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The place of random processes
and random fields in Quantum Theory
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Section A :

Physique rheorique.

SUMMARY. - The states of a system in Quantum Theory can be repre-
sented by wave functions which are elements of a Hilbert space. All the

different representations are unitarily equivalent. However, there exists
a particular representation where the wave functions can be treated as
random variables. It is obtained by the use of a generalized random
field (GRF) which associates with every E L2(RN) the random variable
F(§, co) E L2(Q, 93, P). We prove that the GRF which has to be used is

uniquely characterized by the basic principles of Quantum Theory and this
is « white noise » defined as the derivative, in the sense of the theory of
distributions, of Wiener process.
Once we are dealing with random variables, we can define random events

whose probabilities are the same as the probabilities of occurrence of
different eigenstates as they are postulated in ordinary Quantum Theory.
Hence a mathematical formalism is established which can be used to

support those theories which provide a statistical interpretation of Quantum
Theory based on thermodynamical fluctuations where Brownian motion
has a role to play.

SOMMAIRE. 2014 Les états d’un système en Mécanique Quantique peuvent
etre representes par des fonctions d’onde qui sont des elements d’un espace
de Hilbert. Toutes ces representations sont équivalentes a une transforma-
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tion unitaire pres. 11 existe cependant une representation particuliere telle
que les fonctions d’onde peuvent etre considerees comme des variables
aleatoires. On l’obtient en utilisant un champ aléatoire généralisé (GRF)
qui associe a tout element E L2(RN) la variable aléatoire

Nous demontrons que le processus stochastique qui doit etre utilise est
caracterise d’une façon unique par les principes de base de la Mecanique
Quantique. On trouve qu’il s’agit du « bruit blanc » de6ni comme etant la
dérivée, au sens de la theorie des distributions, du processus brownien de
Wiener.

A partir du moment ou nous avons affaire a des variables aléatoires,
il est possible de definir des événements aléatoires dont les probabilités sont
les memes que celles qui sont postulées en Mecanique Quantique pour la
mesure des etats propres d’un systeme.
De cette façon on établit un formalisme mathematique qui peut servir

de base aux theories qui cherchent une interpretation statistique de la

Mecanique Ondulatoire s’appuyant sur des considerations de fluctuations
thermo-dynamiques dans lesquelles le mouvement brownien joue un role.

INTRODUCTION

The Brownian motion functions x(t, (x) have been defined rigorously
by Norbert Wiener and Paul Levy. When the time t varies from - 00

to + oo, x(t, «) represents the physical Brownian motion, projected on an
arbitrary axis, of a particle suspended in a fluid and subject to collisions
with the surrounding molecules. The parameter (x varies from 0 to 1 and

except for a set of values of ex of Lebesgue measure equal to zero, there is a
one-to-one correspondence between the values of oc and the Brownian trajec-
tories of the particle. If we consider the interval [0, 1] as a sample
space ([0, 1], ~3, Lebesgue), x(t, oc) is a random process called Wiener

process.
The increment x(dt, «)/dt of x(t, x) over any interval (t, t + dt) is another

random process which is called « white noise )). Here we must notice that

the quantity x(dt, x) has no meaning as an ordinary function. Indeed
it is well-known that for almost all x, the functions x(t, x) are continuous
and they have no derivative. However, x(dt, oc) is well defined as a genera-
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lized function (distribution). Therefore the « white noise » exists as a

generalized random process which is the derivative (in the sense of the
theory of distributions) of the Wiener process.

