L 1 metric geometry of big cohomology classes  [ Géométrie métrique L 1 des classes de cohomologie grosses ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 3053-3086.

Soient X une variété Kählerienne compacte et θ une forme fermée qui représente une classe de cohomologie grosse. On introduit une métrique d 1 sur l’espace d’énergie finie 1 (X,θ), ce qui en fait un espace métrique géodésique complet. Cette construction s’appuie seulement sur la théorie du pluripotentiel et ne se réfère pas à la géométrie finsleriénne L 1 , et donc a priori elle est plus rigide par rapport à la construction analogue dans le cas Kählerien. Enfin, on adapte des résultats de Ross et Witt Nyström au cas d’une classe grosse pour montrer que l’on peut construire des rayons géodésiques dans cet espace de façon très flexible.

Suppose (X,ω) is a compact Kähler manifold of dimension n, and θ is closed (1,1)-form representing a big cohomology class. We introduce a metric d 1 on the finite energy space 1 (X,θ), making it a complete geodesic metric space. This construction is potentially more rigid compared to its analog from the Kähler case, as it only relies on pluripotential theory, with no reference to infinite dimensional L 1 Finsler geometry. Lastly, by adapting the results of Ross and Witt Nyström to the big case, we show that one can construct geodesic rays in this space in a flexible manner.

Publié le : 2019-05-24
DOI : https://doi.org/10.5802/aif.3236
Mots clés : Variétés Kähleriénnes, théorie du pluripotentiel, classes d’énergie de Monge-Ampère, rayons géodésiques
@article{AIF_2018__68_7_3053_0,
     author = {Darvas, Tam\'as and Di Nezza, Eleonora and Lu, Chinh H.},
     title = {<span class="mathjax-formula">$L^1$</span> metric geometry of big cohomology classes},
     journal = {Annales de l'Institut Fourier},
     pages = {3053--3086},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {7},
     year = {2018},
     doi = {10.5802/aif.3236},
     language = {en},
     url = {www.numdam.org/item/AIF_2018__68_7_3053_0/}
}
Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. $L^1$ metric geometry of big cohomology classes. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 3053-3086. doi : 10.5802/aif.3236. http://www.numdam.org/item/AIF_2018__68_7_3053_0/

[1] Arezzo, Claudio; Tian, Gang Infinite geodesic rays in the space of Kähler potentials, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 617-630 | Zbl 1170.32312

[2] Bedford, Eric; Taylor, Bert A. The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | Zbl 0315.31007

[3] Bedford, Eric; Taylor, Bert A. Fine topology, Šilov boundary, and (dd c ) n , J. Funct. Anal., Volume 72 (1987) no. 2, pp. 225-251 | Article | Zbl 0677.31005

[4] Berman, Robert J. From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit (2013) (https://arxiv.org/abs/1307.3008)

[5] Berman, Robert J.; Boucksom, Sébastien Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | Zbl 1208.32020

[6] Berman, Robert J.; Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties (2011) (https://arxiv.org/abs/1111.7158, to appear in J. Reine Angew. Math.)

[7] Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | Zbl 1277.32049

[8] Berman, Robert J.; Boucksom, Sébastien; Jonsson, Mattias A variational approach to the Yau–Tian–Donaldson conjecture (2015) (https://arxiv.org/abs/1509.04561)

[9] Berman, Robert J.; Darvas, Tamás; Lu, Chinh H. Regularity of weak minimizers of the K-energy and applications to properness and K-stability (2016) (https://arxiv.org/abs/1602.03114, to appear in Ann. Sci. Éc. Norm. Supér.)

[10] Berndtsson, Bo A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., Volume 200 (2015) no. 1, pp. 149-200 | Zbl 1318.53077

[11] Błocki, Zbigniew The complex Monge–Ampère operator in pluripotential theory, 1997 (http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf)

[12] Bloom, Thomas; Levenberg, Norman Pluripotential energy, Potential Anal., Volume 36 (2012) no. 1, pp. 155-176 | Zbl 1235.32025

[13] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | Article | Zbl 1213.32025

[14] Cegrell, Urban Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | Zbl 0926.32042

[15] Chen, Xiuxiong The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000) no. 2, pp. 189-234 | Zbl 1041.58003

[16] Chen, Xiuxiong; Cheng, Jingrui On the constant scalar curvature Kähler metrics, existence results (2018) (https://arxiv.org/abs/1801.00656)

[17] Chen, Xiuxiong; Sun, Song Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics, Ann. Math., Volume 180 (2014) no. 2, pp. 407-454 | Zbl 1307.53058

