Dans cet article, nous donnons une construction explicite de la transformation de Fourier -adique de Schneider et Teitelbaum, qui nous permet d’étudier son integralité. Comme application, pour toute extension finie de nous donnons une certaine base entière de l’espace de -fonctions localement analytiques sur l’anneau des entiers , en généralisant la base construite par Amice pour les fonctions localement analytiques sur . Nous utilisons également notre résultat pour démontrer certaines relations de congruence étudiées initialement par Katz et Chellali entre nombres de Bernoulli-Hurwitz aux places non-ordinaires (c’est-à-dire supersingulières).
In this article, we give an explicit construction of the -adic Fourier transform by Schneider and Teitelbaum, which allows for the investigation of the integral property. As an application, we give a certain integral basis of the space of -locally analytic functions on the ring of integers for any finite extension of , generalizing the basis constructed by Amice for locally analytic functions on . We also use our result to prove congruences of Bernoulli-Hurwitz numbers at non-ordinary (i.e. supersingular) primes originally investigated by Katz and Chellali.
Accepté le : 2015-06-10
Publié le : 2016-02-16
Classification : 11S40
Mots clés : Distribution -adique, Théorie de Fourier -adique, transform d’Amice, intégralité, congruence, groupe de Lubin-Tate, nombre de Bernoulli-Hurwitz, périodes -adiques
@article{AIF_2016__66_2_521_0, author = {Bannai, Kenichi and Kobayashi, Shinichi}, title = {Integral structures on $p$-adic Fourier theory}, journal = {Annales de l'Institut Fourier}, pages = {521--550}, publisher = {Association des Annales de l'institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3018}, language = {en}, url = {www.numdam.org/item/AIF_2016__66_2_521_0/} }
Bannai, Kenichi; Kobayashi, Shinichi. Integral structures on $p$-adic Fourier theory. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 521-550. doi : 10.5802/aif.3018. http://www.numdam.org/item/AIF_2016__66_2_521_0/
[1] Interpolation -adique, Bull. Soc. Math. France, Volume 92 (1964), pp. 117-180
[2] Algebraic theta functions and the -adic interpolation of Eisenstein-Kronecker numbers, Duke Math. J., Volume 153 (2010) no. 2, pp. 229-295 | Article
[3] -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 3, pp. 1-27 | Article
[4] Congruences entre nombres de Bernoulli-Hurwitz dans le cas supersingulier, J. Number Theory, Volume 35 (1990) no. 2, pp. 157-179 | Article
[5] Division values in local fields, Invent. Math., Volume 53 (1979) no. 2, pp. 91-116 | Article
[6] Formal groups and zeta-functions, Osaka J. Math., Volume 5 (1968), pp. 199-213
[7] Divisibilities, congruences, and Cartier duality, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981) no. 3, p. 667-678 (1982)
[8] -adic Fourier theory, Doc. Math., Volume 6 (2001), p. 447-481 (electronic)
[9] Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, Volume 3, Academic Press, Inc., Boston, MA, 1987, x+154 pages (-adic functions)
[10] The exponential series of the Lubin-Tate groups and -adic interpolation, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 46 (1992) no. 2, pp. 351-365 | Article