This concept of increments of the Brownian motion functions can be

extended by replacing the time variable t by a variable s in a Euclidean
space RN. RN will be for instance a configuration space

or a Gibbs phase space

Thus we have a N dimensional « white noise » x(ds, «) and in this case we
call it a Generalized Random Field (GRF) whereas the term Generalized
Random Process (GRP) is reserved for the case where s E R 1.
The real GRF « white noise » is mathematically expressible by the follow-

ing functional relation :

where is a real function belonging to L2(RN). The sample space of
the random variable oc) is as above { «; « E ([0, 1], ~3, Lebesgue)}.
However, since we are going to deal with Quantum Theory we need a defini-
tion of the complex GRF « white noise )). In that case ~) E L2(RN) is

a complex function and we use the complex distribution

We have now two independent random parameters P and y varying in [0, 1 ].
There is no difficulty to replace the two-dimensional random parameter (P, y)
by a single one (X E [0, 1]; this can be done by mapping isomorphically
(except for sets of points of zero Lebesgue measure) the square [0, 1 ] X [0, 1]
onto the interval [0, 1]. Hence we can write X (ds; P, y) = X (ds, «) and we
arrive finally to the following definition of the complex GRF « white noise »
which generalizes the definition ( 1 ) :

where F(~, x) is now a complex random variable.
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The transformation (2) maps the entire L2(RN) space onto a space :F of
random variables. An important property of :F is that it is a sub-Hilbert
space of L2([0, 1]) such that the correspondence L2(RN) ~ ,~ is unitary.
If y(s) is a wave function, representative of the state of a physical system
in Quantum Theory, F(~, «) can be considered as a new representation of
that state which is unitarily equivalent to the first one. In other words we

have a representation where the wave function is at the same time a random
variable.

In the next section we shall recall a result, due to Wiener ([1], p. 78),
which is the motivation of our work. Using the random variables F(~, «),
Wiener defines a class of random events whose probabilities are the same as
the probabilities of finding a physical system in a particular eigenstate after
a measurement has been performed on that system. Thus a way is provided
to relate the theory of measurement and, in particular, the so-called « reduc-
tion of wave packets » which occur in quantum experiments, to a series
of random events belonging to the framework of classical probability
theory.
The purpose of this article is to show that the random variables F(~, «)

have a certain number of properties compatible with the fundamental
principles on which Quantum Theory is based. Vice versa if one takes into

account these properties, we shall see that there is a unique way to represent
the system of states by a Hilbert space of random variables, and that is
by the complex GRF « white noise ».

Having established the existence and the uniqueness of a GRF which
enters naturally in quantum physics and which is so closely related to
Brownian motion, it is appropriate to quote from a recent book of Louis
de Broglie ([2], p. 106) : « Or qui dit mouvement brownien dit aussi fluctua-
tions et thermodynamique. »
We shall give in the conclusion of this article an account of the new

ideas that L. de Broglie expresses in his book where he establishes a remar-
kable connection between the principle of least action in Mechanics and the
principle of maximum entropy in Thermodynamics.
We shall mention there also an approach suggested recently by N. Wiener

and G. Della Riccia ([3]), to the problem of finding a classical model for
the probabilities which appear in Quantum Theory.
The present work is intended to provide a mathematical basis to the

physical theories which introduce thermodynamical concepts and use the
assumption that there exists an underlying Brownian motion in order to
understand the statistical behavior of quantum systems.
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§ 1. - SOME PROPERTIES OF « WHITE NOISE »

In this section we shall enumerate some properties of the complex « white
noise » which are significant in Quantum Theory.
We shall not give the mathematical proofs. They can be found in

Wiener [1].

i ) The unitary property of « white noise ».

The transformation (2) given in the introduction is obviously linear:

for all complex numbers cl, c~ and ~1’ t2 E L2(RN). As mentioned earlier (2)
is also unitary. We have :

and

where II II indicates the L2 norm in the corresponding space.

One can define the distribution X(ds, «) in such a way that the random
variables F(~, «) E:F have all the same mean value y equal to zero :

With this choice of, the variance a2 is simply related to the norms :

(* indicates the complex conjugate). Hence, ~(~) and F(~, (1.) can be

considered as two equivalent representations of the state function of a
quantum system. But it is to be noticed that F(~, (1.) can be interpreted,
in addition, as a random variable with mean y = 0 and variance
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2) ~ is a Gaussian system of complex random variables.