[18] Chen, Xiuxiong; Tang, Yudong Test configuration and geodesic rays, Differential geometry, mathematical physics, mathematics and society (I) (Astérisque) Volume 321, Société Mathématique de France, 2008, pp. 139-167 | Zbl 1181.53058

[19] Darvas, Tamás The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | Article | Zbl 1327.53093

[20] Darvas, Tamás The Mabuchi completion of the space of Kähler potentials, Am. J. Math., Volume 139 (2017) no. 5, pp. 1275-1313 | Zbl 1387.53095

[21] Darvas, Tamás Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics, Int. Math. Res. Not., Volume 2017 (2017) no. 22, pp. 6752-6777 (erratum in ibid. 2017 (2017), no. 22, p. 7050) | Zbl 07004487

[22] Darvas, Tamás Weak geodesic rays in the space of Kähler potentials and the class (X,ω), J. Inst. Math. Jussieu, Volume 16 (2017) no. 4, pp. 837-858 | Zbl 1377.53092

[23] Darvas, Tamás Geometric pluripotential theory on Kähler manifolds (2019) (https://arxiv.org/abs/1902.01982)

[24] Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. Monotonicity of non-pluripolar products and complex Monge–Ampère equations with prescribed singularity, Anal. PDE, Volume 11 (2018) no. 8, pp. 2049-2087 | Zbl 1396.32011

[25] Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. On the singularity type of full mass currents in big cohomology classes, Compos. Math., Volume 154 (2018) no. 2, pp. 380-409 | Zbl 1398.32042

[26] Darvas, Tamás; He, Weiyong Geodesic rays and Kähler–Ricci trajectories on Fano manifolds, Trans. Am. Math. Soc., Volume 369 (2017) no. 7, pp. 5069-5085 | Zbl 1366.53052

[27] Darvas, Tamás; Rubinstein, Yanir A. Kiselman’s principle, the Dirichlet problem for the Monge–Ampére equation, and rooftop obstacle problems, J. Math. Soc. Japan, Volume 68 (2016) no. 2, pp. 773-796 | Zbl 1353.32039

[28] Darvas, Tamás; Rubinstein, Yanir A. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 347-387 | Zbl 1386.32021

[29] Demailly, Jean-Pierre Complex analytic and differential geometry (2012) (https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[30] Di Nezza, Eleonora; Guedj, Vincent Geometry and topology of the space of Kähler metrics on singular varieties, Compos. Math., Volume 154 (2018) no. 8, pp. 1593-1632 | Zbl 06944056

[31] Donaldson, Simon K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California symplectic geometry seminar (Translations. Series) Volume 2, American Mathematical Society, 1999, pp. 13-33 | Zbl 0972.53025

[32] Guedj, Vincent The metric completion of the Riemannian space of Kähler metrics (2014) (https://arxiv.org/abs/1401.7857)

[33] Guedj, Vincent; Lu, Chinh H.; Zeriahi, Ahmed Plurisubharmonic envelopes and supersolutions (2017) (https://arxiv.org/abs/1703.05254)

[34] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | Zbl 1087.32020

[35] Guedj, Vincent; Zeriahi, Ahmed The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | Article | Zbl 1143.32022

[36] Guedj, Vincent; Zeriahi, Ahmed Degenerate complex Monge–Ampère equations, EMS Tracts in Mathematics, Volume 26, European Mathematical Society, 2017, xxiv+472 pages | Zbl 1373.32001

[37] Kiselman, Christer O. Partial Legendre transformation for plurisubharmonic functions, Invent. Math., Volume 49 (1978), pp. 137-148 | Zbl 0378.32010

[38] Lu, Chinh H.; Nguyen, Van-Dong Degenerate complex Hessian equations on compact Kähler manifolds, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1721-1745 | Zbl 1341.32033

[39] Mabuchi, Toshiki Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227-252 | Zbl 0645.53038

[40] Nyström, David Witt Monotonicity of non-pluripolar Monge–Ampère masses (2017) (https://arxiv.org/abs/1703.01950)

[41] Phong, Duong H.; Sturm, Jacob Regularity of geodesic rays and Monge–Ampère equations, Proc. Am. Math. Soc., Volume 138 (2010) no. 10, pp. 3637-3650 | Zbl 1205.31004

[42] Rockafellar, R. Tyrrell Convex analysis, Princeton University Press, 1970, xviii+451 pages | Zbl 0193.18401

[43] Ross, Julius; Nyström, David Witt Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | Zbl 1300.32021

[44] Semmes, Stephen Complex Monge–Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992) no. 3, pp. 495-550 | Zbl 0790.32017

[45] Yau, Shing-Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-441 | Zbl 0369.53059