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SUMMARY. - It is shown how Schrodinger’s equation can be transformed
into a set of Kolmogorov’s equations. The time dependent Green function
of Schrodinger’s eqn goes over into the transition probability function of
Kolmogorov’s equation for a Markov process whose stationary asymptotic
distribution is the square of the ground state wave function of the Schro-
dinger equation one started with. Planck’s constant is found to be connec-

ted to the spectral density of the Brownian noise.
The case of Q. M. harmonic oscillator is examined in detail and an inter-

pretation of Planck’s constant postulated by Stern is derived on classical
grounds.

RIASSUNTO. - Si dimostra come l’equazione di Schrodinger possa essere
trasformata in un sistema di equazioni di Kolmogorov. La funzione di

Green dipendente dal tempo diventa la probabilità di transizione delle

equazioni di Kolmogorov per un processo di Markov la cui distribuzione
asintotica stazionaria di probabilità e il quadrato della funzione d’onda
dello stato fondamentale della equazione di Schrodinger di partenza.

Si trova che la costante di Planck e legata alla densita spettrale del dis-
turbo Browniano.

Si esamina poi in dettaglio il caso dell’oscillatore armonico quantistico
e si deduce, su basi puramente classiche, una interpretazione della costante
di Planck che e stata assunta come postulato da Stem.
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§ 1. - INTRODUCTION

There have been in the past [1 ... 8] several attempts to derive Quantum
Mechanics from Classical Mechanics. In all these attempts diffusion

processes or Brownian motions play a very important role in giving to
Q. M. its statistical character.
The purpose of the present paper is to point out a direct connection

between Schrodinger’s equation with imaginary time and the Kolmogorov
Fokker Planck (1) equation for Markov processes.
The two equations go into each other by means of a trivial change of

the unknown function, and the quantum mechanical Green’s function is
transformed into the transition probability of a Markov process.
The potentials which are involved in the two equations are not the same

but are related to each other in a simple way. Moreover the stationary pro-
bability distribution of the Markov process is the squared modulus of the
ground state wave function of the Schrodinger equation.

These results are somewhat different from those of Fenyes and Weizel.
Namely Fenyes [1] has proved analogies between Quantum processes and
Markov processes, while Weizel [2] has proved that Schrodinger’s eqn may
be manipulated in such a way as to obtain an equation of diffusion type for
the squared modulus of the wave function.
The connection we have just mentioned between Schrodinger’s and

K. F. P. eqns brings to conclusions which are similar to those of the De Bro-
glie-Bohm-Vigier theory [5] [6] in what concerns the interpretation of the
Quantum Mechanical probability distribution as the stationary asymptotic
probability distribution for a Markov process.
Moreover our results have some aspects in common with those of Bopp.

This author has found [7] [3] that there exist several statistical theories
whose description of physical facts does not differe appreciably from the
Quantum Mechanical one for a duration of about ten billion years. In

our case, at least for what concerns the ground state, the Quantum Mecha-
nical description and that in terms of Markov processes differ from each
other during a very small initial interval of time of about 10-13 seconds.
Some of our results, namely formula (21) and a slightly different form of

formula (25), have been also derived in a very recent paper by Della Riccia
and Wiener [21] starting with a quite different approach.

(I) From now on : K. F. P.
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The imaginary time plays a role in our derivation only in the asymptotic
behaviour of the transformed Green’s function when t - oo, but the set of

eigenfunctions of the Schrodinger eqn is just the same as that of the K. F. P.
eqns, neglecting a trivial one-to-one transformation. When a particle is
in the ground state the same results which are obtained by describing the
movement of the particle in terms of the Schrodinger eqn can be also obtai-
ned with a description in terms of classical random processes provided one
transforms accordingly the external field of force.
Another consequence of the previously mentioned connection between

the Schrodinger and the K. F. P. eqns is that the constant (h/2 m) plays the
role of a diffusion coefficient in the K. F. P. eqns. It is known that the
diffusion coefficient is proportional to the spectral density of the force of
the Wiener Levy type which causes the random movement of the particles
in the Brownian motions. If this spectral density vanishes, h also vanishes
and then we are concerned with a perfectly deterministic process of classical
mechanics. The fact that h is finite entails that the spectral density of the
« noise force » is finite. The last paragraph deals with the particular case
of the Schrödinger eqn with an harmonic oscillator potential. If one

defines the temperature of a particle as the temperature of the radiation
which is in equilibrium with the particle inside a large cavity, then the
entropy of the particle (= degree of unpredictability in the sense of Sha-
non’s information theory) is given essentially by the logarithm of h. This

last result of course is well known but the following facts are new :

1) the entropy is the logarithm of the spectral density of the random force
as a consequence of the connection existing between this spectral density
and h ;

2) it is a consequence of a classical statistical description in terms of
random processes that at very small temperatures the entropy tends to a finite

limit, or, what is the same, the position of the particle in phase space cannot
be predicted in an arbitrarily small region but only inside a region whose
volume has a prescribed lower bound.