Let us start first with the real case. If ~(~) E L2(RN) is a real function,
the associated random variable

is real and has a Gaussian distribution completely characterized by

In the complex case let us separate F(~, ex) as well as ~(~) into their real
and their imaginary parts by writing:

where ~ and ~ are two real random variables and ~i, ~2 are two real L2(RN)
functions.

Let us recall that to obtain F(~, 0152) we have used the complex Brownian
increments :

where ( ~3, y) - (X is a measure preserving mapping of the square ([0, 1] X [0,1])
onto the interval [0, 1].
With these definitions it is not difficult to see that :

In account of the fact that each integral is a Gaussian random variable
with mean zero, that ~ and y vary independently, we can conclude that ç
and ~ have both the same Gaussian distribution with [.L = 0 and a2 = II 03C8 112.
We notice next that :

Being Gaussian and uncorrelated, 03BE and ~ are also mutually independent.
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Hence F(~r, «) is an isotropic Gaussian complex random variable with
a2 = jj ~ 112.

We can prove that given any number n of random variables

the n-dimensional complex random variable [F 1, ..., Fn] has a Gaussian
distribution. This is to say that the space :F is a Gaussian system of complex
random variables.

If {~ } is an orthonormal basis of L2(RN), the associated random
variables { form also an orthonormal basis of F (because of the unitarity
of the transformation (2)). Furthermore it can be shown easily, by using
relations (3), that if

where ( , ) indicates the scalar product in the corresponding Hilbert
space, then Fi and Fy are mutually independent (this means that the four
Gaussian random variables ~, are mutually independent). In
other words orthogonality in L2(RN) corresponds to orthogonality and
independence in ~.

Usually in Quantum Theory we choose as vectors for the orthonormal
basis (03C8k }, eigenfunctions of operators which are observables. We have

seen that « white noise » transforms this basis into an orthonormal basis

of ~’ where the vectors have all a Gaussian distribution of the standard

form and are all mutually independent.

3 ) Random events and probabilities occurring in Quantum
Theory.

Let us consider a number n, not necessarily finite, of random variables

and an arbitrary condition 8 imposed on these elements 

The set S of values of 03B1 for which the condition 8 is satisfied is well defined
and if it is Lebesgue measurable its measure m(S) is necessarily a number
lying between 0 and 1 since a E [0, 1]. Thus 8 can be considered as a random

event, on the sample space ([0, 1], ~, Lebesgue), with probability Prob
{ B } = m(S).

be an orthonormal basis of L2(RN) and { Fk ~ the associated
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orthonormal basis of F ; let { ck } be a sequence of complex numbers such
that

converges in L2([O, 1]) and it is in fact the element F(03C8, x) of F correspond-
ing to

The random events 6k introduced by Wiener, which play an essential role
in connection with Quantum Theory are defined by the following inequa-
lities :

The remarkable result is that

It is the same probability we find in Quantum Theory for the occurrence of
the eigenstate §k when we consider a system whose state function is precisely

before we perform a measurement of the observable whose eigenfunctions
are §k.
Without metaphysics, the random events Bk, defined by (4), provide a

working model of the so-called « reduction of the wave packet » by a quan-
tum measurement. Thus it is interesting to prove the uniqueness of such
a model by showing that « white noise », derived from Brownian motion,
is the only GRF which allows us to represent states by random variables
having properties derived from the basic principles of Quantum Theory.
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§ 2. - DEFINITION OF A GENERALIZED RANDOM
FIELD CONSISTENT WITH QUANTUM THEORY

Now we arrive at our problem. We assume that the different states of

a physical system form a space :F of complex random variables generated
by a GRF. The problem is to find the conditions which must be satisfied
by this GRF and prove that these conditions characterize it uniquely.

First we shall recall some mathematical definitions using the terminology
of Gel’fand. A generalized function (synonym : distribution) is a continuous
linear functional on the space 3) of infinitely differentiable functions 
having bounded support.

