Dans cet article, nous obtenons des estimations de l’ordre moyen, sur les valeurs de la forme cubique , de fonctions multiplicatives soumises à certaines conditions. On donne en particulier une formule asymptotique du nombre d’entiers friables de la forme , valide pour un paramètre de friabilité non borné. La méthode utilisée s’applique également à des fonctions multiplicatives oscillantes comme la fonction de Mœbius : il s’ensuit une nouvelle preuve de la conjecture de Chowla pour la forme , récemment démontrée par Helfgott dans le cas plus général des formes binaires cubiques irréductibles.
In this article, we give some estimates for the average order, over the values of the cubic form , for some multiplicative functions satisfying certain conditions. We provide an asymptotic formula for the number of -friable values of , valid in an unbounded range. Our method also applies to some oscillating multiplicative functions like the Mœbius function : this gives another proof of the Chowla conjecture for the form recently proved by Helfgott in the more general case of binary and irreducible cubic forms.
Révisé le : 2016-05-25
Accepté le : 2017-07-12
Publié le : 2018-05-03
Classification : 11E76, 11N25, 11N36, 11N37, 11Y05
Mots clés : Entiers friables, fonctions multiplicatives, cribles, formes binaires
@article{AIF_2018__68_3_1297_0, author = {Lachand, Armand}, title = {Fonctions arithm\'etiques et formes binaires irr\'eductibles de degr\'e <span class="mathjax-formula">$3$</span>}, journal = {Annales de l'Institut Fourier}, pages = {1297--1363}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {3}, year = {2018}, doi = {10.5802/aif.3189}, language = {fr}, url = {www.numdam.org/item/AIF_2018__68_3_1297_0/} }
Lachand, Armand. Fonctions arithmétiques et formes binaires irréductibles de degré $3$. Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1297-1363. doi : 10.5802/aif.3189. http://www.numdam.org/item/AIF_2018__68_3_1297_0/
[1] Friable values of binary forms, Comment. Math. Helv., Volume 87 (2012) no. 3, pp. 639-667 | Article | Zbl 1268.11136
[2] The asymptotic sieve, Rend. Accad. Naz. XL, Volume 1-2 (1976), pp. 243-269 | Zbl 0422.10042
[3] Sums of arithmetic functions over values of binary forms, Acta Arith., Volume 125 (2006) no. 3, pp. 291-304 | Article | Zbl 1159.11035
[4] Moyennes de fonctions arithmétiques de formes binaires, Mathematika, Volume 58 (2012) no. 2, pp. 290-304 | Article | Zbl 1284.11126
[5] Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu, Volume 12 (2013) no. 4, pp. 759-819 | Article | Zbl 1295.11029
[6] On the number of positive integers and free prime factors . II, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 69 (1966), pp. 239-247 | Article
[7] The Riemann hypothesis and Hilbert’s tenth problem, Norske Vid. Selsk. Forhdl., Volume 38 (1965), pp. 62-64 | Zbl 0136.32702
[8] Prime numbers, a computational perspective, Springer, 2005, xvi+597 pages | Zbl 1088.11001
[9] On the divisor-sum problem for binary forms, J. Reine Angew. Math., Volume 507 (1999), pp. 107-129 | Article | Zbl 0913.11041
[10] Sur la somme de diviseurs , C. R. Acad. Sci. Paris Sér. A, Volume 272 (1971), pp. 849-852 | Zbl 0231.05301
[11] Opera de cribro, American Mathematical Society Colloquium Publications, Volume 57, American Mathematical Society, 2010, xx+527 pages | Zbl 1226.11099
[12] On the divisor-sum problem for binary cubic forms, Acta Arith., Volume 17 (1970), pp. 1-28 | Article | Zbl 0198.37903
[13] Large prime factors of binary forms, J. Number Theory, Volume 3 (1971), pp. 35-59 (errata in ibid. 9 (1977), p. 561-562) | Article | Zbl 0214.30301
[14] Power-free values of binary forms, Q. J. Math., Oxf. II. Ser., Volume 43 (1992) no. 169, pp. 45-65 | Article | Zbl 0768.11034
[15] Sieve methods, London Mathematical Society Monographs, Volume 4, Academic Press, 1974, xiv+364 pages (loose errata) | Zbl 0298.10026
[16] Moyennes de certaines fonctions multiplicatives sur les entiers friables. II, Proc. Lond. Math. Soc., Volume 96 (2008) no. 1, pp. 107-135 | Article | Zbl 1195.11129
[17] Diophantine approximation with square-free numbers, Math. Z., Volume 187 (1984) no. 3, pp. 335-344 | Article | Zbl 0539.10026
[18] Primes represented by , Acta Math., Volume 186 (2001) no. 1, pp. 1-84 | Article | Zbl 1007.11055
[19] Primes represented by binary cubic forms, Proc. Lond. Math. Soc., Volume 84 (2002) no. 2, pp. 257-288 | Article | Zbl 1030.11046
[20] On the representation of primes by cubic polynomials in two variables, Proc. Lond. Math. Soc., Volume 88 (2004) no. 2, pp. 289-312 | Article | Zbl 1099.11050
[21] The parity problem for irreducible cubic forms (2005) (http://arxiv.org/abs/math/0501177)
[22] Entiers friables et formes binaires (2014) https://tel.archives-ouvertes.fr/tel-01104211 (Ph. D. Thesis)
[23] On elementary methods in prime number-theory and their limitations, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, 1952, pp. 13-22 | Zbl 0048.03101
[24] A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., Volume 313 (1980), pp. 161-170 | Zbl 0412.10030
[25] Sur une question d’Erdős et Schinzel, A tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 405-443 | Zbl 0713.11069
[26] Introduction à la théorie analytique et probabiliste des nombres, Échelles, Belin, 2008, 592 pages
[27] Lehrbuch der Algebra. 2, F. Vieweg & Sohn, 1899, x+247 pages | Zbl 30.0093.01