i. e., satisfies :

and C’ commutes with p(G). Thus, C’ induces an automorphism of G’.
Notice also that C’ takes a « positive energy state » of G into a « negative
energy state )). Let Xo be the generator of time translations in G. A
positive energy state is an eigenvector of ip(Xo) corresponding to a posi-
tive eigenvalue :

or

Then,

i. e., C’v is a « negative energy state ».
Then, we see that C’ has the algebraic properties to be expected or the

charge conjugation operator for the one-particle states, e. g., solutions of
the Dirac equation, before second quantization.
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The operator C can also be readily interpreted as an automorphism of
an extension of G. Suppose that :

Let G’ as a vector space equal

where K1 and K2 are two « copies » of K

Define C : G 2014~ G’ as the identity on G, so that

~ ~~ ~ Lrl 

and
C intertwines the action of G on K1 and K2.

It should be clear that this is the algebraic version of the reinterpretation
of the Dirac one-particle theory by constructing « anti-particles », with

charge conjugation sending particles into anti-particles.

VI. - AUTOMORPHISMS OF EXTENSIONS
OF THE POINCARE ALGEBRA,
BY SEMISIMPLE ALGEBRAS

Having briefly reviewed some of the algebra involved in the usual defi-
nition of P, T and C, let us inquire if the same qualitative res ults can be
derived from a simpler set of assumptions. Suppose G’ is a Lie algebra
with a semisimple (finite dimensional) ideal K, such that the quotient G’ /K
is the Poincaré algebra. As we have seen, G’ is a semidirect sum of a sub-

algebra isomorphic to G (which we also denote by G) and K, i. e.,

Let A be an automorphism of G’.

THEOREM 6.1. - A maps K into itself.

Proof: A(K) must be a semisimple ideal of G’. Its projection into G
must be a semisimple ideal of G, the Poincaré algebra. There are none,
hence its projection is zero, i. e., K.
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Now, let 7T be the projection of G’ onto G. From theorem 6.1, we see
that xA, considered as a mapping G ~ G, is an automorphism. Let us

denote by A’ this automorphism of G.
The bracket [G, K determines a linear representation l{J of G by

derivations of K.

Suppose that:

For every automorphism A’ : G ~ G, there is an automorphism

such that

(For example, this is so if cp is the representation of L by Dirac matrices,
with cp(T) = 0. The physicists’ version of this statement is that automor-
phisms of the Dirac matrices can be found corresponding to parity and
time reversal, which are the only outer automorphisms of the Poincaré
algebra. Note that the existence of a is automatic if A is an inner auto-

morphism of G.)
6.1 can be reinterpreted as follows : Define A" : G’ -~ G’ as follows :

Then A" is an automorphism of G’.
Let us compare A and A", i. e., put

Note that TrB is the identity on G, and BK c K. However, B does not
necessarily map G into itself.

Since K is semisimple, every derivation of K is an inner derivation. In

particular, we see that there is a homomorphism.

such that

For X E G, put

i. e., is the projection of BX in K.
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Then, for Xe G, Ye K,

Since K has zero center, we have

or

for X E G.

Now we have proved :

THEOREM 6.2. - Suppose condition 6.1 is satisfied. Then every auto-

morphism of G’ is the product of one satisfying 6.1 and one satisfying 6.2.
The automorphisms of type 6.1 are essentially determined by the auto-

morphisms of G, i. e., are like parity and time reversal, while those satis-
fying 6.2 are essentially determined by the automorphisms of « internal
symmetry group » K, i. e., are like charge conjugation.

Let us ask whether conversely any automorphism of K will serve to
define such an automorphism of G’. Suppose then that B : K - K is an
automorphism, and we use 6.2 to extend B to G, hence to G’. Reversing
the steps leading to 6 . 2 shows that B [X, Y] = [BX, BY] for X E K, Ye G.
We must investigate the case where X, Y E G.

Thus we have :

THEOREM 6.3. - A given automorphism B of K extends to an automor-
phism of G’ which satisfies

ANN. INST. POINCARÉ, A-V!!-4 25
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if, and only if for X, Y E G :

+ w(Y)1 ~ O.

These conditions are, of course, automatically satisfied if Blp(X) = qJ(X)
for all X E G.

VII. - FINAL REMARKS

In summary, we have presented in this paper several comments that
prepare the way for an attack by the methods of Lie algebra theory on some
of the perplexing problems concerning the role of the discrete symmetries
in elementary particle physics. These remarks are not essentially new
(they follow L. Michel’s idea that the extensions of Lie algebras are the
useful objects to study) but hopefully they might serve to point the way
toward new problems that may be of physical interest. We have in mind

the following problems, which we will discuss in later papers :

a. Study from both a mathematical and physical point of view the non-
semidirect product extensions of the Poincaré algebra, and their automor-
phisms.

b. A more detailed analysis of the semidirect product extensions (Much
of this is probably contained in a different language in the work in the
physics literature on invariant wave equations.)

c. An algebraic formulation and proof of the P. C. T. theorem.
d. Study of the infinite dimensional extensions of the Poincaré algebra,

particularly with the aim of isolating the algebraic aspects of the work in
the physics literature on « gauge invariance ».
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