It is called a generalized random function if with every element cp e 3)

there is associated a random variable which is continuous and linear
in n. The continuity of the functional is to be understood with respect
to the usual topology on D.

In the case where 2) consists of functions of one variable, the random
function is called a generalized random process (GRP); in the case where 3)
is a space of functions of several variables, is called a generalized
random field (GRF).

Let us consider a GRF which is supposed to satisfy the following condi-
tions.

Condition I.

F(p) is a strictly homogeneous GRF with independent values at every
point.

Strictly homogeneity (stationarity in the case of a GRP) means that if
we translate the function cp(s) by any vector h e RN, namely ’t’hCP(S) = + h),
then F(?) and are two random variables having the same probability
distribution function.

Independent values at every point means that the random variables 
and are mutually independent whenever = 0 for all

s e RN.

Physically speaking the first assumption expresses the fact that the

results of a measurement do not depend on the origin of the system of
reference. The second assumption says that the results of measuring the
random quantity F in disjoint regions of RN are mutually independent.

= 0, for all s e RN, means in fact that ~ 1 and o2 have disjoint
supports).
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Condition n.

A basic principle in Quantum Theory is the superposition principle.
It says that the system of states form a linear manifold.
We know already from the linearity of F(p) that to a state which is of

the from ; = c103C61 + C2CP2 there corresponds the random variable

Since we are dealing with random variables we must also say how the proba-
bility distribution functions behave when we combine these random variables
linearily. We assume that whenever and are two random varia-

bles mutually independent and with the same distribution law, there exists
a constant B such that F(pi) + = BF defines a random variable F

which has the same distribution as and Let us recall that 

and are mutually independent whenever pi and ?2 have disjoint
supports and therefore it is reasonable to assume that if in addition 
and have the same distribution law, there exists B such that

has also that distribution law. This stability of the probability laws is

in some sense a natural consequence of the superposition principle when we
represent states by random variables. Finally it is admitted in Quantum
Theory that c~ and elecp, where e is arbitrary, represent the same state.

Again we shall express that statement by a stability condition on the proba-
bility distributions, namely we shall assume that and

have the same probability distribution function. In other words we

assume that the probability distribution of F( ) for all p e D is isotropic.
It follows immediately that f1. = E { F( p) } = 0 for all q e D if [l exists.

Condition III.

As mentioned earlier a GRF is mathematically defined as a functional
on the space of functions 2). Since we want our results to be valid in

Quantum Theory where one deals essentially with Hilbert spaces of functions,
we must extend the definition of F( 9) over the entire space L2(RN). In
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order to do that we assume that the variance of the random variable 

exists :

which means that co) E 93, P) where we have indicated explicitely
the random parameter o and the probability measure space (Q, ~3, P).
Then we assume that, given any sequence of functions { 03C6n } e 2) which
converges in the mean (L2-convergence) to a function ~, the associated

sequence of random variables E { ?~ }, also converges in the mean.
It is not difficult to show that the limit in the mean of is independent
of the choice of the sequence { which converges to § and therefore we
can write :

In other words condition III extends the definition of F(p) on the L2 closure
ofD which is the entire L2(RN) (since D is dense in L2(RN). It states also

that { F(~, m) ; § E L2(RN) } is a Hilbert space :F c L2(Q, ~ P) of random
variables.

§ 3. - CHARACTERIZATION OF « WHITE NOISE »

BY CONDITIONS I, II AND III

We have said already that all the random variables have zero mean.