In a recent paper [9] Stern expressed his belief that Q. M. should be
directly derivable from Nernst’s theorem supplemented by some addi-
tional assumptions. According to Stern the zero point limit of the entropy
in Nernst’s theorem should be essentially the logarithm of a finite phase
volume and this phase volume should be h. The above connection between

the spectral density and the zero point entropy proves, at least in one case,.
that there is no need for postulating at zero temperature a finite phase

ANN. INST. POINCARÉ, A-VH-1 6
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volume containing the representative point of a particle: the finite phase
volume is a classical consequence of the existence of a random force which

acts on the particle also at small temperatures.

§ 2. - MARKOV PROCESSES

AND K. F. P. EQUATIONS

We want now to recall some essential properties of the Markov processes
which will be used later.

It is assumed here that the reader is familiar with Markov processes,
in any case he is advised to ref. (16) (17) (18).
A complete characterization of a Markov process is obtained by giving

a function P(x, t; y, r). If we are describing the movement of a particle
along a line, the quantity:

represents the probability that starting at time t from the point x the particle
is found at time T in any position y  z.

Of course :

The following is the well-known Markov equation

Under certain conditions which are stated for instance in ref (17) eq. 3
implies that the function P satisfies the equations (K. F. P. eqns)
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A and B are known as diffusion and drift coefficients respectively. The
function P is obtained from eqns 4 with the following boundary conditions

When P depends on t and r only through (z - t) then the Markov process
is said to be « stationary )). It can be proved ([18], VI, § 2 ; [10] [11]) that
for stationary Markov processes there exists a limit stationary distribution

such that

§ 3. - THE SMOLUCHOWSKY EQUATION
AND THE BROWNIAN MOTIONS

In the following sections we shall be concerned with the eqn

which is known as Smoluchowsky [10] eqn and is a special case of the
second K. F. P. eqn.
D is the diffusion coefficient and is given by D = where 82 is the

spectral density of a random force of which we shall speak soon and is equal
to f kT ; f is a friction coefficient, k is Boltzmann’s constant and T is the abso-
lute temperature. According to Smoluchowsky this eqn is satisfied by the
transition probability density which describes the Brownian motion of a
particle which is subjected to a field of force K(x) a frictional force - fx
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force and a random F(t) of Wiener Levy type [lfl [17] [18]. The Langevin
eqn for thi s particle is [10] [11]

Brownian Motions are Markov processes [11] ] [12] [lfl [19].
As is known Markov processes in one random variable are connected

with ordinary differential eqns of first order, hence it may be strange that
the Markov process described by (7) is associated to eqn (8) which is of
second order. If we observe that eqn 8 may be transformed in a system
of two eqns of first order by setting x’ == u we should expect to be concerned
with a vector Markov process in the two random variables x and u so that

eqn (7) should be replaced by a more complicated one describing the evo-
lution of the transition functions S (xo, po, to; x, p, t).

This is really so, as Kramers proved in ref. [13], where it is also proved
that eqn (9) is still a good eqn and governs the space part of the transition
probability S when we are in presence of a large viscosity.

In these conditions the function S, for large, t becomes approximately
factorized as follows, since a Maxwell distribution in the velocities is soon
established :

It is easy to see that we should obtain the same eqn (7) by neglecting the
left hand side in eqn (8); i. e. the Smoluchowsky eqn is correct until we are
dealing with very small masses so that the inertial forces are negligible with
respect to the frictional and random forces.

§ 4. - THE THEOREMS OF KAC
AND THE PROPERTIES

OF THE PRINCIPAL SOLUTION

We need now some theorems in order to prove that the Green’s function

of the Smh6dinger eqn with imaginary time is connected to the space part
of the transition probability of a stationary Markov process in phase space.

