Cluster characters for 2-Calabi–Yau triangulated categories
Annales de l'Institut Fourier, Volume 58 (2008) no. 6, p. 2221-2248

Starting from an arbitrary cluster-tilting object T in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object L, a fraction X(T,L) using a formula proposed by Caldero and Keller. We show that the map taking L to X(T,L) is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster category and the cluster variables, which confirms a conjecture of Caldero and Keller.

Etant donné un objet amas-basculant T quelconque dans une catégorie triangulée 2-Calabi–Yau sur un corps algébriquement clos (comme dans le cadre de Keller et Reiten), il est possible de définir, pour chaque objet L, une fraction rationnelle X(T,L), en utilisant une formule proposée par Caldero et Keller. On montre, de plus, que l’application associant X(T,L) à L est un caractère amassé  ; c’est-à-dire qu’elle vérifie une certaine formule de multiplication. Cela permet de prouver qu’elle induit, dans les cas fini et acyclique, une bijection entre objets rigides indécomposables de la catégorie amassée et variables d’amas de l’algèbre amassée correspondante, confirmant ainsi une conjecture de Caldero et Keller.

DOI : https://doi.org/10.5802/aif.2412
Classification:  16G20,  18E30
Keywords: Calabi–Yau triangulated category, cluster algebra, cluster category, cluster-tilting object
@article{AIF_2008__58_6_2221_0,
     author = {Palu, Yann},
     title = {Cluster characters for 2-Calabi--Yau triangulated categories},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     pages = {2221-2248},
     doi = {10.5802/aif.2412},
     mrnumber = {2473635},
     zbl = {1154.16008},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2008__58_6_2221_0}
}
Palu, Yann. Cluster characters for 2-Calabi–Yau triangulated categories. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 2221-2248. doi : 10.5802/aif.2412. http://www.numdam.org/item/AIF_2008__58_6_2221_0/

[1] Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Tome 126 (2005) no. 1, pp. 1-52 | Article | MR 2110627 | Zbl 1135.16013

[2] Buan, Aslak Bakke; Caldero, Philippe; Keller, Bernhard; Marsh, Robert J.; Reiten, Idun; Todorov, Gordana Appendix to Clusters and seeds in acyclic cluster algebras (preprint arXiv: math.RT/0510359) | Zbl pre05175036

[3] Buan, Aslak Bakke; Iyama, Osamu; Reiten, Idun; Scott, Jeanne Cluster structures for 2-Calabi–Yau categories and unipotent groups (preprint arXiv: math.RT/0701557)

[4] Buan, Aslak Bakke; Marsh, Robert; Reineke, Markus; Reiten, Idun; Todorov, Gordana Tilting theory and cluster combinatorics, Adv. Math., Tome 204 (2006) no. 2, pp. 572-618 | Article | MR 2249625 | Zbl 1127.16011

[5] Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun Cluster mutation via quiver representations (preprint arXiv: math.RT/0412077) | Zbl pre05274281

[6] Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun Cluster-tilted algebras, Trans. Amer. Math. Soc., Tome 359 (2007) no. 1, p. 323-332 (electronic) | Article | MR 2247893 | Zbl 1123.16009

[7] Caldero, P.; Chapoton, F.; Schiffler, R. Quivers with relations arising from clusters (A n case), Trans. Amer. Math. Soc., Tome 358 (2006) no. 3, p. 1347-1364 (electronic) | Article | MR 2187656 | Zbl 1137.16020

[8] Caldero, Philippe; Chapoton, Frédéric Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Tome 81 (2006) no. 3, pp. 595-616 | Article | MR 2250855 | Zbl 1119.16013

[9] Caldero, Philippe; Keller, Bernhard From triangulated categories to cluster algebras (preprint arXiv: math.RT/0506018) | Zbl 1141.18012

[10] Caldero, Philippe; Keller, Bernhard From triangulated categories to cluster algebras II (preprint arXiv: math.RT/0510251)

[11] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras IV: Coefficients (preprint arXiv: math.RA/0602259) | Zbl 1127.16023

[12] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Amer. Math. Soc., Tome 15 (2002) no. 2, p. 497-529 (electronic) | Article | MR 1887642 | Zbl 1021.16017

[13] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II. Finite type classification, Invent. Math., Tome 154 (2003) no. 1, pp. 63-121 | Article | MR 2004457 | Zbl 1054.17024

[14] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Partial flag varieties and preprojective algebras (preprint arXiv: math.RT/0609138) | Zbl pre05298323

[15] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Semicanonical bases and preprojective algebras II: A multiplication formula (preprint arXiv: math.RT/0509483) | Zbl 1132.17004

[16] Geiss, Christof; Leclerc, Bernard; Schröer, Jan Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 2, pp. 193-253 | Numdam | MR 2144987 | Zbl 1131.17006

[17] Geiß, Christof; Leclerc, Bernard; Schröer, Jan Rigid modules over preprojective algebras, Invent. Math., Tome 165 (2006) no. 3, pp. 589-632 | Article | MR 2242628 | Zbl pre05057631

[18] Iyama, Osamu; Reiten, Idun Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras (preprint arXiv: math.RT/0605136)

[19] Iyama, Osamu; Yoshino, Yuji Mutations in triangulated categories and rigid Cohen–Macaulay modules (preprint arXiv: math.RT/0607736) | Zbl 1140.18007

[20] Keller, Bernhard On triangulated orbit categories, Doc. Math., Tome 10 (2005), p. 551-581 (electronic) | MR 2184464 | Zbl 1086.18006

[21] Keller, Bernhard; Neeman, Amnon The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver D 4 , Doc. Math., Tome 7 (2002), p. 535-560 (electronic) | Zbl 1021.18002

[22] Keller, Bernhard; Reiten, Idun Acyclic Calabi-Yau categories (preprint arXiv: math.RT/0610594)

[23] Keller, Bernhard; Reiten, Idun Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math., Tome 211 (2007) no. 1, pp. 123-151 | Article | MR 2313531 | Zbl 1128.18007

[24] Koenig, Steffen; Zhu, Bin From triangulated categories to abelian categories–cluster tilting in a general framework (preprint arXiv: math.RT/0605100) | Zbl 1133.18005

[25] Lusztig, G. Semicanonical bases arising from enveloping algebras, Adv. Math., Tome 151 (2000) no. 2, pp. 129-139 | Article | MR 1758244 | Zbl 0983.17009

[26] Marsh, Robert; Reineke, Markus; Zelevinsky, Andrei Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., Tome 355 (2003) no. 10, p. 4171-4186 (electronic) | Article | MR 1990581 | Zbl 1042.52007

[27] Tabuada, Goncalo On the structure of Calabi–Yau categories with a cluster tilting subcategory (preprint arXiv: math.RT/0607394) | Zbl 1122.18007