On the basis of condition III we can easily show that this property

holds for all E L2(RN) (The existence of [.L is a consequence of the existence
of 0").
We proceed now by showing that all the elements F(y) e F are complex

isotropic Gaussian random variables. Let us start with two random

variables F(pi) and F(p2~ where pi is an arbitrary element of D and 
is simply p2 = = pi(s + h) where the translation vector h is such
that CPI and ~2 have disjoint supports. From condition I it follows that
the two random variables and are mutually independent and
have the same probability distribution. We can apply to them condition II.
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where without any loss of generality we can assume that B is a real positive
constant (since we assumed that we can change arbitrarily the phase of
BF = + 02) without modifying the probability distribution).
The stability condition must hold separately for the real and the imaginary

parts of (5) ; we have :

where ~ has the same distribution as Çl and 1) has the same distribu-
tion as ~1 and ~2. Now we use the well-known Paul Levy’s theorem on
stable laws ([4], p. 94) which gives the general form of the characteristic
function C of a stable distribution.

Applying this theorem to ; we have :

where c and d are two real constants, c &#x3E; 0 and 0  ex :5: 2.

It is also well-known that the only stable distributions with finite variance
are those corresponding to « = 2; this is our case according to condition III.
The symmetry property of the distribution of every around the origin

implies that :

and

From (7) we deduce that in (6) we must take d = 0; therefore (with x = 2)
we obtain :

Finally, because of (8) and (8’), we have

which shows that ç and 73 are mutually independent random variables.
Hence we have established that for all p E, is a complex isotropic
Gaussian random variable.

Furthermore any linear combination
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of n elements F(cp 1), ..., F(pn) in { F( ~); p e 3) } is also a similar Gaussian
random variable since

Because of that fact we can assert that { F(?); Q E ~ ~ forms a Gaussian
system of random variables in the sense that for every n elements

the n-dimensional random variable [Fi, ..., Fn] is Gaussian. If we take
into account condition III, it is not difficult to show that when we extend
F(?) on the L2 closure of D, we still have a Gaussian system

where

is isotropic with variance

Our last problem is to find the dependence of c(~) with respect to ~.
In order to obtain the result we consider as a particular element E L2(RN)
the indicator function xI of an interval I e RN and the associated random

variable F()(i). Let h E RN be a vector such that I and I + h are two disjoint
intervals and let us consider the two corresponding random variables 
and F(xI+h) which, as we know, are mutually independent with the same
distribution function. Hence, we can write :

On the other hand, it is obvious that the Lebesgue measure in RN for
disjoint intervals satisfies a similar relation :

As a consequence we can say that the variance of where XI is the

indicator function of a interval I is proportional to the Lebesgue measure m(I)
of that interval:

Without any loss of generality we shall choose the constant of propor-
tionality X to be equal to 1.
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Actually what we have done is to associate to each finite interval I E RN;
a random variable

where the properties of the random variables x(I, 6)) are precisely those
which are used in the mathematical definition of a Wiener process x(t, «).
The only difference is that we have here a probability space (~, 93, P)
more general than ([0, 1], ~3, Lebesgue). However, one of the authors
of this article has proved [5] that in the case of the Wiener process (Q, P)
has to be a Lebesgue space without atoms which means that (Q, 113, P) is
isomorphic, modulo sets of zero Lebesgue measure, to ([0, 1], ~3, Lebesgue).

After having shown that c(/j) = ~ m(I) it remains to find c( 0/) for a

general ~. Again we shall proceed in several steps. First we consider

the subset A of elements of L2(RN) which are of the form

where n is arbitrary but finite, and where {)(,;! are indicator
functions of intervals {Ii e RN, 1  i  n ~ which are mutually disjoint
two by two. For that set of functions we can easily see that :

But A is known to be dense in L2(RN). Therefore any E L2(RN) can be
obtained as limit of a convergent sequence { in the L~ sense. The

corresponding sequence of random variables { F(An) } converges in the L2
sense and we can write for the limit :

and
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where we now return to the previous notations used in (2) : ds replacing II
and OC replacing M.