In 1949 Kac proved that the principal solution Gxo,to(x, t) of the par-
tial differential equation (2)

(2) There is no restriction in considering the one dimensional case only, since
Rosenblatt has proved that the same properties hold even in the case of
several dimensions.
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has the following properties :

1) It exists and is unique under broad conditions for the function V(x) (for
example to be bounded from below).

2) It is expressible as on integral over « conditional Wiener Measure »
(formally similar to Feynman’s « integrals over histories » ; see appendix B)

of the functional exp ( j o V(x(-:))dT .
3) It is always positive.

The last property is not explicitly stated in Kac’s work but it is a direct
consequence of property nO 2 since G is the limit of a sum of positive terms
(exponentials) and hence is itself a positive quantity (see append. B).
The function G has furthermore the following properties (12).

The property nO 4 is the well-known semigroup property of Markov pro-
cesses and one could think at first sight that G is the probability density
connected with some Markov process.

This is wrong since in order to describe a Markov process G should

satisfy the condition

which is not satisfied, but is replaced by property n° 6. However one can

ask wether it is possible to obtain from the function G another function
P(xo, to ; x, t) through multiplication of the first one by some func-
tion M(xoto, x, t) such that P has the prerequisites of the conditional distri-
bution function characteristic of Markov processes. We shall prove in
the following that this is possible and that the function P satisfies, in the
vari ables x and xo, equati ons which are exactly of the form of K. F. P.
We remember that G may be expressed as a series of eigenfunctions of

eqn (10) (in general as a Stjeltjes integral over the spectrum of the operator
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at the r. h. s. of ( 10) (3)). Let us consider only the case of discrete spectrum :
we have then

where satisfy the equations

Whatever the potential V(x) (provided it belongs to the class specified
in the footnote (3) the « energy spectrum » has always a lower bound hence
there existe always an eigenvolue Eo such that

It follows then from (12)

This is the dominant behaviour also in presence of a continuous spectrum,
since t) is the inverse Laplace transform of the operator

of which Eo is the singularity with the greatest real part (Q has singularities
on a « left » half plane).

§ 5. - THE RELATION BETWEEN G AND P

Let us consider the function

(3) We suppose throughout that the stationary Schrodinger eqn with the poten-
tial V(x) admits at least one discrete eigenstate.
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It is very easy to see that P may be interpreted as a probability density in a
Markov Process which is stationary since, according to (12),P depends only
on t - to. Namely we have, by (12) and the orthogonality relations

The function P is still positive and the 8 function property still holds when
t - to + 0 and besides P satisfies also the semigroup Markov property

Moreover the function P is the only one which can be constructed as a
product of G and some unknown function of x, xo, t and to. We sketch

the proof in the appendix A. The reason for the above uniqueness is

that CPo(x) is the ground state of a Schrodinger equation, and has no zero at
finite distances.

The Kolmogorov equations which are satisfied by Pare

where B(x) is defined by

and satisfies the equation

Eo is the energy of the lowest bound state of the Schrodinger equation.

§ 6. - CONCLUSIONS
FROM THE PRECEDING SECTIONS

The transition from the Schrodinger equation
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to (10) is only a matter of a trivial change of variables, the most important
of which is t - - i t’ and the resetting t’ ==t, so that our t) is

merely the analytical continuation of the usual Q. M. « G » on the imaginary
taxis.

It is rather difficult to think in terms of imaginary times so it would perhaps
be better to speak of a mapping between the solutions of Schrodinger’s
equation and those of (10) in the sense that they have the same set of space
eigenfunctions.

This mapping entails, at least for what concerns the ground state, a
mapping between Markov processes and Quantum processes, and the whole
situation is summarised in what follows.

1) Every Schrodinger equation with « reasonable » potential can be
transformed by simple algebraic manipulations into a K. F. P. set of equa-
tions describing a stationary Markov process or better Brownian motion
of a particle in a conservative external field of force, whose potential is

essentially the logarithm of the probability distribution in the ground state
of the originary Schrodinger equation (Eq. (21) (22)).

The diffusion coefficient D has the value D = h 2m (see next paragraph 31 a )
and the drift coefficient is a function of Planck’s constant, and depends
on V(x) through (22).

2) The transition function P(xo, to ; x, t) is connected to the Green’s
function G by the equation

Since the Markov process is stationary according to (6 a) there exists a well
defined limit distribution for t - oo (see § 2).