It is interesting to notice that if we did not extend the definition of

F(p), Q E D, over the entire L2(RN) space, we could not characterize comple-
tely the GRF but only conclude that it is a generalized Gaussian field. In

fact, from the form of the characteristic function we have obtained in (9),
we can say that the characteristic functional L(p) of is :

where

All generalized Gaussian fields have a characteristic functional which
is of this form; these include not only « white noise » but also derivatives
(in the sense of the theory of distributions) of « white noise » : F’(~), F"(~), ...
respectively defined as - F(p’), F(p~), ...
We have seen that we were able to select « white noise » out of all possible

generalized Gaussian fields once the relation 0-2 { F(p) } = II p 1/2 was

established. But in order to arrive at this relation we had to use F(xi)
where xi is in L2(RN) and not in D.
We may insist on the fact that this extension of F(cp) over the entire L2(RN)

space, which is necessary for obtaining uniqueness, is itself required by the
basic structure of Quantum Theory.

Incidentally let us notice that « white noise » F(~) extended over L2(RN),
is not differentiable since is not necessarily a differentiable function and
therefore F’(~) does not exist for all E L2(RN).

CONCLUSION

Since almost the very beginning of Quantum Theory, during the years
1926-1927, L. de Broglie has suggested a description of the physical facts
which differs from the usual one accepted by the great majority of scientists.
Among the various points where the two interpretations disagree, that one
which imports in our context is the problem of the localization of the particle
in space. According to L. de Broglie the particle is permanently localized
in space and it is incorporated in the wave in such a way that its motion
is guided by the propagation of the wave. To be precise, the particle
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follows a line of current of a fluid whose flow is determined by the wave
equation. Since 1951, when he started working again on his original
idea, de Broglie [6] completed his theory by introducing in it a random
factor which was needed in order to explain the statistical behaviour of
the particle and to understand why p = I ~ 12 where ~ is a solution of the
wave equation should represent the probability density of presence of that
particle. He used an assumption made by D. Bohm and J. P. Vigier [7]
according to which there exists, at a subquantum level, a « hidden
thermostat » which interacts with all physical systems we observe. As

a result of this interaction, a particle is randomly scattered from one tra-
jectory to another and one can derive the right probability density. No

doubt that if Brownian motion has any role to play in the theory, it will

appear in the description of the fluctuations imposed by the thermostat to
the observable quantities. Going further in this direction of research,
de Broglie [2] has built recently what he calls a « thermodynamics of the
isolated particle )) which shows how the classical dynamics of a particle
can be associated with thermodynamical concepts. He gives a set of

relations which establish a remarkable connection between the Hamilton

principle of least action in Mechanics and the principle of maximum entropy
in Thermodynamics.
The celebrated de Broglie relations formulated in 1923 had already

emphasized the identity between the principle of least action and the principle
of Fermat in the case where the approximation of Geometrical Optics can
be used in Wave Mechanics. Now the three variational principles on
which Physics is founded are all related.
A further understanding of the meaning of this unity will reveal perhaps

new fundamental laws.

In a similar way, Wiener and Della Riccia [3] assume the permanent
localization of the particle. The presence of the thermostat is made more

explicit than in de Broglie’s work by the direct use of the methods of Gibbs
statistical mechanics.

The trajectories they consider are trajectories of states in phase space
corresponding to solutions of Hamilton-Jacobi equations of motion.

The probability waves are also in phase space and they represent the time
evolution of probability distributions over the ensemble of all possible
initial conditions (coordinates and momenta) of the particle. They show
that if one perturbs slightly the thermal equilibrium distribution, the phase
space wave can be expanded in a orthonormal set of modes of vibration
such that when they are averaged over the momenta they become the usual
eigenfunctions of Schroedinger equation.
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It is then assumed that because of the randomness introduced by the
thermostat, each mode of vibration has to be associated with a random
variable defined by « white noise )). Then the random events we have

mentioned in (4) lead to the right probabilities of occurrence of eigenstates
postulated by ordinary Quantum Theory.
The theories we have briefly described all make use of thermodynamical

fluctuations which rely on Brownian motion, or the derived « white noise ».
It was our purpose in this work to show mathematically why it is reasonable
to ignore fluctuations which are not of this nature.
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