3) Writing explicitly in the above equation t) in terms of its series
expansion we have

Hence we have proved that the stationary distribution of the Brownian
motion is exactly the probability distribution that the corresponding Quan-
tum Mechanical system would have in its ground state.

Let us see the order of magnitude of the time which is necessary so that
the particle reachs the stationary probability distribution corresponding
to the Q. M. ground state starting at t = to with a well defined position.
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Suppose that the potential is such that the energy difference between the

ground state and the first excited state of the particle is given by

This corresponds to 0394E ~ 1 e. v. and if this energy is emitted as electro-

magnetic radiation the wavelength is about 5 000 A.
Now let us evaluate the time which is needed in order to have the second

term of the series in (12) e-2° times smaller than the first one. Taking into
account the fact that En in (12) must be replaced by En/h, for evaluation, we

must 
Eo 
t _ t0) =0394E h At = 20 i. e. 0394t ~ 3. jo-14 

4) The stationary probability distribution which is solution of a K. F. P.
equation with diffusion coefficient 1 and assigned B(x) is given by

(where N is a normalization constant such that 03A6(x)dx = 1) provided

xaB(x)dx - - oo when |x| - oo otherwise (26) is meaningless.
§ 7. _ THE SPECIAL CASE

OF THE LINEAR HARMONIC OSCILLATOR

If we start with the Schrodinger eqn for a linear harmonic oscillator

the 2nd K. F. P. eqn which is obtained with the suggested manipulations
is the following :

This equation has just the same structure as that of Smoluchowsky for
particles which undergo a Brownian motion in an elastic field of force and
in presence of friction (see [10] p. 833). Suppose that the equilibrium has
been reached by this last physical system, hence the probability distribution
of the particles is just the same as that in the ground state of the correspon-
ding Schrodinger equation. This means that if we want to identify the
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two systems (classical oscillator and the Q. M. one) we must admit that in
the Q. M. system the only occupied state is the ground state po(x) and this
implies that our classical system has a very law « temperature » T ~ 0:
otherwise there would be other excited quantum states with a non zero

probability of occupation.
Since there is one oscillator only the concept of temperature here has to

be understood in a sense which is not the usual one.

Let us assume here that the word « temperature » means temperature of
the e. m. radiation which is in equilibrium with the oscillator inside a large
volume.

« Low temperature » then means that a transition from the ground state
to an excited state is highly improbable.
With these premises we can compare equation (28) and (29). The last

one is just that corresponding to a damped oscillator which undergoes a
Brownian motion ([2], p. 833)

D is the diffusion coefficient, the frequency of oscillation and f3 == --
f is the friction constant and m the mass of the particle. In usual Brownian

motions the random force F(t) is caused by the thermal agitation of the
other molecules and this implies that D has the well-known expression

Here we ignore this last eqn because it would imply that the Brownian
motion is caused by other similar oscillators whose average kinetic energy
is related to temperature by Boltzmann’s relation. We stress again that
we are dealing with one oscillator only and consequently the Brownian
motion does not arise from thermal agitation of other particles : all we can
say is that the oscillator is subject to a random force.
However the relation

is quite general (see [10] [11] [19]). S2 is the spectral density of the random
force. In the ordinary Brownian motions S2 = f KT and so we get (30).
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By identifying the coefficients of (32) and (33) we have

f S~
i. e. taking into account that p == 2014 and D ===-,- it follows° 

~ /~

S2 is defined by

The average is taken over the « realizations » [19] of the random function
F(t). Eq (32b) proves that the spectral density of the random noise is
proportional to h; it is also dependent on the strength of the external field

S2 %
of force. Notice however that the relation D = 2 = 2m does not depend
on the type of potential which is emploied.
A relation of the type S2 = oc1î holds in every case provided we assume

that the friction constant is proportional to the square root of the mass :
in the case of the harmonic oscillator the constant 2x is the elastic constant.

We now calculate the entropy of the particle: according to Shannon’s
information theory it measures the degree of unpredictability for the loca-
lization of the particle in the phase space. According to Kramers’results
and the remark nO 3 of § 6 when t is very large the probability density in
phase space is given by

where D is given by (31a) and the two last factors give the probability dis-
tribution in the ground state of the quantum harmonic oscillator. Remem-

bering that if:
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we have for the entropy of the distribution P(x, p) (Boltzmann’s function)

« e » is the base of natural logarithms.
With the previous definition of temperature eq. 37 tells that for small

temperatures the entropy approaches a constant which is essentially the
logarithm of h, neglecting an additive constant whose purpose is that of
making the argument of the logarithm a dimensionless quantity. h is thus

proportional to the smallest phase volume which for T - 0 can enclose
the representative point of the state of the system, and this is just the hypo-
tesi s of Stern in ref. [9].
The only relevant assumption in our reasoning is that the system is always

subject to a random force of Wiener Levy type whose spectral density is
the universal constant h times the elastic constant.

We have furthermore

If X is small the elastic forces [which are 0(X)] are negligible with respect to
the « Brownian » forces which are 0(0) and with these conditions the
Smoluchowsky diffusion equation is obtained from that of Kramers.
Summarizing we can say that at low temperatures what Q. M. calls harmo-

nic oscillator may be described classically by means of an oscillator which
is subjected to a frictional force with friction constant f = xm and to a
random force of special type (not due to random collisions) which is

responsible for the lack of determinacy in localizing the representative point
of the particle in its phase space.
At this point a question would be quite natural: which should be the

cause of this random force ?

The reply to such a question does not seem very simple.
However if the existence of such a random force could be proved, this

force could play the role of a hidden variable in Q. M.
We quote as references on this subject the papers of Bell and Bohm and

Bub (Rev. Mod. Phys., 38, no 3, 1966, p. 447-475) and also ref. [3] [4] [5] [8]
in which all important preceding references may be found.
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APPENDIX A

In this appendix we want to show how K. F. P. equations become Schrodinger
equations with imaginary time after elementary manipulations. We write the
two equations of K. F. P. with a diffusion coefficient 1. This is not restrictive,
since it is immediate to prove that if the variables x and t are required to maintain
the same meaning in both Quantum and Classical statistical descriptions, the
diffusion coefficient must be a constant in order to be possible a direct transition
from Schrodinger eqn with imaginary time to an eq K. F. P. tipe.

with P = P(x, t; y, T).
Let us consider the second equation and set P = AG. We want to determine A

so that the new equation for G does not contain 
~G 

and besides it becomes the

Schrödinger equation with a preassigned potential V(x).
We have for II

The condition that the new equation does not contain G is

and the new equation becomes

If this must be the Schrodinger eqn with imaginary time and potential V(x) we
must have :

i. e. A must itself satisfy the equation

which must be solved with the following condition

1) ~ is always positive and never vanishes so that A = 1 ~ has no singularities2~
for finite x.

2) A{t, x) is independent on t i. e. ~ is only a function of x; this because we
want that the process is stationary (see [18~.
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Condition 2 implies that A(x, t) = !~{t) Ai(jc), which is a consequence of

eq (A, 5), and consequently AoCt) is of the form ext where a is to be determined by
condition 1.

The only case in which condition 1 is satisfied is when Ai is the ground state of the
stationary Schrodinger equation (A, 6) because in this case A has no zeros.
Hence we have a = Eo = lowest bound state energy, and

where po(y) is the ground state wave function of eq (4, 6) normalized so that

j t ToM 12dx = 1 and N is a function which may still depend on t and x.
The precise form of this dependence may be determined by substituting P = AG
with A expressed by (A, 7) in the 1 ST Kolmogorov equation. It will be found that

N = 
-Eot 

so that
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APPENDIX B 

’

INTEGRALS OVER WIENER MEASURE

We think that an example will be illuminating better than a rigorous definition.
Suppose the functional

is given. We want to evaluate its « integral over ordinary Wiener measure ».
We replace the integral in the exponent in (Bl) with the following sum

where "r n(n = 0 ... N) are N + 1 equally spaced points between t = 0 and
t = NAr (t is fixed)
T = and xi = 

Let us consider now the following integral

The limit

is defined to be the integral over ordinary Wiener measure of the functional
F(x( -r)).

If in (B, 3) we fix the value x(TN) and set xN = = x and drop down the
integration over xN in (B, 3) the limit for N - o0 of the resulting integral is defined
to be the « integral over conditional Wiener measure » of the functional F(x(T)).
For more details the reader may see the paper of Gelfand and Yaglom [12] and

also the original work of Wiener [20].

NOTE ADDED IN PROOF

A few days after this paper has been submitted for publication, the
author has been aware of results similar to those of Fenyes and Weizel
which have been found also by Dr. E. Nelson (Phys. Rev., 150, nO 4, 1079,
1966).
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